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Overview
Although linguistic vagueness is generally related to the existence of borderline cases,
the main theories of vagueness are not primarily aimed at handling borderline cases
explicitly. As a result, these theories are able to avoid the use of truth degrees, e.g.
by focusing on truth value gaps or by taking the epistemic point of view that there is
an unknown but sharp boundary between truth and falsity. We argue that, on the other
hand, in information processing settings, borderline cases usually are a matter of degree,
or at least of ranking, although such degrees may serve different purposes. To support
our claim, this paper discusses a number of information processing scenarios, in relation
with their use of degrees to handle borderline cases. First, we consider the use of fuzzy
labels, contrasting the role of (graded) borderline cases in three different situations: (i)
allowing for flexibility when specifying and evaluating fuzzy requests, (ii) allowing for
abstraction when describing precise information, and (iii) allowing for uncertainty when
stating imprecise information. Second, we discuss the idea of degrees of typicality in
the setting of formal concept analysis, seeing e.g. penguins or kiwis as borderline cases
of birds. Finally, we illustrate how degrees of similarity may be useful for maintaining
consistency, taking advantage of a flexible understanding of linguistic terms, seeing e.g.
civil unions as borderline cases of marriages.

1 Introduction
Vagueness already has a long history in modern philosophy, and there are different,
somewhat rival, views of vagueness [24, 23, 41, 43]. The supervaluation view [44, 17],
for instance, prefers to admit a truth value gap: borderline statements have no truth
value, but a compound statement involving vague terms may be true if it is true for
every possible way in which these vague terms can be precisified (where a vague term
is thus viewed as the collection of all its possible sharpened versions). In contrast,
the epistemic view [48] rather presupposes the existence of a unique, precise border
between truth and falsity, but considers “vagueness as a kind of ignorance”, inasmuch
that “there really is a grain of sand whose removal turns a heap into a non-heap, but we
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cannot know which one it is”. However, despite the lack of a unified view on vagueness,
it is generally agreed that “a term is vague to the extent that it has borderline cases”
[42], hence vagueness might be equated with the idea that a vague concept partitions
the universe of discourse (sometimes implicitly) into more than two parts; see e.g. [9]
for a detailed discussion on the kind of informational scenarios that give rise to such a
situation. Nonetheless, the study of vagueness has mainly concentrated on the difficulty
of reasoning with vague statements in general, rather than on the explicit handling of
borderline cases in practical applications.

In contrast, while the representation of vagueness has not been so much of an issue
in Artificial Intelligence (AI) and Pattern Recognition, these fields have progressively
built methods that allow to explicitly handle borderline cases in different information
processing settings, using degrees in one way or another to distinguish between different
levels of being borderline. The field of AI, for instance, has focused on the representation
of incomplete and uncertain information, or on the introduction of flexibility when deal-
ing with soft constraints. In that respect, the development of fuzzy logic [49]—assigning
intermediary truth values to borderline statements—has primarily been motivated by the
need to handle gradual properties in approximate reasoning, rather than offering an al-
ternative theory of vagueness, even if a treatment of sorites using fuzzy logic has been
proposed very early [20] (see also [40]). Another example is the development of non-
monotonic reasoning approaches for handling exceptions under incomplete information
[25], which often rely on plausibility orderings between interpretations to determine
what is true in the most normal worlds. For instance, given that typical birds can fly
while penguins cannot, penguins are seen as exceptional birds, and are in this sense
borderline. Along the same lines, AI uses orderings to represent user preferences, or to
encode priorities when revising knowledge bases, while Pattern Recognition has found
it advantageous to allow elements to have a graded membership in a given cluster [4].

Thus there seems to be a gap between the philosophical views on vagueness (e.g. su-
pervaluation semantics), and practical methods for handling borderline cases (e.g. based
on fuzzy set theory). In this respect, it is interesting to note that a refinement of super-
valuation semantics, called standpoint semantics [3], has recently been proposed which
seems to bridge this gap to a large extent. Essentially, standpoint semantics adds struc-
ture to supervaluation semantics by restricting the possible precisifications of a vague
term to those that correspond to a standpoint, i.e. a given choice of threshold values for a
fixed set of parameters. A fuzzy set can then be seen as an approximate representation of
the possible standpoints that can be taken regarding some vague term, sacrificing some
structure for better tractability. Note that this view on fuzzy sets is similar to the view of
a fuzzy set as the approximation of a random set. The transition from supervaluation se-
mantics to standpoint semantics also seems to support the view that in practical applica-
tions, handling borderline cases often requires the use of degrees in one form or another,
including intermediary truth values, rankings, or threshold values (i.e. standpoints).

In this paper, we further elaborate on the role of degrees when dealing with border-
line cases. By zooming in on a number of basic situations in which borderline cases are
encountered, we illustrate how degrees may serve different purposes, and why they are
important in applications. In Section 2, we discuss the different uses of fuzzy labels,
where degrees are used to model gradualness, allowing for a continuous transition from
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objects that perfectly satisfy some criterion to objects that do not satisfy it at all. We
especially contrast three different uses of fuzzy labels. First, fuzzy labels may be used
to express requests, in which case the degrees associated with borderline cases express
levels of flexibility. Second, fuzzy labels may be used to describe precise information in
a more abstract way (e.g. categorization), in which case degrees express levels of com-
patibility. Third, fuzzy labels may be used for the imprecise description of ill-known
cases, in which case degrees express levels of uncertainty. Subsequently, Section 3 con-
siders statements such as “Tweety is a bird”. While “bird” does not correspond to a
fuzzy label, birds which lack some typical properties such as “being able to fly” or “hav-
ing feathers” (e.g. kiwis) may be considered as borderline. Note that tacitly assuming
that “Tweety is a typical bird” when all we know is that “Tweety is a bird” is often done
in commonsense reasoning. Borderline cases of birds may be graded by asserting that
birds are typical (i.e. not borderline) to the extent that they satisfy all the important prop-
erties. We discuss the practical use of such degrees of typicality in the context of formal
concept analysis. In particular, we focus on the question of how to assess the degree to
which some known entity is a typical bird, as well as on the question of how to model
the uncertainty that arises when all we know is that “Tweety is a typical bird”. Finally, in
Section 4, we consider assertions such as “John is married”, which may require a more
permissive understanding than what the term “married” actually means. For instance,
when a source tells us that John is married, it is still somewhat plausible that John is, in
fact, in a civil union. Concepts which are similar to marriages, such as a civil union, may
thus be seen as borderline cases, even if civil unions do not correspond to special cases
of marriages. This view is close to the idea of verisimilitude, i.e. the idea that some false
statements are closer to the truth than others. Indeed, the assertion “John is married” is
intuitively less false when John is in a civil union than when he is single. We discuss
how such a similarity-based treatment of statements can be a useful tool for maintaining
consistency in a knowledge representation setting.

In some sense, the information processing setting illustrates the difference between a
vague term and the vague understanding of a term. Indeed, the use of fuzzy labels allows
for a non-vague understanding of vague terms, while Sections 3 and 4 are concerned with
the vague understanding of non-vague terms.

In all of the considered scenarios, we find that degrees play a key role in the practi-
cal handling of borderline cases. At first glance, this observation seems at odds with the
limited attention that has been given to degrees in most philosophical treatments of
vagueness. However, one may argue that, despite the focus on borderline cases, strictly
speaking, none of the scenarios we discuss is really concerned with vagueness as it
is usually understood, but rather with related notions such as fuzziness, typicality and
similarity. Indeed, borderline cases between compatible and incompatible; typical and
atypical; similar and dissimilar; etc., are different in nature from borderline cases be-
tween truth and falsity. It is tempting to speculate that this subtle difference may be
responsible for much of the controversy on the use of degrees in theories of vagueness.

2 On the different uses of fuzzy labels
A fuzzy set A is a mapping from some universe of discourse U to the unit interval [0,1].
For any u in U , A(u) is called the membership degree of u in A, and reflects the extent
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to which object u satisfies some underlying property. This property is usually described
by means of a possibly vague, linguistic label. We use the term fuzzy label to denote
such a linguistic description whose interpretation is explicitly specified as a fuzzy set. It
is important to note that by providing a fuzzy set as the interpretation of a linguistic de-
scription, any vagueness that may have resided in the linguistic description is resolved.
What remains is the idea of gradualness, captured by the associated fuzzy set represen-
tation: some objects are more compatible than others with a fuzzy label. Indeed, Zadeh
himself already considered that vagueness should not be confused with fuzziness. He
wrote (in a footnote p. 396 in [49]): “Although the terms fuzzy and vague are frequently
used interchangeably in the literature, there is, in fact, a significant difference between
them. Specifically, a proposition p is fuzzy if it contains words which are labels of fuzzy
sets; and p is vague if it is both fuzzy and insufficiently specific for a particular purpose.”
So he associates the idea of vagueness with situations where the information at hand is
insufficient for some particular use. This may be viewed as putting vagueness closer
to generality, or even to ambiguity, two other notions that are classically distinguished
from vagueness (see, e.g., [42]). More interestingly, it is noticeable that in Zadeh’s view,
vagueness is not a feature which is intrinsically attached to a statement (as fuzziness is),
but is rather associated to a proposition in the context of a particular purpose. In fact,
acknowledging the use of fuzzy labels when modeling vagueness would for instance
amount to adapt the supervaluation view such that the possible delineations of a vague
term may be fuzzy sets rather than classical sets. This is beyond the scope of this paper.

We may think of very different circumstances in which fuzzy labels or fuzzy sets
may be used. There are uses of fuzzy sets as a device for compact encoding that are
motivated by technical needs, e.g. using Łukasiewicz multi-valued logic to encode linear
optimization problems [21] or to deal with aspects of coding theory [5], using fuzzy
description logics for handling data on continuous domains in multimedia information
retrieval [31], and using fuzzy answer set programming to find strong Nash equilibria
[37]. In this paper, however, we focus on the cognitive uses. Fuzzy sets are useful
when expressing desires or requests, when categorizing situations, or when interpreting
received information. These three cognitive tasks, which are discussed in more detail
below, favor different representation capabilities of fuzzy sets: respectively the encoding
of a preference ordering, the embedding of a notion of similarity, and the expression of
an uncertainty distribution [11].

Fuzzy labels expressing preference
Consider the situation in which some user is looking for an apartment to let, and at-
tempts to express her desires as a query to some database. In such a case, it may be
difficult to come up with a good query which only uses hard constraints, because there
is a risk to over-constrain (in which case there would be no matches) or under-constrain
(in which case there would be many suboptimal matches) the request. To cope with
this, the user may come up with an under-constrained query, together with additional
information about her preferences, which could be used to rank the objects matching the
actual query. This can easily be accomplished using fuzzy labels. For instance, the user
may ask for an apartment that is “rather cheap” and “close” to downtown. This request
may be translated into a query by assuming a very liberal understanding of the terms
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“rather cheap” and “close”, while a fuzzy set representation of these terms may be used
to subsequently rank the matching apartments.

When expressing desires, fuzzy sets are thus used to encode which are the more or
less acceptable values, the fully acceptable values, and the fully excluded values of the
relevant attributes. In case the underlying attribute values are ordered on a continuum,
processing the query basically amounts to building a membership function representa-
tion for each linguistic term, and choosing appropriate operations on fuzzy sets to com-
bine the elementary requirements (e.g. generalizations of set complementation, union
and intersection). If the underlying attribute domain is discrete and unordered, a direct
assessment of acceptability levels would be required for every attribute value. In such a
case, it may be appropriate to use a scale for the membership degrees which is different
from the real unit interval, the latter being appropriate especially for numerical attributes.

Note that, in principle, fuzzy sets representing preferences are not necessarily asso-
ciated with a label. Labels are useful here only if the user needs to communicate about
what she is looking for, or if the queries are expressed in a prescribed fuzzy vocabulary
that has been defined in advance. Since all linguistic terms in such a fuzzy vocabu-
lary have been given a precise meaning, through the specification of fuzzy sets, there
is no vagueness in the query itself. However, the vagueness of the associated linguis-
tic terms helps us to get an intuitive grasp of the kind of flexibility that is offered by a
fuzzy request. Hence, instead of being a culprit, the vagueness of language is actually
advantageous here.

Fuzzy labels expressing similarity
For humans, it is often straightforward to provide natural language descriptions of nu-
merical information. By abstracting away from the actual numbers, the main conclu-
sions that can be drawn from available data may then be easier to see. There is a dis-
crepancy, however, between the continuum of values for attributes such as “age”, and
the finite (and generally small) number of natural language terms that are at our disposal
to describe them. When interfacing numerical domains with natural language terms, it
may be beneficial to represent these terms as fuzzy sets. The gradualness of predicates
such as “young”, viewed as a fuzzy label, then enables us to avoid the use of precise
threshold values, which would to a large extent be arbitrary. In other words, the purpose
of using fuzzy labels is to allow for flexible threshold values. The decision of which is
the most appropriate label to describe a given situation or object can then be postponed,
which may allow us to take additional information into account. Note that the final label
that is used to describe some situation may also be a compound label (e.g. “old but not
very old”), which is obtained using linguistic connectives (e.g. “but”) and hedges (e.g.
“very”). Note that this use of fuzzy labels is rather different from its use in the speci-
fication of queries. Here, the underlying fuzzy set representations essentially convey a
notion of similarity: the ages that are somewhat compatible with the predicate “young”
are those that are similar to ages which are perfectly compatible with it. The need to
qualify a particular situation or object, using a linguistic label, may arise for instance in
categorization, as is done by fuzzy symbolic sensors [29]. Another application is when
a natural language generation system has to build a minimal description designating (in
a non-ambiguous manner) an object in a scene, using a limited vocabulary referring for
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instance to size, location, or color (see [15] for a study of this problem).
The qualification of a particular case, as described above, should be contrasted with

the description of generic situations. Given a database (whose attribute values are pre-
cisely known), one may for instance be interested in providing some partial summaries
of its content through aggregates and association rules. Using fuzzy labels, we may state
assertions such as “the average salary of young people in the company is about 1500 eu-
ros” or “more than 90% of young people have a salary less than . . . ”. Without fuzzy
labels, precise thresholds need to be used, as in “the average salary of people below 30
. . . ”, or “93% of people below 35 have a salary less than . . . ”. The main advantage of
using fuzzy labels, here, is that they may cover a larger portion of the data. The flexi-
ble thresholds that are introduced by using fuzzy labels thus work at our advantage: as
several labels may be more or less acceptable to describe a given situation, there is more
freedom to come up with informative and useful rules, while staying sufficiently close
to what the data actually conveys. However, in order for such statements with fuzzy
categories to make sense, it is desirable that for any acceptable precisification of these
categories, the value of the average (or any other considered measure) does not vary
too much, and remains in a prescribed (fuzzy) range. See [10] and [14] for database
aggregates and association rules respectively, on this issue.

Fuzzy labels expressing uncertainty
In the previous two settings, fuzzy labels were used w.r.t. perfectly known information,
resp. to convey desires and to provide linguistic descriptions. Here we consider the
setting where one receives a piece of information which is expressed linguistically, such
as “Bob is young”. In this case, we do not have access to any precise information, and we
thus remain uncertain about the actual age of Bob. Such a statement of the form X is A,
where X refers to a single-valued attribute (here the age) is fuzzy if A is represented as a
fuzzy set. Similarly, the statement X is A is imprecise as soon as the extension of the set
(or fuzzy set) representing A is not a singleton of the universe of discourse U , as in the
statement “John is between 20 and 30 years old” (assuming for instance that U is some
subset of the set of positive integers). In both cases, we are uncertain about the precise
age of the person, although we do know that some ages are impossible, because they are
not compatible at all with the given (fuzzy) label. Moreover, given a fuzzy label such
as “young”, it is clear that the more a given age can be considered as young, the more it
is compatible with the asserted information, and hence the more it should be considered
as a possible value. This leads us to take the degree of possibility that age(Bob) is 25
to be the degree of membership of 25 in the fuzzy set representing “young” [49]. More
generally, it is postulated that

πX (u) = µA(u), ∀u ∈U

where πX (u) represents the degree to which u is considered as a possible value of X and
µA(u) represents the membership degree of u in the fuzzy set corresponding with the
label A. This means that a value u is all the more possible (πX (u) is all the higher) as
u is considered to be more consistent with the fuzzy meaning conveyed by A. But, this
does not mean that the predicate “young” is vague, or involve any uncertainty in itself,
at least as long as there is no disagreement about the membership function representing
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this predicate in the considered context. What may be uncertain is not the piece of
information in itself (in fact, it is fully certain that “Bob is young”, inasmuch as the
source that provides the information is reliable), but e.g. the truth of a statement such as
“Bob is less than 25”, when all we know is that “Bob is young”.

The three uses of fuzzy labels discussed in this section illustrate the role which
is played by graded borderline cases in settings where vague linguistic terms are pre-
cisiated using fuzzy sets. As we illustrate in the next two sections, graded borderline
cases may also play a central role when there is no vagueness, strictly speaking, in the
considered descriptions. Indeed, even for a term with a well-defined meaning, in some
situations, it is of interest to consider a more restrictive, or on the contrary, a more liberal
view of the extension of the term, as we are going to see in Sections 3 and 4 respectively.

3 Introducing typicality in formal concept analysis
The idea of a concept, for which there exist different views, is difficult to define, although
it is clear that concepts play a crucial role in categorization tasks [28, 30]. Classically,
categorical membership differs from typicality, and both notions may even refer to dif-
ferent sets of features. Moreover typicality is not directly linked with vagueness, while
categorical membership is. Still, it is interesting to examine how these aspects interact in
the setting of formal concept analysis, even if formal concepts are an idealized and sim-
plified view of the idea of a concept. In this section, we provide an illustration of the use
of degrees for handling borderline cases with respect to the notion of a formal concept.

Formal concept analysis (FCA) [47] is a mathematical theory that defines a formal
concept as a pair of two sets: i) a set of objects, called the extension of the formal con-
cept, and ii) a set of properties, called its intension. Thus, for instance, a set of animal
species (playing the role of the objects) is considered together with a set of properties
(e.g. ‘laying eggs’, ‘flying’, ‘having fur’, etc.). In particular, FCA starts from the notion
of a (formal) context, which is represented by a binary relation R ⊆ Ob j×Prop that
encodes which objects satisfy which properties. In other words, the pair (x,y) is an ele-
ment of R if and only if object x has property y. Then, the concept ‘bird’ can be defined
in a context which links animal species to relevant properties for describing animals.

What makes FCA theory attractive is its ability, when objects have known proper-
ties, to jointly identify the extension and the intension of formal concepts. Moreover, the
set of formal concepts induced by a formal context is organized in a double lattice struc-
ture (w.r.t. objects and properties), which is exploited by data mining algorithms [34].
Despite the general attractiveness of FCA, however, typicality has not been considered
in this setting, with the exception of a very recent proposal [7] that we discuss now, after
recalling some basic notions.

Given a context, the extension and intension of a concept are supposed to mutually
determine each other. We denote by R(x) the set of properties possessed by object x, and
by R−1(y) the set of objects having properties y. One can define

• the set of objects R−1(Y ) having all the properties of some subset Y ⊆ Prop as
R−1(Y ) = {x ∈ Ob j | Y ⊆ R(x)}, and dually,

• the set of properties R(X) possessed by all the objects in some subset X ⊆Ob j as
R(X) = {y ∈ Prop | X ⊆ R−1(y)}.
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Then, a formal concept is an (extension, intension)-pair (X ,Y ), such that

X = R−1(Y ) and Y = R(X)(1)

with respect to a context R. Thus, in a formal concept, the objects in the extension
have all the properties in the intension, and conversely the properties in the intension are
possessed by all the objects in the extension.

Table 1 provides a toy example of a formal (sub)context, where the objects and
properties relate to birds:

Ob j = {sparrow,parrot,penguin,kiwi}
Prop = {‘laying eggs’, ‘having two legs’, ‘flying’, ‘having feathers’}

The symbol + in a cell of Table 1 indicates that the corresponding object has the corre-
sponding property. Both of the following pairs are examples of formal concepts:

({sparrow,parrot},{‘laying eggs’, ‘having two legs’, ‘flying’, ‘having feathers’})
({sparrow,parrot,penguin,kiwi},{‘laying eggs’, ‘having two legs’})

Note that since (Ob j,Prop) does not constitute a formal concept in itself, either some
properties or some objects need to be left out. The first case corresponds to the (unique)
formal concept whose intention contains all properties. Likewise, the second case corre-
sponds to the (unique) formal concept whose extension is the set of all objects. Generally
speaking, it can be shown that a formal concept (X ,Y ) is such that X×Y ⊆R holds. Note
that this Cartesian product visually gives birth to a rectangle made of + (maybe after a
proper reordering of the lines and/or the columns) in the table.

Degrees can be introduced in two different ways in FCA. First, we may consider the
relation describing the formal context to be fuzzy [1], with the aim of acknowledging the
gradualness of properties. Then, the extent to which (x,y) is an element of R is a matter
of degree that reflects to what extent object x has property y, and R−1(y) is the fuzzy
set of objects having property y to some degree. By extending the definition of a formal
concept in a natural way, formal fuzzy concepts can then be introduced. However, such
fuzzy concepts have nothing to do with typicality.

The second type of degrees that may be considered in FCA are obtained by keeping
R crisp (i.e. binary-valued), and by relating degrees of typicality of objects to degrees of
importance of properties, as we are going to see. Let us consider a particular subcontext,
corresponding to a set of objects X sc ⊆ Ob j and a set of associated properties Y sc ⊆
Prop. Then, the basic idea is to equip Y sc with degrees of importance and X sc with
degrees of typicality, and to put the important properties of the subcontext in relation
with its typical objects, via a mutual characterization similar to the one provided by
Equation (1). This can be summarized by the two following principles:

(A) An object x is all the more normal (or typical) w.r.t. a set of properties Y sc as it has
all the properties y ∈ Y sc that are sufficiently important;

(B) A property y is all the more important w.r.t. a set of objects X sc as all the objects
x ∈ X sc that are sufficiently normal have it.
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Let us illustrate this idea on the example of Table 1, and let us assume the following
typicality levels: X sc

typ(sparrow) = X sc
typ(parrot) = 1, X sc

typ(penguin) = α < 1 (since pen-
guins do not fly), and X sc

typ(kiwi) = β , with 1 > α > β (since kiwis do not fly and have
no feathers). Note that the levels used here are purely symbolic, and are just supposed
to belong to an ordinal scale.

Table 1.
R eggs 2 legs feather fly
sparrow + + + +
parrot + + + +
penguin + + +
kiwi + +

To compute the fuzzy set of important properties according to principle (B) above,
we need to evaluate the degree of inclusion of a fuzzy set of typical objects into the set of
objects having property y. This can be accomplished using a multiple-valued implication
connective→ as follows:

Y sc
imp(y) = minx(X sc

typ(x)→ R(x,y))(2)

where Y sc
imp(y) is the degree of importance of property y. Moreover, as R is a crisp re-

lation, we either have R(x,y) = 1 (when x has property y) or R(x,y) = 0 (otherwise).
The implication connective satisfies a→ 1 = 1 as any multiple-valued implication, and
should be chosen such that a → 0 = 1− a. This choice expresses the idea that the
more a bird is considered typical, the less the properties that it does not have are as-
sumed to be important in the definition of the concept bird. Note that in the case where
(X sc,Y sc) would be a classical formal concept, Y sc(y) = minxX sc(x)→ R(x,y) is nothing
but Y sc = R(X sc).

Let us now compute the fuzzy set (with membership function µ) of typical objects
according to principle (A) above by

µ(x) = miny(Y sc
imp(y)→ R(x,y))(3)

We get µ(sparrow) = µ(parrot) = 1; µ(penguin) = α; µ(kiwi) = β (since (1−a)→ 0
= a). As can be observed, we have ∀x, µ(x)=X sc

typ(x). In fact, the equations (2)–(3) are
the counterparts of the definition of a formal concept, given in (1), taking into account the
graded interrelation between important properties and typical objects [7]. Thus, in the
example of Table 1, the pair of fuzzy sets (X sc

typ,Y
sc
imp) constitutes a generalized for-

mal concept, since the fuzzy sets of important properties and of typical objects are in
agreement.

More generally, typicality has been addressed in the setting of prototype theory. The
idea, noticed by Wittgenstein, that things covered by a term often share a family resem-
blance may be seen as being at the basis of prototype theory [36], where categorization
is understood in terms of similarity (see [28]). Then, a sparrow appears to be a more
typical bird than a kiwi, inasmuch as a sparrow has more of the constituent properties of
a bird prototype than a kiwi. This is also acknowledged in the approach presented above.
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In this context, it is useful to refer to the critical discussion of a fuzzy set-based
approach to prototype theory made by Osherson and Smith [33] when dealing with con-
ceptual combination (see Zadeh [50] for a reply). This discussion is centered around
the problem of compound concepts, noticing e.g. that the set of all typical red birds is
not the intersection of the set of typical red animals with the set of typical birds. In our
setting, this phenomenon can be accounted for noting that typical red birds would be
defined on the basis of an explicit representation of important properties for red birds,
which cannot be obtained from the important properties for red animals and those for
birds. As a result, a fuzzy set of typical red birds, in our setting, will not necessarily
correspond to the fuzzy set combination of a fuzzy set of typical red animals and a fuzzy
set of typical birds.

This approach enables us to relate a typicality preordering among objects to an
importance preordering among properties. It has some common flavor with the approach
proposed, in a different perspective, by Freund, Desclés, Pascu and Cardot [16], which
starts from the commonly accepted idea that a (proto)typical object in a category is
an object that satisfies any normally expected property from the category (e.g., “birds
fly”), and uses a non-monotonic reasoning view for performing contextual inferences
about typical objects. However, our focus here is not inference, and we have rather
tried to embed typicality in the setting of formal concept analysis. Besides, Freund
[18, 19] proposes a qualitative model where the typicality associated with a concept
is described using an ordering that takes into account the characteristic features of the
concept. The approach uses a “salience” (partial) order between features, just as we
use an importance ordering between properties. However, the salience ordering is not
associated with a typicality ordering in the way proposed here, even if the relation with
FCA is also discussed in [18] (when typicality is not graded).

Interestingly enough, the view proposed here leads to a representation of statements
such as “Tweety is a bird” in terms of the certainty with which Tweety has each of the
considered properties, just as in possibilistic logic [13] (which also provides a way for
processing non-monotonic reasoning [2]).

Indeed, representing a statement such as “Tweety is a bird” amounts to state that i)
it is fully possible that Tweety has the (Boolean) properties that a bird may have, and
ii) the possibility that Tweety does not have the property y is all the greater as y is less
important for birds,

∀y ∈ Y bird ,πy(Tweety)(yes) = 1 and πy(Tweety)(no) = 1−Y bird
imp (y)

where Y bird
imp is the fuzzy set of important properties for birds. Equivalently, the certainty

that Tweety has property y is all the greater as y is more important for birds, and is equal
to Y bird

imp (y).
One might think of another representation of “Tweety is a bird” that would perfectly

parallel the one used for restricting the possible values of a single-valued attribute (e.g.,
representing “Bob is young” by πage(Bob)(u) = µyoung(u)). Namely, one may also rep-
resent “Tweety is a bird” as a possibility distribution over a set of mutually exclusive
species of birds

∀x ∈ Xbird , πtype(Tweety)(x) = Xbird
typ (x).
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This would also enable us to conclude, using the subcontext R in Table 1, that indeed the
certainty that Tweety has property y is equal to Y bird

imp (y). But, the representation in terms
of more or less certain properties is generally more compact in practice than the one in
terms of objects (e.g., in our example, we have considered only four types of birds for
simplicity!).

As typicality has allowed us in this section to restrict the extension of a concept,
the next section addresses the converse concern, namely enlarging the meaning of a
term to close terms having similar meanings. For instance, the term “married” may be
understood strictly, or may sometimes be interpreted in a flexible way by replacing it by
a (possibly weighted) disjunction such as “married or in a civil union”.

4 Flexible understanding of linguistic terms for maintaining
consistency

When a statement involving a vague term is asserted, its precise meaning may differ
depending on the context in which it is used and on the person who is asserting it. As a
result, upon receiving such a statement, we are often uncertain about its precise meaning.
In some scenarios, this uncertainty may be intended by the speaker. Indeed, vagueness
may among others be used to help the listener focus on what is relevant in the given
context, it may soften complaints or criticisms, or it may be used to deliberately put the
listener on the wrong tracks without the risk of being accused of lying [22]. This latter
aspect of communication is also stressed in [27], where a bipolar view on assertability
is put forward, distinguishing between situations in which a statement is definitively
assertable, situations in which it is merely acceptable to assert it, and situations in which
it cannot be asserted without condemnation; see [26] for a Bayesian treatment of this
issue. A similar view on vagueness in dialogues is also suggested by Wahlster [45],
giving the example of a dialogue between a hotel owner and a customer, who wants
to know whether the room he is considering to rent is ‘large’. Clearly, when the owner
subsequently claims that the room is ‘quite large’, it is not at all certain that the customer
would agree when seeing the room. Note that in the latter case, a vague term is used
even though the hotel owner may know the exact surface of the room. In addition to the
problem of finding the most appropriate linguistic label to describe a precisely known
state of affairs, the goal of using vague language may also be to cope with a lack of
precise knowledge, as already discussed in Section 2.

In general, successful communication depends on the ability of the participants to
establish a common ground which is sufficiently specific. The required alignment be-
tween speaker and listener may happen explicitly, e.g. through clarification requests and
reformulations, but also implicitly. In the latter case, the listener may for instance revise
earlier assumptions on the meaning of assertions when they turn out to be inconsistent
with subsequent assertions. It is important to note that these considerations do not only
apply to vague terms: natural language terms with a precise and unambiguous meaning
are often used in a flexible way, encompassing situations that are not normally associ-
ated with the term. For instance, suppose we initially believe that John is married, while
later we notice that he answers negatively to the question Are you married? on a web
form. We may then revise our earlier belief by assuming a more liberal understanding
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of the term married, viz. we take our earlier beliefs to mean that John is either mar-
ried or in a civil union, and thus, given our new observation, that he is in a civil union.
Note that there is a certain duality between this idea of flexibly using a precise term
and the idea of typicality which was discussed in the previous section. Indeed, when
we reinterpret statements about birds as statements about typical birds, we tighten our
understanding of some well-defined concept, while in the marriage example, we enlarge
our understanding of a well-defined concept.

In a computational setting, where knowledge is encoded in some logic and is pro-
vided to us by a number of different sources, assumptions need to be made about what
the considered terms, e.g. associated with atomic propositions, mean. As sources may
have used some terms in a slightly unexpected way, when integrating knowledge from
different sources, we may end up with a knowledge base that is logically inconsistent.
This observation suggests a view on maintaining consistency in a knowledge represen-
tation setting based on a flexible reading of propositions. Indeed, when a knowledge
base turns out to be inconsistent with an observation, we may restore consistency by
getting rid of the less entrenched formulas, but also by weakening some formulas, as-
suming a more tolerant reading of the terms underlying it. For the ease of presentation,
in the following we assume a scenario involving two agents: the listener, whose initial
knowledge includes all relevant integrity constraints (e.g. indicating which properties
are mutually exclusive), and the speaker, which corresponds to an external source that
provides us with new information. We also assume that the listener has background
knowledge about how the terms used by the speaker should be understood, i.e. some
form of alignment is assumed between the listener and the speaker.

To deal with inconsistencies that are due to flexible language usage, it is useful
to notice that the exact meaning of an atomic property p as it is understood by the
speaker may not necessarily be expressible in the language of the listener. For instance,
what the speaker calls ‘cold weather’ may have a more narrow meaning than how the
listener understands this term, and there may be no other term whose understanding by
the listener exactly corresponds to the speaker’s understanding of ‘cold weather’. Let
us write pspeak and plist to denote the understanding of the atomic property p by the
speaker and listener respectively. We may then consider the weakest formula α

−
list which

is expressible in the language of the listener and which entails pspeak, and the strongest
formula α

+
list which is expressible in the language of the listener and which is entailed

by pspeak. Conversely, plist may not be expressible in the language of the speaker and
we may need to consider entailing and entailed statements α

−
speak and α

+
speak.

The two agents are perfectly aligned when for each atomic property p, the four cor-
responding formulas α

−
list , α

+
list , α

−
speak and α

+
speak are known. Note in particular that

modeling the (mis)alignment between speaker and listener due to flexible language does
not, as such, require the use of degrees. However, in most situations, we will only have
incomplete knowledge about how the understanding of a given term by the speaker is
related to its understanding by the listener. It may thus be useful to introduce degrees
to discriminate between more and less plausible alignments. In practice, e.g. our infor-
mation about α

−
list may be encoded in a graded way, differentiating between formulas α

which definitely entail pspeak and formulas that plausibly entail it. As a form of plausi-
ble reasoning, we may initially make some rather strong assumptions on the alignment
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between both sources (e.g. assuming α
−
list to be a rather weak formula), and then revise

these assumptions (e.g. assuming α
−
list to be a stronger formula) when inconsistencies

arise. For example, if the speaker tells us that it is warm outside, we may initially take
this to mean that the temperature is above 30◦C, and later revise this to “above 25◦C”.
As another example, suppose that the speaker tells us that John is married, then we
may model the resulting knowledge, in the language of the listener, using the following
possibilistic logic knowledge base:

K = {(marriedlist ,0.5),(marriedlist ∨ civil-unionlist ,0.75),
(marriedlist ∨ civil-unionlist ∨ cohabitationlist ,1)}

where the certainty weights are interpreted in a purely ordinal fashion, as lower bounds
on the necessity that the corresponding proposition is satisfied [13]. The knowledge base
K models the fact that we are certain that marriedspeak entails marriedlist ∨civil-unionlist
∨cohabitationlist , and somewhat certain that it entails marriedlist ∨ civil-unionlist ; with
even more limited certainty we believe that it entails marriedlist . In other words, the
idea is to progressively weaken what is claimed by the speaker, and believe the resulting
propositions with increasing certainty. This way of modeling the alignment between
speaker and listener can be generalized to a setting where information is provided by
multiple sources. It can be used as a basis for merging propositional information com-
ing from different sources, by treating conflicts among these sources as evidence for
misalignment [38, 39]. The degrees that are used can also be given a probabilistic flavor,
or we may avoid the use of numerical degrees altogether and rely on symbolic, partially
ordered certainty scores [39]. Moreover, it should be stressed that, as for degrees of typ-
icality, the degrees we consider here are not directly related to categorical membership.
Indeed, degrees are used to encode what we know about the alignment; their purpose is
to allow us to find the most likely alignment between speaker and listener which does
not lead to logical inconsistency.

Essentially, the approach outlined above deals with inconsistencies by assuming
that when somebody asserts some proposition, we may (only) deduce (with complete
certainty) that something similar to that proposition is the case, where we do not only
consider the logical models of that proposition as possible worlds, but also those worlds
that can be related to models by assuming a flexible understanding of the underlying
terms. Such a similarity-based view on logical consequence may also be studied in an
abstract way by considering similarity-based consequence operators of the form |=λ ,
where p |=λ q means that all models of p are similar to some model of q and λ is a
tolerance parameter on the required strength of similarity [8]. This idea stands in contrast
to non-monotonic consequence relations where p entails q when the most typical models
of p are also models of q [25]. Finally, note that a similarity-based view in this spirit
was also put forward in [35], in the context of belief revision.

5 Conclusion
In this paper, we have contrasted the notion of borderline cases as they relate to linguistic
vagueness, with scenarios in information processing where borderline cases need to be
explicitly handled. We have, in particular, emphasized that the introduction of degrees
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may be useful in the latter case—or even required—to appropriately deal with borderline
cases. To illustrate this point, we have discussed three different scenarios, in which
degrees refer to fuzziness, typicality, and similarity respectively.

Specifically, we have first considered the use of fuzzy labels, focusing on cognitive
uses such as expressing flexible requests, describing known states of fact, or summariz-
ing or classifying situations. By interpreting the meaning of linguistic terms as fuzzy
sets, the vagueness of these terms becomes a useful feature, as it e.g. provides an intu-
itive way to convey that a given piece of information should be understood with some
tolerance. Note that such uses of fuzzy sets remain in general distinct from their use to
compactly encode (crisp) information, which was very early recognized in the case of
multiple-valued truth-functional logics by de Finetti [6]. Second, within the framework
of formal concept analysis, we have discussed how the degree to which an object is a
typical instance of some class can be related to the importance of properties in the defi-
nition of this class. Finally, we have addressed the importance of similarity, as the basis
for a flexible understanding of properties, for inconsistency management.

While borderline cases play a central role in each of the scenarios we discussed,
it is important to notice that the associated degrees are not degrees of truth. We have
left aside classical issues related to vagueness such as approximate truth (e.g., [46, 32])
which would deserve longer developments, and should not be confused with uncertainty
about binary truth [12].
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[6] De Finetti, B. La logique de la probabilité, Actes Congrès Int. de Philos. Scient., Paris, 1935, Hermann
et Cie Editions, Paris, IV1–IV9, 1936.

[7] Djouadi, Y., Dubois D., L., Prade, H. Graduality, uncertainty and typicality in formal concept anal-
ysis. In: 35 years of Fuzzy Set Theory: Celebratory Volume Dedicated to the Retirement of Etienne
E. Kerre, (C. Cornelis, G. Deschrijver, M. Nachtegael, S. Schockaert, Y. Shi, eds.), vol. 261 in Studies
in Fuzziness and Soft Computing series, 127–147, Springer Verlag, 2010.

[8] Dubois, D., Esteva, F., Garcia, P., Godo, L., Prade, H. A logical approach to interpolation based on
similarity relations, International Journal of Approximate Reasoning, 17, 1–36, 1997.

[9] Dubois, D., Esteva, F., Godo, L., Prade, H. An information-based discussion of vagueness: six scenarios
leading to vagueness. In: Handbook of Categorization in Cognitive Science, (H. Cohen, C. Lefebvre,
eds.), Chapter 40, 891–909, Elsevier, 2005.

[10] Dubois, D., Prade, H. Measuring properties of fuzzy sets: a general technique and its use in fuzzy query
evaluation. Fuzzy Sets and Systems, 38, 137–152,1990.

[11] Dubois, D., Prade, H. The three semantics of fuzzy sets. Fuzzy Sets and Systems, 90, 141–150, 1997.
[12] Dubois, D., Prade, H. Possibility theory, probability theory and multiple-valued logics: A clarification.

Annals of Mathematics and Artificial Intelligence, 32, 35–66, 2001.
[13] Dubois, D., Prade, H. Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems,

144, 3–23 2004.
[14] Dubois, D., Prade, H., Sudkamp, T. On the representation, measurement, and discovery of fuzzy asso-

ciations. IEEE Trans. on Fuzzy Systems, 13, 250–262, 2005.



Handling Borderline Cases Using Degrees 305

[15] Farreny, H., Prade, H. On the best way of designating objects in sentence generation. Kybernetes, 13
(1), 43–46, 1984.

[16] Freund, M., Desclés J.-P., Pascu, A., Cardot, J. Typicality, contextual inferences and object determi-
nation logic. Proc. of the 17th Inter. Florida Artificial Intelligence Research Society Conf. (FLAIRS),
(V. Barr, Z. Markov, eds.), Miami Beach, Fl, USA, 5 p., 2004.

[17] Fine, K., Vagueness, truth and logic. Synthese, 54, 235–259, 1975. Reprinted in Vagueness: A Reader,
(R. Keefe and P. Smith, eds.), MIT Press, Cambridge,119–150, 1996.

[18] Freund, M. On the notion of concepts. I. Artificial Intelligence, 172, 570–590, 2008.
[19] Freund, M. On the notion of concepts. II. Artificial Intelligence, 173, 167–179, 2009.
[20] Gaines, B.R., Foundations of fuzzy reasoning. Int. J. Man-Machine Studies, 8, 623–668, 1976.
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