Lecturer: Chris Fermüller.
This course will be held in English.
Contents:Friday, October 9, 2015, 11:00 - 13:00 (moved from Oct. 2)
Seminar Room von Neumann
Favoritenstraße 9 / ground floor
Basic knowledge about classical propositional and first-order logic as covered, e.g., in "Theoretische Informatik und Logik".
TEST YOURSELF whether you are fit for this course:
You should be able to prove without handwaving (and
preferably without consulting any book or notes)
that (forall x) (exists y) P(x,y) is a logical consequence of
(exists x) (forall y) P(y,x), and to (rigorously) show that
the converse does not hold.
In particular you should be able to present a formal definition
of the (logical) consequence relation and of a (formal)
model/interpretation of a classical first-order formula.
The course will take place in slightly blocked form on 8 or 9 Fridays in October, November, and December (possibly also in January).
Lectures are currently planned for the following dates in winter term 2015/16:
Oct 9, Oct 30,
Nov 13, Nov 20, Nov 27,
Dec 4, Dec 11.
Various course material - in particular copies of the lecture slides, including the homework problems ('exercises') - will be made available here (and/or in the lecture) to all participants.
We strongly recommend the use of LaTeX.
Useful style files are available from
Latex for Logicians.
For drawing graphs and automata - and thus also Kripke models -
the LaTeX package
VauCanSon-G should be useful. More options for automata/graph drawing
with LaTeX can be found at MET - Automata in LaTeX.
Also the TeX/LaTeX extension PGF/TikZ is well worth exploring.
Include the problem statement, its number (`Exercise X: ... ') and your name in the submitted solution files. Send corresponding (uncompressed) PDF files via email to Chris Fermüller using "NCL exercises" as subject line.
The evaluation will be based on the amount and quality of submitted solutions to the exercises (as assigned during the course).
[ LVAs 185/2 | Abteilung 185/2 | Institut 185 | Informatik | TU Wien | Server home page ]