
A Conversation About Fuzzy Logic
and Vagueness
CHRISTIAN G. FERMÜLLER AND PETR HÁJEK1

Chris Fermüller: At the LoMoReVI conference, last September, in Čejkovice you gave
an interesting presentation entitled Vagueness and fuzzy logic—can logicians learn from
philosophers and can philosophers learn from logicians? . . .

Petr Hájek: . . . but I pointed out that my title in fact just added ‘and can philosophers
learn from logicians?’ to a title of an earlier paper of yours!

CF: I am flattered by this reference to my own work. But we should let our intended
audience know a bit a more about the background of those two contributions. I still
remember that I imagined to be quite bold and provocative by submitting a paper to a
workshop on Soft Computing—organized by you, by the way, in 2003—that suggested
already in the title that logicians should not just presume that the are properly dealing
with vagueness when they investigate fuzzy logics, but should pay attention to the ex-
tended discourse on so-called ‘theories of vagueness’ in philosophy to understand the
various challenges for correct reasoning in face of vagueness. I was really surprised
when my submission was not only accepted, but when you even decided to make me an
invited speaker, which entailed a longer presentation. A version of the contribution soon
afterwards appeared as [7], again on your invitation.

PH: Don’t forget that I also want to ask the reverse question: ‘Can philosophers learn
from logicians?’ I think that philosophers are often badly informed about what fuzzy
logic in the narrow sense of formal development of many-valued calculi, often called
just mathematical fuzzy logic, has to offer.

CF: I agree with you, of course, but my original audience consisted people working
in fuzzy logic. I saw no point in explaining to them how philosophers could profit
from a better knowledge of their field. But the LoMoReVI conference was an excellent
opportunity to ask the ‘reverse question’, since we had experts from quite different areas:
logic, mathematics, cognitive science, linguistics, but also philosophy. So what are the
main features of fuzzy logic, that you think philosophers should learn about?

PH: First of all one should recall the distinction between fuzzy logic in the broad and in
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the narrow sense as presented by several authors, among them Wang who writes in [25]:

Fuzzy logic in the narrow sense is formal development of various logical
systems of many-valued logic. In the broad sense it is an extensive agenda
whose primary aim is to utilize the apparatus of fuzzy set theory for devel-
oping sound concepts, principles and methods for representing and dealing
with knowledge expressed by statements in natural language.

I want to focus on fuzzy logic in the narrow sense, often called just mathematical fuzzy
logic.

CF: Your monograph [13], published in 1998, has been and to a large extent still is the
major source for research in mathematical fuzzy logic. In preparation for this conver-
sation I checked the corresponding google.scholar entry, where it is currently listed
as cited 2133 times—quite an achievement for a book entitled “Metamathematics of
Fuzzy Logic” and that is certainly not a student textbook nor amounts to easy reading. I
am glad that I had the chance to witness the evolution of its major concepts in the mid
and late 1990’s, when various collaborations, in particular also the COST Action 15 on
“Many-valued Logics for Computer Applications”, gave ample opportunity to present
and discuss what one can call the t-norm based approach to deductive logic. Let us try
to summarize the essential ingredients very briefly.

PH: Well, a binary operation ∗ on the real unit interval [0,1] is a t-norm if it is commuta-
tive (x∗y = y∗x), associative (x∗ (y∗ z) = (x∗y)∗ z), non-decreasing in both arguments
(x≤ y implies x∗ z≤ y∗ z and consequently z∗x≤ z∗y), and where 1 is the unit element
(x∗1 = x). I suggest to consider any continuous t-norm as a candidate of a truth function
for conjunction.

CF: Sorry for interrupting already at this stage, but I think the intended general audience
should take note of a few ‘design decisions’ that are implicit in choosing this starting
point. First of all we have decided to consider not just 0 for ‘false’ and 1 for ‘true’ as
formal truth values, but also all real numbers in between. In other words we have decided
to allow for arbitrarily many intermediate truth values and insist that those values are
densely linearly ordered. Moreover we stipulated that the semantics of conjunction as
a logical connective can be modeled by some function over those ‘degrees of truth’.
This means that the semantic status of a conjunctive proposition A&B, i.e. its degree
of truth depends only on the degrees assigned to A and B, respectively, but not on any
material relation between the propositions A and B. In other words we stipulate truth
functionality. This move alone implies that whatever ‘degrees of truth’ are, they must be
something very different from ‘degrees of belief’ and from probabilities that certainly
do not propagate functionally over conjunction.

PH: Sure, but regarding the choice of [0,1] as sets of truth value one should point that in
investigations of mathematical fuzzy logic one frequently makes a move that is obvious
to mathematicians, namely generalizing to algebraic structures that are less particular
than [0,1] equipped by the standard arithmetical operations and order. This gives the
so-called general semantics of the logic in question. Regarding truth functionality, we
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can agree with the following critical statement of Gaifman [11]:

There is no denying the graded nature of vague predicates—i.e. that the
aptness of applying them can be a matter of degree—and there is no denying
the gradual decrease in degree. More than other approaches degree theory
does justice to these facts. But from this to the institution of many-valued
logic, where connectives are interpreted as functions over truth degree there
is a big jump.

However, I want to point out that various detailed suggestions on how to deal with
truth functionality have been made. For example, Jeff Paris [22] investigates conditions
that justify truth functionality. Also the philosophers N.J.J. Smith in has monograph
“Vagueness and Degrees of Truth” [24] on vagueness is positive on truth degrees and on
truth functionality under some conditions.

CF: Let us go further down the list of ‘design choices’ made by mathematical fuzzy
logic. So far we have only mentioned possible truth functions of conjunction. But a
considerable part of the mathematical beauty of the t-norm based approach that you have
developed consists in the fact that one can derive truth function from all other logical
connectives from given t-norms by quite straightforward assumptions on their relation
to each other.

PH: A central tenet of this approach is to observe that any continuous t-norm has a
unique residuum that we may take as corresponding implication. This is derived from
the principle that ‖A & B‖ ≤ ‖C‖ if and only if ‖A‖ ≤ ‖B→C‖, where ‖X‖ denotes the
truth value assigned to proposition X . Thus the truth function of implication is given
by x→ y = maxz{x ∗ z ≤ y}, where ∗ is the corresponding t-norm. Negation, in turn,
can be defined by ¬A = A→ ⊥, where ⊥ always receives the minimal truth value 0.
Disjunction can be derived in various ways, e.g., by dualizing conjunction. Moreover,
the popular choice of min for conjunction arises in two ways. First min is a one of three
fundamental examples of a t-norm. The corresponding residual implication is given by
‖A→ B‖ = 1 for ‖A‖ ≤ ‖B‖ and ‖A→ B‖ = ‖B‖ otherwise. The corresponding truth
function for disjunction, dual to conjunction (∨), is max, of course. This logic is called
Gödel logic in our community, because of one of those famous short notes of Kurt Gödel
from the 1930s, where he essentially defines these truth functions. But the logic is so
fundamental that has been re-discovered and re-visited many times. Furthermore min
as conjunction—or ‘lattice conjunction’ as our algebraically minded colleagues like to
call it—arises in the t-norm based approach is the fact that it is definable in all those
logics. i.e., even if we have chosen a another continuous t-norm as truth function for
conjunction (&), min-conjunction (∧) is implicitly presented, e.g., by taking A∧B to
abbreviate A & (A→ B). In this sense all t-norm based logics—except Gödel logics, of
course—have two conjunctions.

Having defined Gödel logics explicitly, we should also mention two other funda-
mental logics: namely, Łukasiewicz logic, arising from the continuous t-norm a ∗ b =
max(0,a+b−1), and Product logic [16, 18], arising from standard multiplication over
[0,1] as underlying t-norm. Moreover, the three mentioned logics can be combined into
a single system, called ŁΠ

1
2 [6].
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CF: But probably the most characteristic move that you have made in establishing
t-norm based fuzzy logic as a rich research field is to ask: which logic arises if we do
not fix any particular t-norm, but let conjunction vary over all continuous t-norms? You
understandably call the resulting logic of all continuous t-norms “basic logic” [13, 4].
But since also other logics can and have been called “basic” in different contexts, it is
best known as “Hájek’s BL” nowadays. In this context one should probably also men-
tion the logic MTL [5], that arises if one generalizes continuity to left-continuity, which
is still sufficient to guarantee the existence of unique residua for corresponding t-norms.

We could indeed spend many hours discussing interesting and important results of
mathematical fuzzy logic. At least one more basic fact should be mentioned: also first
order versions, as well as various kinds of extensions, e.g., including modal operators,
for the mentioned logics are well investigated by now.

But we should return to our motivating question: can fuzzy logic contribute to the-
ories of vagueness as investigated by philosophers? “Theories of Vagueness”, as you
know, is in fact the title of a book [20] by the philosopher Rosanna Keefe, who is very
critical about degree based approaches to vagueness. I don’t think that pointing out that
Keefe has not been aware of contemporary developments in mathematical fuzzy logic
when she wrote her book suffices to deflect the worries that she and others have voiced
about fuzzy logic in this context.

PH: Keefe characterizes the phenomena of vagueness quite neutrally focusing on so-
called borderline cases, fuzzy boundaries, and susceptibility to the sorites paradox. I
find it very acceptable, when she writes

Vague predicates lack well-defined extensions. [They] are naturally de-
scribed as having fuzzy, or blurred boundaries. Theorists should aim to
find the best balance between preserving as many as possible of our judg-
ments or opinions of various different kinds and meeting such requirements
on theories as simplicity. There can be disputes about what is in the rele-
vant body of opinions. Determining the counter-intuitive consequences of
a theory is always a major part of its assessment.

Regarding the intermediary truth values of fuzzy logic she writes later in [20]:

. . . perhaps assignment of numbers in degree theory can be seen merely as
a useful instrumental device. But what are we to say about the real truth-
value status of borderline case predictions? The modeler’s approach is a
mere hand waving . . . surely the assignment of numbers is central to it?
Only order is important?

My comment here is, that we can indeed say that truth degrees are just a “model”:
the task is not to assign concrete numerical values to given sentences (formulas); rather
the task is to study the notion of consequence (deduction) in presence of imprecise pred-
icates. One should not conflate the idea that, in modeling logical consequence and va-
lidity, we interpret statements over structures where formulas are evaluated in [0,1] with
the much stronger claim that we actually single out a particular such interpretation as
the “correct” one, by assigning concrete values to atomic statements.
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CF: I see a rather fundamental methodological issue at play here. Philosophers often
seem to suppose that any proposed theory of vagueness is either correct or simply wrong.
Moreover, all basic features of a “correct” model arising from such a theory are required
to correspond to some feature of the modeled part of “the real world”. An exception to
this general tendency is Stewart Shapiro, who in his book “Vagueness in Context” [23]
has a chapter on the role of model theory, where he leaves room for the possibility that
a model includes elements that are not intended to directly refer to any parameter of the
modeled scenarios. Truth values from the unit interval are explicitly mentioned as an
example. Nevertheless Shapiro finally rejects fuzzy logic based models of vagueness for
other reasons.

PH: In [14] I have taken Shapiro’s book as a source for investigating some of the formal
concepts he introduces in his contextualist approach to vagueness. No philosophical
claims are made, but I demonstrate that Shapiro’s model, that is based Kleene’s three
valued logic, can be rather straightforwardly generalized to BL as an underlying many
valued logic.

CF: As you indicate yourself, this leaves open the question how to interpret the role of
intermediate truth values. After all truth values from [0,1] or from some more general
algebraic structure are the central feature of any fuzzy logic based model.

PH: Let me point out an analogy with subjective probability here. By saying “Probably
I will come” you assume that there is some concrete value of your subjective probability
without feeling obliged to “assign” it to what you say.

By the way, “probably” may be viewed as fuzzy modality, as explained in [13], Sec-
tion 8.4, and in [12], as well as in many follow-up papers by colleagues. But, whereas the
semantics of the logic of “probably” is specified truth functionally, probability itself of
course is not truth functional. There is no contradiction here. Two levels of propositions
are cleanly separated in the logic: the boolean propositions that refer to (crisp) sets of
states measured by probabilities, and the fuzzy propositions that arise from identifying
the probability of A with the truth value of “Probably A”.

CF: The analogy with subjective probability is indeed illuminating. It also provides an
occasion to recall a central fact about logical models of reasoning that is shared with
probability theory. Quite clearly, the aim is not to model actually observed behavior of
(fallible) human reasoners in face of vague, fuzzy, or uncertain information. As is well
known, human agents are usually not very good in drawing correct inferences from such
data and often behave inconsistently and rather unpredictably when confronted with
such tasks.

While studying systematic biases and common pitfalls in reasoning under uncer-
tainty and vagueness is a relevant topic in psychology with important applications, e.g.,
in economics and in medicine, the task of logic, like that of probability theory is quite
different in this context: there is a strong prescriptive component that trumps descriptive
adequateness. Thus, in proposing deductive fuzzy logic as a model of reasoning with
vague expressions—at least of a certain type, namely gradable adjectives like “tall” or
“expensive” when used in a fixed context—one does not predict that ordinary language
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users behave in a manner that involves the assignment of particular values to elementary
propositions or the computation of truth values for logically complex sentence using
particular truth functions. Rather fuzzy logic (in the narrow sense) suggests that we ob-
tain a formal tool that generalizes classical logic in a manner, that allows one to speak
of preservation of degrees of truth in inference in a precise and systematic manner. Such
tools are potentially useful in engineering contexts, in particular in information process-
ing. Whether the resulting “models” are also useful in philosophy and linguistics is a
different question. Linguists seem to be unhappy about a naive application of fuzzy log-
ics, because empirical investigations suggest that no truth function matches the way in
which speakers tend to evaluate logically complex sentences involving gradable or vague
adjectives. (See, e.g., Uli Sauerland’s and Galit Sasson’s contributions to this volume.)

Indeed, I think that, given the linguists’ findings, truth functionality is best under-
stood as a feature that it is prescribed, rather than “predicted” (to use a linguistic key-
word). This actually already applies to classical logic. While we arguably ought to re-
spect classical logic in drawing inferences, at least in realms like classical mathematics,
logicians don’t claim that ordinary language use of words like “and”, “or”, “implies”,
“for all” directly corresponds to the formal semantics codified in the corresponding truth
tables, whether classical or many-valued.

Note that, if I am right about the prescriptive aspect of logic, this does not at all
exclude the usefulness of truth functional logics also in the context of descriptive mod-
els. However it implies that, in order to arrive at a more realistic formal semantics of
vague natural language, fuzzy logic will certainly have to be supplemented by various
intensional features and also by mechanism that model the dynamics of quickly shift-
ing contexts, as described, e.g., by Shapiro [23] but also by many linguists investigating
vagueness, e.g., [1]. Actually much work done in the context of LoMoReVI is of this
nature, namely combining deductive fuzzy logics with other types of logical models.

But then again, the role of classical logics in linguistics is analogous: it is routinely
extended by intensional features, concepts from type theory and lambda calculus, gen-
eralized to so-called dynamic semantics, etc. Experts agree that there is no naive and
direct translation from natural language into classical logic if we want to respect the ap-
parent complexity of natural language expressions. Of course, the same applies to fuzzy
logic. In any case, albeit the influential criticism of Kamp [19] and others, I’d say that
the question of whether fuzzy logic can be usefully employed in linguistics is still open.

PH: Your terms “prescribed” and “predicted” are new for me; I find them interesting but
cannot say much about this distinction. I think that the relation of mathematical fuzzy
logic to natural language is very similar to that of classical mathematical logic and its
relation to natural language: both deal with symbolic sentences (formulas), not with
sentences of a natural language.

You say that the question of whether fuzzy logic can be usefully employed in lin-
guistics is still open. My formulation would be “how far” instead of “whether” since I
think that to some extent it has been shown already, e.g., by [24], that fuzzy logic can be
usefully applied to the analysis of vague natural language.
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CF: Indeed, Nick Smith [24] develops a theory of vagueness that puts fuzzy logic in its
very center. Although he mainly addresses his colleagues in philosophy, I agree that it
is also of direct relevance to linguistics.

However we have also mentioned that Rosanna Keefe in “Theories of Vagueness”
[20] prominently criticizes an approach to vagueness that involves functions on degrees
of truth as models for logical connectives. You have shortly discussed some of Keefe’s
objections in [15]. Since those objections are not only advanced by Keefe, but are rather
widespread in philosophical discussions about fuzzy logic, I suggest to briefly look again
into some concrete issues.

PH: One of the things Keefe complains about—in the sense of judging it to be counter-
intuitive—is that, if A is a perfectly “half-true” proposition, i.e., if ‖A‖ = 0.5 then we
have ‖A→ A‖= ‖A→¬A‖= 1, assuming the Łukasiewicz truth functions for implica-
tion (‖A→ B‖ = min(1,1−‖A‖+ ‖B‖)) and negation (‖¬A‖ = 1−‖A‖). But I think
that this ceases to be problematic if we view a “half-true” statement as characterized by
receiving the same truth value as its negation and remember that, like in classical logic,
we declare ‖A→ B‖ to be 1 whenever ‖A‖ ≤ ‖B‖.

CF: Still, I understand why Keefe thinks that modeling implication in this way clashes
with some intuitions about the informal meaning of “if . . . then . . . ”. I guess that she
would point out that it is hard to accept, previous to exposure to fuzzy logic, that “If it
is cold then it is not cold” has the same semantic status as “If it is cold then it is cold”
in a borderline context with respect to temperature. This, of course, is a consequence of
truth functionality and of the rather innocent assumption that the truth value of a perfect
“half-truth” is identical to that of its negation.

I think that the reliance on pre-theoretic intuitions is at least as problematic here as
it is in the case of the so-called paradoxes of material implication for classical logic.
That the formula A→ B is true according to classical logic, whenever A is false or B is
true, only emphasizes the well known fact that there is a mismatch between (1) the pre-
cise formal meaning of→ as stipulated by the corresponding truth function and (2) the
conditions under which an utterance of the form “If . . . then . . . ” successfully conveys
information among speakers of English. We have to keep in mind that material implica-
tion is not supposed to refer to any content-related dependency between its arguments,
but only refers to the (degrees of) truth of the corresponding sub-formulas.

Your reply to Keefe’s criticism points out that it is perfectly coherent to define the
meaning of the connective “→” in the indicated manner, if we are prepared to abstract
away from natural language and from pre-formal intuitions. The main motivation for
doing so is to arrive at a mathematically robust and elegant realm of logics that we can
study in analogy to classical logic, right?

PH: Right. Let me once more emphasize that the metamathematics that arises from this
particular generalization of classical logic is deep and beautiful indeed, as not only my
book [13], but dozens, if not hundreds of papers in contemporary mathematical fuzzy
logics can testify.



412 Christian G. Fermüller and Petr Hájek

CF: I certainly agree. But this still leaves room for the possibility that mathematical
fuzzy logic is just a niece piece of pure mathematics without much relevance for how
we actually reason or should reason with vague notions and propositions.

PH: Well, then let us consider some sentences from natural language that may illustrate
some properties of fuzzy logic.

Compare “I love you” with “I love you and I love you and I love you”. Clearly the
latter implies the former; but not necessarily conversely. If we model “and” by a non-
idempotent t-norm then indeed a A is not equivalent to A&A, matching the indicated
intuition.

Moreover: “Do I like him? Oh, yes and no”. Doesn’t this mean that the truth value
of “I like him” is neither 1 nor 0? Why shouldn’t it be one half (0.5) in such a case?

CF: You might remember from earlier conversations that I actually have a different
opinion about these examples. Let me briefly spell it out here once more.

As to repetition: I think that this is better analyzed as a pragmatic and not as a
semantic phenomenon. To repeat a statement in the indicated manner is a way to em-
phasize the corresponding assertion. I don’t think that conjunctive repetition in natural
language entails the idea that the conjunction of identical statements may be less true
than that the unrepeated statement. Note that linguists take it for granted that by as-
serting a declarative sentence S (in usual contexts) a speaker wants to convey that the
proposition pS expressed by S is true in the given context. Emphasis, hesitation, doubt,
etc., about pS may be expressed explicitly or implicitly by different means, but the im-
pact of such qualifications should better not be conflated with the semantic status, i.e.,
the asserted truth of pS itself.

As to “Yes and No”: it is indeed not unusual to provide such an answer to the
question whether (or to the suggestion that) a statement A holds. But it seems to me that
this answer is a short form of expressing something like: “Yes, in some respect (i.e., in
some relevant interpretation of the used words) A is indeed true; but in another, likewise
relevant respect A is not true.” If I am correct in this analysis, then degrees of truth do
not enter the picture here. At least not in any direct manner.

PH: What about hedges like “very”, “relatively”, “somewhat”, “definitely” etc.? Ex-
tending standard first order fuzzy logics, one may consider, e.g., “very” as a predicate
modifier. Syntactically this amounts to the stipulation that for every sentence P(a),
where P is a fuzzy predicate and a is an individual, very(P)(a) is also a well-formed
sentence. Semantically, the extension of the predicate very(P) is specified as a fuzzy
set that can be obtained from the fuzzy set that represents the extension of the predi-
cate P. This can be done in a simple and uniform manner, for example by squaring the
membership function for P (µvery(P)(a) = (µP(a))2. Obviously there is great flexibility in
this approach and one can study the logic of such “truth stressers”, and similarly “truth
depressors”, over given fuzzy logics, like BL or MTL, both proof theoretically and from
an algebraic point of view (see, e.g., [2, 3]).



A Conversation 413

CF: These are certainly good examples of research in contemporary fuzzy logic that
is inspired by looking at words like “very”, “relatively” etc. I have to admit that I am
fascinated, but also a bit puzzled by the fact that one can retrieve literally hundreds of pa-
pers in fuzzy logic by searching for “linguistic hedges” in google.scholar. (Actually
more than 27,100 entries are listed in total.) But if one looks at linguistic literature on
the semantics of such words one finds quite different models. While gradability of ad-
jectives and properties of corresponding order relations are investigated in this context,
a methodological principle seems to be in place—almost universally accepted among
linguists—that at the level of truth conditions one should stick with bivalent logic. I
think that there are indeed good reasons, mostly left implicit, for sticking with this prin-
ciple. If I understand linguists correctly, then a very important such reason is that their
models should always be checked with respect to concrete linguistic data. But those data
usually only allow to categorize linguistic expressions as being accepted or not accepted
by competent language users. Indeed, it is hard to imagine how one could use a standard
linguistic corpus to extract information about degrees of acceptability in connection with
logical connectives.

My remarks are not intended to imply that there can’t be a role for fuzzy logic in lin-
guistics. In recent work with Christoph Roschger [9] we explicitly talk about potential
bridges between fuzzy logic and linguistic models. But these “bridges” do not directly
refer to deductive t-norm based fuzzy logics. We rather looked at ways to systematically
extract fuzzy sets from given contextual models, as they are used in so-called dynamic
semantics. Of course, one could also generalize the underlying bivalent models to fuzzy
ones. But the price, in terms of diminished linguistic significance, is hardly worth pay-
ing, unless one can show that mathematical structures arise that are interesting enough
to be studied for their own sake.

A direct role for logics like Łukasiewicz, Gödel, Product logic, and more fundamen-
tal deductive fuzzy logics, like BL and MTL, in linguistic contexts may arise if we insist
on the linguistic fact, that “true” itself is sometimes used as gradable adjective, just like
“tall”, “clever”, “heavy” etc. The various fuzzy logics then correspond to (prescriptive)
models of reasoning that take perfectly comprehensible talk about statements being only
“somewhat true”, “more true” than others, or “definitely true” at face value. Of course,
we thereby abstract away from individual utterances and idealize actual language use in
a manner that is familiar from classical logic.

PH: Your last remark may bring us back to philosophy. There the sorites paradox is
considered whenever one discusses the role of logic in reasoning with vague notions.
In [17] an analysis of sorites is offered using a hedge At—“almost true”. Consider the
axioms: bold(0) and (∀n)(bold(n)→ At(bold(n+ 1))), where (bold(n) represents the
proposition that a man with n hears on his head is bold. This is augmented by further
natural axioms about At. Based on basic logic BL we obtain a simple and clear degree
based semantics for At and for bold that does not lead to contradiction or to counter-
intuitive assumptions.

CF: This is indeed a nice example of how fuzzy logic can be used as a prescriptive tool
of reasoning. The paradox simply disappears, which of course implies that the model is
not be understood descriptively. If people actually find themselves to be in a sorites like
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scenario, they will feel the tendency to end up with contradicting assumptions. In other
words they do not use fuzzy logic to start with. After all we (“competent speakers”) do
understand that such a scenario can is “paradoxical”. Your models show that one can
avoid or circumvent the difficulty by considering “near-truth” in a systematic manner.

Shapiro [23] offers an alternative analysis that moves closer to observable behavior
of speakers. He invites us to imagine a community of conversationalists that are succes-
sively confronted with members of a sorites series, e.g., a series of 1000 men, starting
with Yul Brynner and ending with Steve Pinker, where each man is indistinguishable
from his neighbors in the series in respect of boldness. Shapiro’s model predicts, that if
the conversationalists are forced to judge the boldness of each of those men one by one,
they will try to maintain consistency with their earlier (yes/no) judgments. However
at some point they will realize that this is not possible if they don’t want to call Steve
Pinker bold, which is absurd, as anyone that has ever seen a picture of Pinker can tes-
tify. Thus they will retract earlier judgments made along their forced march through the
sorites series and thereby “jump” between different (partial) truth assignments. Shapiro
uses precisification spaces based on Kleene’s three valued logic to model the resulting
concept of inference formally.

As you have already mentioned, you have shown in [14] how Shapiro’s model can be
generalized to placing fuzzy instead of of a three valued interpretations at its core. In [8]
I indicate that this can be understood as abstracting away from a concretely given sorites
situation towards a model that summarizes in a static picture what can be observed
about the overall dynamics of many individual instances of forced marches through a
sorites series. In that interpretation degrees of truth emerge as measures of likelihood
of “jumps”, i.e., of revisions of binary judgments. Truth-functionality is preserved, be-
cause for complex statement we don’t consider the likelihood of, say, judging A&B to
be true, but rather the (properly regulated) degree of truth of the statement “A is likely to
be judged true and B is likely to be judged true”. (There is some similarity to the earlier
mentioned logic of “probably” as a fuzzy modality.)

PH: We should not give the wrong impression that fuzzy logic in its broader sense of
dealing with problems and applications arising from a graded notion of membership in
a set is mainly used to analyze vague language. The areas of fuzzy controlling, soft
computing, and inference using “fuzzy if-then rules” have not only attracted a lot of
research, but can point to many interesting applications in engineering, decision making,
data mining, etc. (see, e.g., [25]). The simple idea to model an instruction like “If the
pressure is rather high. then turn the valve slightly to left” by reference to fuzzy sets
rather than to fixed threshold values has proved to be effective and useful.

With hindsight it is hard to understand why Zadeh’s proposal to generalize the clas-
sical notion of a set (“crisp set”) to a fuzzy set by allowing intermediate degrees of
membership [21] has been met with so much resistance from traditional mathematics
and engineering. Presumably many found it unacceptable to declare that vagueness is
not necessarily a defect of language, and that it may be adequate and useful to deal with
it mathematically instead of trying to eliminate it. There is a frequently encountered
misunderstanding here: fuzzy logic provides precise mathematical means to talk about
impreciseness, but it does not advocate imprecise or vague mathematics.
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CF: As Didier Dubois in his contribution to this volume reminds us, Zadeh insisted that
a proposition is vague if, in addition to being fuzzy, i.e., amenable to representation by
fuzzy sets and relations, “it is insufficiently specific for a particular purpose” [26]. I am
not sure that this characterization of vagueness is robust enough to assist useful formal
models. But in any case, it is clear that fuzziness and vagueness are closely related and
might not always be distinguishable in practice. At the very least there is some kind of
dependency: fuzzy notions systematically give rise to vague language.

PH: Let us finally return to our two-fold question: can logicians learn from philosophers
and can philosophers learn from logicians? I think we both agree that the answer should
be “yes”.

CF: Certainly. Moreover, thanks also to the activities in LoMoReVI and our sister Log-
ICCC project VAAG, we may include linguists in the circle of mutual learning regarding
appropriate theorizing about vagueness.
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[2] Bělohlávek R., Funioková T., and Vychodil V.: Fuzzy closure operators with truth stressers, Logic

Journal of IGPL 13(5):503–513, 2005.
[3] Ciabattoni A., Metcalfe G., and Montagna F.: Algebraic and proof-theoretic characterizations of truth

stressers for MTL and its extensions. Fuzzy Sets and Systems 161(3):369–389, 2010.
[4] Cignoli R.L.O., Esteva F., Godo L., and Torrens A.: Basic logic is the logic of continuous t-norms and

their residua, Soft Computing 4:106–112, 2000.
[5] Esteva F., Godo L.: Monoidal t-norm based logic, Fuzzy sets and systems 124:271–288, 2001.
[6] Esteva F., Godo L., and Montagna F.: The ŁΠ and ŁΠ

1
2 logics: Two complete fuzzy systems joining

Łukasiewicz and product logic’, Archive for Mathematical Logic 40:39–67, 2001.
[7] Fermüller C.G.: Theories of vagueness versus fuzzy logic: can logicians learn from philosophers?’,

Neural Network World 13:455–465, 2003.
[8] Fermüller C.G.: Fuzzy logic and vagueness: can philosophers learn from Petr Hájek? In P. Cintula,
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