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1 Introduction
This paper is an attempt to provide a formal semantics to counterfactual propositions that
involve vague sentences as their antecedent or consequent. The initial work on counter-
factuals, due to Lewis ([8]), was based on Classical Logic and thus it focused on crisp
sentences. Lewis proposed a semantics based on the notion of possible worlds that cap-
tures alternative ways a world could be, including here our reality i.e., the world we live
in (henceforth: the actual world, or our world). In Lewis’ work, possible worlds can be
seen as classical Boolean valuations, each valuation corresponding to a possible world.

Our aim is to generalize Lewis’ system of spheres semantics based on Classical
Propositional Logic, to a similar semantics based on many-valued logics. On the one
hand, as long as the authors know, the claim that Lewis’ systems of spheres provide a
good semantics for counterfactual propositions does not seem to be controversial. On
the other hand, however, many-valued logics are not universally accepted to be a good
semantics for vague sentences (see [4] and [5] for an overview on different approaches
to the subject). Even though this is not the right place to discuss whether many-valued
logics are suitable tools for reasoning in presence of vagueness, we find necessary to
spend a few lines in order to justify at least why our approach is based on this framework
to formalize vague sentences.

Despite no general agreement exists on what a vague sentence is, there does not
seem to be any problem in admitting that sentences involving predicates like bald, young,
near, tall are vague sentences. A common feature of the above predicates seems to be the
fact that they admit borderline cases, that make it not an easy matter to decide whether
the sentences where they appear are either true or false. In our opinion the claim that
every sentence has a truth-value (true or false) is a too strong claim indeed. Similarly for
the claim that our inability to assign some truth-value (true or false) to some sentence
must be a matter of ignorance, even when we happen to know the exact number of hair
in a man’s head, somebody’s exact age and so on.

An important point in the defense of classical logic as the only tool for formalizing
reasoning is usually that it is a very powerful tool. This is certainly true, but it is not a
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reason not to use, in some contexts, more refined tools: a chainsaw is a very powerful
cutting tool, but this does not mean that somebody uses one to cut his nails.

On the other hand, t-norm based many-valued semantics is a robust and enough
refining tool to handle vague propositions for several reasons. We report some of them:

1. It is simple and mathematically formalizable and this makes it suitable to be used
in practical applications.

2. It does not presuppose ignorance, like epistemic theories on vagueness do, even
when we have complete knowledge of the object under observation.

3. It gives an elegant solution to the famous Sorites paradox (see [7]) and this, for a
theory, is a necessary condition to be a theory about vagueness.

4. Sentences that in other theories are considered as borderline cases can be handled
like every other sentence.

In our context, then, vague sentences will be handled as many-valued sentences so
we accept that there are sentences that can be neither (totally) true nor (totally) false.

As can be already seen from the classical definition of counterfactual, the antecedent
of a counterfactual is false and not true at the same time. In a many-valued context
where sentences can take intermediate values between true (1) and false (0), in contrast,
a sentence can be not totally true (< 1) without being totally false (0). For this reason
we prefer to generalize the definition of a counterfactual and define it as a conditional
sentence whose antecedent is not 1-true. The present paper is an investigation on the
consequences of this assumption with the aim of providing a semantics for vague coun-
terfactuals.

As we will see later on, one immediate consequence of this new definition is a
plurality of choices among possible definitions of truth-conditions for sentences like If
I were rich, I would be happy. The requirement that the antecedent is not 1-true in the
actual world forces us to choose among different sets of worlds where the antecedent is
true enough to trigger counterfactual reasoning. This plurality of choices gives rise to
different semantics depending on whether we demand that the antecedent is absolutely
true (i.e. it has truth value 1) or relatively true (i.e. it has truth value >0) in other possible
worlds (where, again, this antecedent must be more true than it actually is).

In the literature, the study of counterfactuals falls within the more general area of
non-monotonic reasoning. Among related work, counterfactuals have been approached
from distinct perspectives: uncertainty (see [10] for a probabilistic approach) and simi-
larity (see [6]), but as far as we know, the present approach is the first study on counter-
factuals from a fuzzy reasoning perspective. A main difference with the referred papers
is that we focus on counterfactuals involving many-valued propositions, instead of just
two-valued (or crisp) propositions.

The paper is structured as follows. In preliminary Section 2, we recall basic notions
of Lewis’ possible world semantics as well as the many-valued semantics based on the
prominent t-norms: Łukasiewicz, Gödel and Product, with truth-values in the real unit
interval [0,1]. In Section 3, we introduce vague counterfactuals and discuss general
issues about them. We also present the basic language we will make use of.
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The next sections introduce the different semantics for counterfactuals according to
the three basic t-norms, as well as reducibility results among these semantics (within
each basic t-norm) and interdefinability results in the Łukasiewicz case. In Section 4,
we define a direct generalization of Lewis’ semantics to the many-valued case, where
antecedents are required to be 1-true, i.e. true to degree 1 within the real unit interval of
truth-values [0,1] generalizing the set {0,1} for false and true in classical logic.

Then in Section 5 we consider a more general semantics requiring the weaker con-
dition that the truth-value of the antecedent attains a fixed truth-degree higher than the
actual one (its truth-value in our actual world). Finally, we present in Section 6 what we
call more than actual semantics, requiring that the antecedent attains an arbitrary value
higher than the actual one.

After these semantic results, we show in Section 7 the consequences of expanding
the language with Baaz’ projection operator ∆ and truth-constants for degrees of truth
(introduced in [1] and [9, 2, 3], respectively). In particular, we prove that these expan-
sions may endow some semantics with the expressive power of any member of a more
general class of semantics, of which the former is a particular instance. These results
may be used to simplify the truth-conditions given by any semantics in the latter class.

2 Preliminaries
In this preliminary section, we introduce classical counterfactuals and t-norm based se-
mantics for propositional fuzzy logics.

2.1 Counterfactuals and Lewis’ semantics
As commonly understood in the literature, counterfactuals (like: if it were the case that
ϕ it would be the case that ψ) are conditional sentences whose antecedent is assumed to
be false. In contrast with classical material implication, where a false antecedent makes
the implication vacuously true, a counterfactual with an actually false antecedent can
still be false. Hence, material implication cannot model reasoning about how things
would be like if the world was different.

The need to establish a semantics for counterfactual conditionals arises from the
fact that there are contingent sentences. These are sentences that, though they might be
actually false, they do not express impossible or contradictory facts. As such, we can
think of a state of affairs, not much different from the actual one, where such sentences
are contingently true. This can be done because their truth would not violate too much
fundamental laws valid in the actual world. When these contingent sentences occur as
antecedents (or consequents) of some material implication, their contingency makes the
implication contingent as well. However, we may want to capture the intuitive correct-
ness of conditional sentences between contingent facts: for instance, If there were no
carbon on Earth, there would be no life either. The truth of this counterfactual is not
established by their actual truth-values. But it can indeed be established on the basis of
other considerations.

Two forms of counterfactuals occur as expressions in the natural language, here
called would- and might-counterfactuals:
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• would-counterfactuals: if it were the case that ϕ , it would be the case that ψ; this
form expresses a necessity statement concerning any relevant world where ϕ is
true; for the counterfactual to be true, ψ must hold at all these worlds.

• might-counterfactuals: if it were the case that ϕ , it might be the case that ψ; this
is a possibility statement concerning relevant worlds where ϕ is true; a single such
world making ψ true will account for this possibility thus making this counterfac-
tual true.

One of the main attempts to provide a semantics for the truth-conditions of a coun-
terfactual conditional has been David Lewis’ [8]. In order to give a semantics for coun-
terfactuals, Lewis imagines that we can think about possible worlds.2 The possibility
of talking about possible worlds arises from the fact that we can represent our world by
means of contingent sentences which express facts surrounding us: “the sky is blue”,
“water is composed of oxygen and hydrogen” are examples of such sentences. A possi-
ble world is a consistent set of facts or propositions (also called a state of affairs), pos-
sibly with some of these facts not holding in our world (i.e. with sentences expressing
these propositions being actually false). Mathematical or logical truths do not express
contingent propositions (they hold across possible worlds -no matter how much different
they are from our world), and hence these are not seen as expressing propositions that
constitute possible worlds. We will denote the set of propositions that are believed to
hold in our world by the expression actual world, while every other maximally consis-
tent set of propositions will be considered as a possible world. The set of possible worlds
will be denoted by W . The elements of W can be distributed into subsets of worlds which
are more or less similar with respect to the world selected as the actual world. Lewis
suggests to organize the set of possible worlds into spheres, or subsets of W . These
spheres are totally ordered by inclusion, with outer spheres containing inner spheres.
The actual world is located at the innermost sphere, also called the center. Outer spheres
contain inner spheres plus those worlds that are different enough (w.r.t. the actual world)
to be located in these inner spheres. This gives an account of the difference of possible
worlds with respect to the actual world.

The definitions in this subsection are taken from Lewis [8].

DEFINITION 1 A system of spheres on the set of possible worlds W, denoted by $, is a
subset of the power set of W which is totally ordered by inclusion, closed under arbitrary
unions and non-empty intersections.

It is possible to define several kinds of systems of spheres. In particular, Lewis
considers the following additional properties of systems of spheres:

• universal: for every w ∈W , there exists S ∈ $ such that w ∈ S; i.e. every possible
world is at least in one sphere. Equivalently,

⋃
$ =W .

2Actually Lewis maintains that possible worlds do exist, but a long and tedious philosophical debate would
be needed to define the meaning of the word exist in this context. We only will maintain that we can think
about possible worlds and can use such idea for reasoning about counterfactuals or similar notions: in fact,
conditional reasoning does not need the real existence of objects called “possible worlds”.
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• centered: there exists w ∈W such that {w} =
⋂
{S ∈ $}; i.e. there is a unique

world in the inner sphere. We will denote such a system by $w.

Intuitively, the elements of inner spheres are worlds not much different from the
world(s) lying on the center of that system, while the elements of the outer spheres can
be very different from the world(s) at the center.

The truth-value of a counterfactual in a system of spheres is defined in terms of the
truth conditions of the formulas occurring in it. Boolean formulas are evaluated in a
given world (taken as a propositional evaluation) in the usual way.

DEFINITION 2 Consider the language L = {>,⊥,¬,∧,→} and the set Fm(L):

Fm(L) := Var∪{>,⊥} | ¬ϕ | ϕ ∧ψ | ϕ → ψ

Let W be a set of worlds w. For each w, we define a propositional evaluation ew as a
homomorphism ew : Var→ {0,1}, which assigns value 1 to each p ∈ Var iff p is true in
world w. As usual, ew can be inductively extended to every formula in Fm(L). We define
the set of possible worlds satisfying ϕ , called ϕ-worlds,

[>] = W
[⊥] = /0
[p] = {w ∈W | ew(p) = 1}, for each p ∈ Var

[ϕ ∧ψ] = [ϕ]∩ [ψ]
[ϕ → ψ] = (W r [ϕ])∪ [ψ]

[¬ϕ] = W r [ϕ]

The two former definitions are related by the equivalence: ew(ϕ) = 1 ⇐⇒ w ∈ [ϕ]. We
will consider the binary connective ≡ as a connective defined by:

ϕ ≡ ψ := (ϕ → ψ)∧ (ψ → ϕ)

With such a semantics and notion of system of spheres, Lewis proceeds to define
the truth conditions for counterfactuals as follows:

DEFINITION 3 Consider the language L� = {>,⊥,¬,∧,→,�,�} and the set
Fm(L�):

Fm(L) := Fm(L) | ϕ� ψ | ϕ� ψ

A would counterfactual ϕ� ψ is true at world w (according to system $) iff either

(1) no ϕ-world belongs to any sphere S ∈ $, or

(2) some sphere S ∈ $ does contain at least one ϕ-world, and ϕ → ψ holds at every
world in S.

A might counterfactual ϕ� ψ is true at world w (according to system $) iff both

(1) some ϕ-world belongs to some sphere S ∈ $, and

(2) every sphere S ∈ $ that contains at least one ϕ-world contains at least one world
where ϕ ∧ψ holds.
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In this paper we will assume that systems of spheres are universal and centered.
We will denote by $w the system of spheres centered on the world w. Moreover, our
actual world will be denoted by w?. Another possibility discussed by Lewis is that
the intersection of a set of spheres is empty. This is the case when there is a non-
well-founded decreasing sequence of spheres whose intersection is not an element of
the sequence. Even if this case is not often found in the classical framework, Lewis
proposes a new condition to exclude it. The Limit Assumption stipulates that, if a ϕ-
world exists, then there always exists a closest sphere S ∈ $ containing a ϕ-world, for
any ϕ ∈ Fm(L�). In order to apply this assumption to the many-valued case, we present
it in a more general form: If some sphere in $ exists with some property P, then there
exists a sphere S ∈ $ having P such that for each other S′ ∈ $ having P, S⊆ S′.

Indeed, in Definition 3 below, Lewis avoids relying on the Limit Assumption, that
he considers somehow unnatural. But the cost of this move is to renounce to define a
counterfactual as a conditional proposition that is true in the closest ϕ-sphere. Lewis
presents another semantics to recover this notion of closest sphere (based on selection
functions), though these produce unintuitive truth values for counterfactuals when the
Limit Assumption fails (see p. 58 of [8]). In contrast, the semantics based on the notion
of closest sphere (with the Limit Assumption) seems to be the most intuitive way to
solve this issues, since it captures the idea of evaluating a counterfactual in the most
similar worlds.

Finally consider counterfactuals nested in other counterfactual: If it were the case
that ϕ , then if it were the case that ψ then χ would be the case. In the end, this com-
posite counterfactual is evaluated w.r.t. the actual world, while the inner counterfactual,
If it were the case that ψ then χ would be the case, is evaluated w.r.t. some ϕ-world(s).
Thus, composite counterfactuals require different systems of spheres centered on differ-
ent worlds, defined on the same universe W (and w.r.t. a fixed similarity relation among
worlds). See Figure 1 for an illustration.

Figure 1. The semantics of counterfactual ψ � χ , nested in ϕ � (ψ � χ), takes
place in each closest ϕ-world, e.g. in w′.

Despite Lewis directly takes� as primitive, defines� from the former and nega-
tion, interdefinability can be proved from Definition 3.
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LEMMA 4 ([8]) Let ϕ,ψ be formulas, then the following formulas are tautologies:

ϕ� ψ = ¬(ϕ� ¬ψ)

ϕ� ψ = ¬(ϕ� ¬ψ)

Next we prove an equivalent characterization of the truth-conditions in Definition 3,
suggested by Lewis (without proof). This is used later on to show that classical counter-
factuals are a particular case of many-valued ones.

LEMMA 5 Let W be a set of possible worlds with w ∈W, and $ a system of spheres
satisfying the Limit Assumption. Then:

(a) A counterfactual ϕ�ψ is true in world w, iff either [ϕ] = /0 or w′ |= ψ , for every
w′ ∈ [ϕ]∩

⋂
{S ∈ $w | S∩ [ϕ] 6= /0}.

(b) A counterfactual ϕ�ψ is true in world w, iff both [ϕ] 6= /0 and w′ |= ψ , for some
w′ ∈ [ϕ]∩

⋂
{S ∈ $w | S∩ [ϕ] 6= /0}.

Proof To prove the right-to-left implication of (a) suppose that ϕ � ψ is true in w.
Then, by Definition 3, it holds either that (1) no ϕ-world belongs to any sphere S ∈ $,
or (2) some sphere S ∈ $ does contain at least one ϕ-world, and ϕ → ψ holds at every
world in S. The former (1) implies clause [ϕ] = /0 and we are done. In case (2), let S′ be
a sphere (i) containing a ϕ-world and (ii) making ϕ → ψ true everywhere in S′. Since
spheres are ordered by inclusion, by the Limit Assumption there exists a sphere S∗ such
that (i) S∗∩ [ϕ] 6= /0, (ii) S∗ ⊆ [ϕ → ψ] and (iii) S∗ is ⊆-minimal w.r.t. (i) and (ii). Now
observe that S∗ =

⋂
{S ∈ $ | [ϕ]∩S 6= /0}:

(⊆) Let S be such that (i) [ϕ]∩ S 6= /0. Note that it cannot be the case that S  S∗,
because otherwise S⊆ S∗⊆ [ϕ→ψ], since S contains a ϕ-world and this is jointly
incompatible with ⊆-minimality of S∗ w.r.t. (i) and (ii).

(⊇) Let w ∈
⋂
{S ∈ $ | [ϕ]∩S 6= /0}. For any S′′ with (i), (ii) and (iii) above, we have

S′′ ∈ {S ∈ $ | [ϕ]∩S 6= /0}. In particular S∗ ∈ {S ∈ $ | [ϕ]∩S 6= /0}, so that w ∈ S∗.

Now, let w′ ∈ [ϕ]∩S∗. Since, by definition, S∗ ⊆ [ϕ→ ψ], we have w′ ∈ [ϕ]∩ [ϕ→ ψ].
By modus ponens, w′ ∈ [ψ]. Thus, it holds that, for every w′ ∈ [ϕ]∩

⋂
{S∈ $w | S∩ [ϕ] 6=

/0}, we have w′ |= ψ .
To prove the converse implication of (a) assume that, for every w′, w′ |=ψ is implied

by w′ ∈ [ϕ]∩
⋂
{S ∈ $ | S∩ [ϕ] 6= /0} (since the assumption that [ϕ] = /0 trivially implies

the claim). Let S∗ =
⋂
{S ∈ $ | S∩ [ϕ] 6= /0}. By the Limit Assumption, we have S∗ is

a sphere. Let w ∈ S∗. If, on the one hand, w ∈ [ϕ], then by assumption w ∈ [ψ] so that
w ∈ [ϕ → ψ]. If, on the other hand, w /∈ [ϕ]. Then trivially w ∈ [ϕ → ψ]. In either case,
we have both S∗∩ [ϕ] 6= /0 and S∗ ⊆ [ϕ → ψ], so we are done.

For (b), we have ϕ� ψ is true at w iff ¬(ϕ →� ¬ψ) is true at w (by Lemma 4).
This is equivalent to: it is not the case that either [ϕ] = /0 or w′ |= ¬ψ , for every
w′ ∈ [ϕ]∩

⋂
{S ∈ $w | S∩ [ϕ] 6= /0}. Thus, in other words, both [ϕ] 6= /0 and for some

w′ ∈ [ϕ]∩
⋂
{S ∈ $w | S∩ [ϕ] 6= /0} we have w′ /∈ [¬ψ]. Therefore we know that w′ ∈ [ψ]

for some w′ ∈ [ϕ]∩
⋂
{S ∈ $w | S∩ [ϕ] 6= /0}, and so the proof is done. 2
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Informally, this characterization reads as follows. A counterfactual ϕ � ψ is true
in w iff either ϕ is false in every world in W , or ψ is true in every ϕ-world lying in the
closest sphere containing a ϕ-world. A ϕ � ψ counterfactual is true in w iff both ϕ

is true in some world in W and ψ is true in some ϕ-world lying in the closest sphere
containing a ϕ-world.

Lewis refuses the idea that a possible world is merely a propositional evaluation of
sentences, as in the tradition of frame-based semantics for Modal Logic. Nevertheless,
he makes use of such notion of possible world when he defines the syntactical calculus
of counterfactuals. Since our approach is more a formal than a philosophical one, we
will consider a possible world to be just a propositional evaluation of sentences. As we
will see, in our case sentences need not be evaluated simply as true or false, but they can
take intermediate values.

2.2 Vague sentences and Fuzzy Logic
During the last century there has been a great deal of work in the field of Proposi-
tional Fuzzy Logics, which are suitable to model reasoning with vague propositions (see
Fermüller [4] for an overview of other formalisms). We give below a brief account of
such logics (see [7] for details).

We consider a vague sentence as a sentence that, by the nature of its meaning, cannot
be understood as merely true or false. As an example, if we fix that a tall man is a man
whose height is greater or equal to 1.80m̃, we cannot consider a man who is 1.79 m tall
as a short man, even if he is not tall. This is related to the well-known Sorites paradox.
A way to overcome this paradox is to consider fuzzy sets.

As defined in [11] by L.A. Zadeh, a fuzzy set C is a set whose characteristic func-
tion,3 χC is a function which returns a real value between 0 and 1, i.e. χC(a) ∈ [0,1].
Intuitively, if C is the set of tall men and a is a man who is 1.79 m tall, then χC(a) = 0.98.

The last example shows that, in contrast to classical frameworks where false and
not true are equivalent, the distinction between these two notions becomes fundamental
in many-valued frameworks. In the context of predicate sentences, i.e. sentences of
the form a is C, we can directly adapt the tool of fuzzy sets to give a value (between
0 and 1) to a being an element of C. We can also consider the sentence “a is C” as
a whole propositional sentence p, and say that its value lies between 0 and 1. The
former approach is known as predicate or first order calculus and the latter approach,
propositional calculus. Following the literature on counterfactuals, we will follow the
approach which considers atomic propositions as the minimal language entities.

Giving a sentence a propositional value, however, is not a trivial issue: it often
depends on the meanings of the predicate and the individuals occurring in it. In the
context of natural language, the same predicate, say high, may ask for the use of different
systems of reference, e.g. depending on whether we want to talk about a high mountain
or a high skyscraper. In the former case, we can fix that the membership of a mountain
to the set of high mountains has value 1 if the mountain height is greater than or equal to
6000 m, it has value 0 if its height is less or equal to 2000 m, and it has a value between
0 and 1 if its height falls between the given values. In the latter case, we can fix that the

3In the classical framework, a characteristic function of set C is a function χC such that for an individual
a, χC(a) = 1 if a ∈C and χC(a) = 0 otherwise.
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membership of a skyscraper to the set of high skyscrapers has value 1, if its height is
greater or equal to 150 m, has value 0, if its height is less or equal to 60 m, and a value
between 0 and 1, if its height falls between the given values.

DEFINITION 6 A t-norm is a binary operation ∗ : [0,1]2→ [0,1] such that:

1. ∗ is commutative and associative,

2. ∗ is non-decreasing in both arguments,

3. for every x ∈ [0,1], it holds that 1∗ x = x.

If, ∗ is a continuous mapping from [0,1]2 to [0,1], we talk about a continuous t-norm.

A t-norm is normally understood as the function giving the truth value of conjunc-
tion in a propositional calculus. The basic examples of continuous t-norms are:

1. Łukasiewicz t-norm (denoted by Ł), defined by: x∗ y = max(0,x+ y−1),

2. Gödel t-norm (denoted by G), defined by: x∗ y = min(x,y),

3. Product t-norm (denoted by Π), defined by: x∗ y = x · y.

Given a continuous t-norm ∗, we can define its residuum (i.e. the function which
gives the semantics for the implication):

DEFINITION 7 Let ∗ be a continuous t-norm, then its residuum is a binary operation
⇒∗ : [0,1]2→ [0,1] such that, for every x,y ∈ [0,1]:

x⇒∗ y = sup {z ∈ [0,1] | x∗ z≤ y}

Now we define the logic of some continuous t-norm over a propositional language.

DEFINITION 8 Let ∗ be continuous t-norm. The language of a propositional t-norm
based logic, Fm(L∗) is defined as follows. Given a countable set Var of propositional
variables and the connectives in {⊥,∧∗,→∗}, the set Fm of formulas is defined as

Fm(L∗) = Var∪{⊥} | ϕ ∧∗ψ | ϕ →∗ ψ

where ϕ and ψ are formulas.
We will consider the binary connective ≡∗ as a connective defined by:

ϕ ≡∗ ψ := (ϕ →∗ ψ)∧∗ (ψ →∗ ϕ)

REMARK 9 Negation is defined within the language as

¬ϕ = ϕ →∗ ⊥

A negation ¬ is involutive iff ¬¬ϕ → ϕ is valid. Among the three basic t-norm based
logics, the only logic having an involutive negation is Łukasiewicz logic.

Under a syntactical point of view, there is a set of axioms4 for each of the basic
continuous t-norms. A t-norm based propositional fuzzy logic is defined as usual:

4For reasons of space, we do not report here the set of axioms proper of each t-norm based propositional
fuzzy logic. The axiomatization of the logics based on the three basic continuous t-norms can be found in [7].
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DEFINITION 10 Let ∗ ∈ {Ł,G,Π}, a ∗-based propositional fuzzy logic (denoted by
L∗) is the least set of formulas which includes the axioms of such logic and is closed
under Modus Ponens.

The evaluation of a formula is also defined as usual:

DEFINITION 11 Let ∗ be a t-norm with ∗ ∈ {Ł,G,Π} and let ϕ,ψ formulas in Fm(L∗).
The propositional evaluation is a mapping e : Var→ [0,1] defined inductively as follows:

• e(⊥) = 0,

• e(>) = 1,

• e(ϕ ∧∗ψ) = e(ϕ)∗ e(ψ),

• e(ϕ →∗ ψ) = e(ϕ)⇒∗ e(ψ).

REMARK 12 According to the definition of negation (Remark 9) the semantics of nega-
tion in each basic t-norm based logic is computed as follows:

For Łukasiewicz logic,5 we have e(¬Łϕ) = 1− e(ϕ)

For Gödel and Product logics, we have e(¬Gϕ) = e(¬Πϕ) =

{
1 if e(ϕ) = 0,
0 otherwise

In [7], completeness results are provided for each of these basic propositional cal-
culus w.r.t. the corresponding semantics.

3 Vague counterfactuals
By a vague counterfactual we understand a counterfactual involving vague sentences,
i.e. sentences that are not merely true or false, but are evaluated in [0,1]. Actually, the
fact that the involved sentences are evaluated in [0,1] implies that the counterfactual, as
a formula, is evaluated in [0,1] as well.

The most widely accepted definition of a (classical) counterfactual is that of a con-
ditional with an actually false antecedent. While in the classical framework there is no
difference between false and non-true antecedents, in a many-valued framework non-
true is not necessarily false but it can take another value < 1. For example, by sentence:
“If a were tall, a would reach the roof”, we mean that, within the actual world, individual
a is not tall in degree 1. Though this does not mean that a is tall in degree 0, because we
can think that a is not tall without thinking that a is short. In this case, we have different
choices (now excluding the trivial case where the antecedent nowhere holds):

• the simplest case is to require that the antecedent takes value one (what we call
1-semantics, see Section 4 below),

• more generally, we may consider the value of the antecedent to be at least r, for
some r higher than the actual value of the antecedent (called (≥ r)-semantics, see
Section 5).

5Note that this negation turns out to be involutive, because e(¬¬ϕ) = 1− (1− e(ϕ)) = e(ϕ).
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A different approach is needed for sentences like: “If Prague was nearer, I could
have arrived by feet”. Now the antecedent must indeed be false (i.e. its evaluation,
within the actual world, will be 0), since Prague cannot (in the actual world) be nearer
than it is. In this case, we can look at possible worlds where the antecedent has an
arbitrary value > 0. In this case we can

• look at possible worlds where the antecedent takes a value higher than in the actual
world (see Section 6 below).

Clearly the worlds where it assumes the maximum value will be a subset of this set
of worlds.

Before going on with a formalization of such truth conditions, it must be pointed
out that such a semantics do not perfectly fit in with the framework of each basic
t-norm based connective. Indeed we will devote more efforts to explain the case of the
Łukasiewicz t-norm, because negation, in the other basic t-norms, presents some short-
comings w.r.t. interdefinability for counterfactual connectives and negated antecedents.
We extend the propositional language Fm of a given t-norm based logic L∗ with symbols
for counterfactual connectives�∗,�∗.

DEFINITION 13 Let ∗ be a basic t-norm. We define the language for vague counter-
factuals L�∗ as the least set of sentences containing Fm(L∗) and all the expressions of
the form ϕ�∗ ψ and ϕ�∗ ψ , where ϕ,ψ ∈ Fm(L�∗):

Fm(L�∗) = Fm(L∗) | ϕ�∗ ψ | ϕ�∗ ψ

We will consider vague counterfactuals as counterfactuals involving vague sen-
tences in the language of some t-norm based logic L∗. So we proceed to define a
semantics where the truth of the counterfactual ϕ �∗ ψ depends on the truth of the
non-modal implication ϕ →∗ ψ in the appropriate possible worlds, where now the im-
plication admits values between 0 and 1.

We present first a direct generalization of Lewis’ proposal to the fuzzy case, where
we only consider worlds making the antecedent 1-true. We prove that the classical se-
mantics is a particular case of the many-valued one. The scope of this semantics, though,
is restrictive with respect to the use of vague counterfactuals in the natural language. The
reason is that it ignores the case where the truth-value of the antecedent could be greater
than in the actual world, but not being 1-true. For all these semantics, interdefinability
results for would and might counterfactuals are proved for the case of Łukasiewicz logic.

4 1-semantics for vague counterfactuals
In the classical case considered by Lewis, any formula can only be either true or false.
This is true as well for two-valued counterfactuals ϕ � ψ in a given world w. More-
over, by definition of counterfactual, the antecedent ϕ must be false in the actual world.
According to the theory of counterfactuals, we must then evaluate ψ in every closest
world where the value of ϕ is different than its value in the actual world. In the classical
case, such a difference necessarily yields the value true. Thus, in the classical case, the
maximum change in the value of ϕ is already attained in the closest sphere where this
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Figure 2. System of spheres from Example 16.

value changes. Outer spheres may contain worlds where many other things change, but
the value of ϕ will be either the actual value (i.e. false) or will remain the same than in
the relevant worlds on the closest sphere.

In contrast, as a system of spheres we now consider the set Mod(L�∗) of valu-
ations6 ew : Var→ [0,1]. As we said, the system of spheres is centered on the actual
world w? i.e. {ew?} ⊆ S, for any S ∈ $. So, in outer spheres, the antecedent of a coun-
terfactual may have a value different both than that in the actual world and that in the
closest sphere where its value changes.

The semantics for non-counterfactual connectives is as usual. Before we define
the semantics for counterfactual connectives we recall a well-known result relating in-
fima and suprema (inf and sup) when the internal negation is involutive (that is, in
Łukasiewicz logic). This auxiliary lemma is extensively used later on for several in-
terdefinability results between would and might counterfactuals.

LEMMA 14 Let X ⊆ [0,1] be a set of values. Then

1− inf(X) = sup(1−X) and 1− sup(X) = inf(1−X)

where 1−X = {1− x | x ∈ X}.

We define first a simple generalization of the semantics for the classical case, now
defining ϕ-worlds as worlds w where ϕ is 1-true: ew(ϕ) = 1. The other semantics will
consider instead ϕ-worlds to be defined by some weaker condition, e.g. ew(ϕ) ≥ r (for
some chosen value r ∈ [0,1]).

6We will use indistinctively the possible-world notation w and the algebraic one ew.
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DEFINITION 15 Let ∗ be a basic t-norm and ϕ a formula. Let

K1
ϕ = {w′ ∈W | ew′(ϕ) = 1 and w′ ∈

⋂
{S ∈ $ | ∃w′′ ∈ S such that ew′′(ϕ) = 1}}

Then the 1-semantics of would and might counterfactuals ϕ �∗ ψ and ϕ �∗ ψ is
defined by:

e1
w(ϕ�∗ ψ) =

{
1, if {w′ | ew′(ϕ) = 1}= /0
inf{ew′(ϕ →∗ ψ) | w′ ∈K1

ϕ} otherwise

e1
w(ϕ�∗ ψ) =

{
0, if {w′ | ew′(ϕ) = 1}= /0
sup{ew′(ϕ ∧∗ψ) | w′ ∈K1

ϕ} otherwise

We assume, as a convention that, whenever {w′ ∈W | ew′(ϕ) = 1} 6= /0 and
⋂
{S ∈ $ |

∃w′′ ∈ S such that ew′′(ϕ) = 1}= /0, the value of the counterfactual is undefined.

In cases where there is no ϕ-world, we take the counterfactual to be vacuously true.
If we assume Lewis’ Limit Assumption, the value of any counterfactual is always de-
fined. Recall that we consider only systems of spheres that satisfy the Limit Assumption.

EXAMPLE 16 Let ∗ be any basic t-norm. Let p = I am rich and q = I am happy. Con-
sider the system of spheres $ from Figure 2. We identify each world w with a pair
of truth-values 〈ew(p),ew(q)〉. For example, the actual world w? is such that I am
rather not rich but moderately happy. The 1-semantics for the would counterfactual
p�∗ q, i.e. If I were rich, I would be happy, considers worlds in the third sphere
S = {〈1,0.7〉,〈1,0.8〉,〈1,0.9〉}, giving

e1
w?(p�∗ q) = inf{1⇒∗ 0.7, 1⇒∗ 0.8, 1⇒∗ 0.9}= inf{0.7, 0.8, 0.9}= 0.7,

so that this counterfactual is quite true. The same sphere S is where the truth-value for
the might counterfactual p�∗ q is computed, now giving

e1
w?(p�∗ q) = sup{1∧∗ 0.7, 1∧∗ 0.8, 1∧∗ 0.9}= sup{0.7, 0.8, 0.9}= 0.9,

so that If I were rich, I might be happy is highly true.

Restricting the set of truth-values to {0,1} makes our 1-semantics from Defini-
tion 15 and Lewis’ semantics from Lemma 5 equivalent. In other words, Lewis’ se-
mantics for counterfactuals is a particular case of the preceding semantics under the
condition that the evaluations are restricted to {0,1} as in classical logic.

PROPOSITION 17 Let ∗ be a basic t-norm. Let ec
w(·) denote Lewis’ semantics and W

a set of classical possible worlds (i.e. W ⊆ {ec
w : Var→{0,1}). For any classical system

of spheres $ and any world w ∈W, the 1-semantics e1
w(·) definition gives:

ec
w(ϕ� ψ) = e1

w(ϕ�∗ ψ)

ec
w(ϕ� ψ) = e1

w(ϕ�∗ ψ)

Proof (�) We have ec
w(ϕ � ψ) = 1 iff either [ϕ] = /0 or or w′ |= ψ , for every

w′ ∈ [ϕ]∩
⋂
{S∈ $w | S∩ [ϕ] 6= /0}. This is equivalent to the fact that eitherK1

ϕ = /0 or the
infimum of e1

w′(ϕ→∗ ψ), for each such world w′, is 1. But this is just e1
w(ϕ�∗ ψ) = 1.
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(�) We have ec
w(ϕ � ψ) = 1 iff both [ϕ] 6= /0 and w′ |= ψ , for some world

w′ ∈ [ϕ]∩
⋂
{S ∈ $w | S∩ [ϕ] 6= /0}. This is equivalent to the fact that both K1

ϕ 6= /0
and the supremum of the values of ϕ ∧∗ ψ is 1 in such a sphere, which is the defini-
tion of 1-semantics for might counterfactuals; hence, we have that ec

w(ϕ � ψ) = 1 iff
e1

w(ϕ�∗ ψ) = 1. 2

In the particular case of Łukasiewicz, we also have that classical interdefinability of
would and might counterfactuals is preserved.

PROPOSITION 18 Let W be a set of possible worlds, w∈W and let ¬Ł be Łukasiewicz
negation, then:

e1
w(ϕ�Ł ψ) = e1

w(¬Ł(ϕ�Ł ¬Łψ))

e1
w(ϕ�Ł ψ) = e1

w(¬Ł(ϕ�Ł ¬Łψ))

Proof Let $ and w ∈W be given, then e1
w(¬Ł(ϕ�Ł ¬Łψ)) =

= 1− e1
w(ϕ�Ł ¬Łψ) = Remark 12

= 1− inf{e1
w′(ϕ →Ł ¬Łψ) | w′ ∈K1

ϕ}= Definition 15
= 1− inf{e1

w′(ϕ →Ł (ψ →Ł ⊥)) | w′ ∈K1
ϕ}= Remark 9

= 1− inf{e1
w′((ϕ ∧Ł ψ)→Ł ⊥) | w′ ∈K1

ϕ}= Definition 7
= 1− inf{e1

w′(¬Ł(ϕ ∧Ł ψ)) | w′ ∈K1
ϕ}= Remark 9

= 1− inf{1− e1
w′(ϕ ∧Ł ψ) | w′ ∈K1

ϕ}= Remark 12
= 1− (1− sup{e1

w′(ϕ ∧Ł ψ) | w′ ∈K1
ϕ}) = Lemma 14

= sup{e1
w′(ϕ ∧Ł ψ) | w′ ∈K1

ϕ}= Double neg. law
= e1

w(ϕ�Ł ψ) Definition 15

Hence, by Definition 15, we have exactly the definition of e1
w(ϕ�Ł ψ):

e1
w(¬Ł(ϕ�Ł ¬Łψ)) =

{
¬Ł1 = 0, if {w′ | ew′(ϕ) = 1}= /0
sup{ew′(ϕ ∧Ł ψ) | w′ ∈K1

ϕ}, otherwise

For the second equivalence it is enough to apply twice the Double Negation law to
obtain: e1

w(ϕ�Ł ψ) = e1
w(¬Ł¬Ł(ϕ�Ł ¬Ł¬Łψ)), and then by the former equivalence

we have e1
w(¬Ł¬Ł (ϕ�Ł ¬Ł¬Łψ)) = e1

w(¬Ł(ϕ�Ł ¬Łψ)). 2

5 r-semantics for vague counterfactuals.
Having, in a many-valued framework, truth-values other than 0 and 1, permits us to look
at worlds satisfying the antecedent ϕ of a counterfactual in a fixed degree r, with r lying
between the actual truth-value of ϕ and 1: ew?(ϕ)≤ r ≤ 1. (See Figure 3.)

Figure 3. Possible truth-values for antecedent ϕ in r-semantics.

We define next the corresponding semantics, called r-semantics, in terms of the set
of worlds w with ew(ϕ)≥ r.
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DEFINITION 19 Let ∗ be a basic t-norm and ϕ a formula. For a given r > 0, let

Kr
ϕ = {w′ ∈W | ew′(ϕ)≥ r and w′ ∈

⋂
{S ∈ $ | ∃w′′ ∈ S such that ew′′(ϕ)≥ r}}

Then we define the r-semantics of� and� as follows:

er
w(ϕ�∗ ψ) =

{
1, if {w′ | ew′(ϕ)≥ r}= /0
inf{ ew′(ϕ →∗ ψ) | w′ ∈Kr

ϕ}, otherwise

er
w(ϕ�∗ ψ) =

{
0, if {w′ | ew′(ϕ)≥ r}= /0
sup{ ew′(ϕ ∧∗ψ) | w′ ∈Kr

ϕ}, otherwise

We assume, as a convention that, whenever {w′ ∈W | ew′(ϕ)≥ r} 6= /0 and
⋂
{S∈ $ |

∃w′′ ∈ S(ew′′ such that ϕ ≥ r)}= /0, the value of the counterfactual is undefined.

The Limit Assumption on systems of spheres excludes counterintuitive examples,
and makes counterfactuals’ truth-values always to be defined. The first result for this
semantics is that for the particular case r = 1, it collapses to the previous 1-semantics.

PROPOSITION 20 Let ∗ be a basic t-norm. Setting r = 1 for a given system of spheres
$ and world w, r-semantics collapses to the 1-semantics.

e1
w(ϕ�∗ ψ) = er=1

w (ϕ�∗ ψ)

e1
w(ϕ�∗ ψ) = er=1

w (ϕ�∗ ψ)

Proof (�∗) Obvious, since the set of worlds in Definition 15 is identical to K1
ϕ (be-

cause ew(·)≥ 1 ⇐⇒ ew(·) = 1). 2

Moreover, in the two-valued case, Proposition 17 above makes Lewis’ semantics
(Definition 3) a particular case of the r-semantics for r = 1.

COROLLARY 21 Let ∗ be a basic t-norm. Let W a set of classical possible worlds (i.e.
W ⊆ {ec

w : Var→ {0,1}). For any classical system of spheres $ and any world w ∈W,
the r-semantics er

w(·) definition gives:

ec
w(ϕ� ψ) = er

w(ϕ�∗ ψ) and ec
w(ϕ� ψ) = er

w(ϕ�∗ ψ)

Proof If the evaluation is in {0,1}, then the r-semantics reduces to r = 1 case. We apply
Propositions 20 and 17. 2

Finally we prove that, in the r-semantics, �∗ and �∗ can also be defined from
each other for the Łukasiewicz case: ∗= Ł.

PROPOSITION 22 Let W be a set of possible worlds, w∈W and let ¬Ł be Łukasiewicz
negation, then:

er
w(ϕ�Ł ψ) = er

w(¬Ł(ϕ�Ł ¬Łψ))

er
w(ϕ�Ł ψ) = er

w(¬Ł(ϕ�Ł ¬Łψ))
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Proof We have the following er
w(¬Ł(ϕ�Ł ¬Łψ)) =

= 1− er
w(ϕ�Ł ¬Łψ) = Remark 12

= 1− inf{ew′(ϕ →Ł ¬Łψ) | w′ ∈Kr
ϕ}= Definition 19

= sup{1− ew′(ϕ →Ł ¬Łψ) | w′ ∈Kr
ϕ}= Lemma 14

= sup{1− ew′(ϕ →Ł (ψ →Ł ⊥)) | w′ ∈Kr
ϕ}= Remark 9

= sup{1− ew′((ϕ ∧Ł ψ)→Ł ⊥) | w′ ∈Kr
ϕ}= Definition 7

= sup{1− ew′(¬Ł(ϕ ∧Ł ψ)) | w′ ∈Kr
ϕ}= Remark 9

= sup{ew′(¬Ł¬Ł(ϕ ∧Ł ψ)) | w′ ∈Kr
ϕ}= Remark 12

= sup{ew′(ϕ ∧Ł ψ) | w′ ∈Kr
ϕ}= Double Neg. Law

= er
w(ϕ�Ł ψ) Def. 19

Hence, by Definition 19, we have exactly the definition of er
w(ϕ�Ł ψ):

er
w(¬Ł(ϕ�Ł ¬Łψ)) =

{
¬Ł1 = 0, if {w′ | ew′(ϕ)≥ r}= /0
sup{ew′(ϕ ∧Ł ψ) | w′ ∈Kr

ϕ}, otherwise

The second equivalence is proven applying to the first the double negation law. 2

EXAMPLE 23 Recall the system $ from Figure 2. As before, let p = I am rich, q =
I am happy but now we consider the Łukasiewicz t-norm ∗Ł only. The r-semantics with
r ≥ 0.5 is as follows. For the would counterfactual p�Ł q, If I were rich, I would be
happy, we look at worlds in the second sphere S = {〈0.9,1〉,〈0.6,0.4〉}, giving

e0.5
w? (p�Ł q) = inf{0.9⇒Ł 1, 0.6⇒Ł 0.4}= inf{1, 0.8}= 0.8

so that this counterfactual is very true. The same sphere S is selected for evaluating the
might counterfactual p�Ł q, now giving

e0.5
w? (p�Ł q) = sup{0.9∧Ł 1, 0.6∧Ł 0.4}= sup{0.9, 0}= 0.9

so that If I were rich, I might be happy is highly true.

6 More-than-actual semantics
In the previous sections, we presented different semantics for counterfactuals ϕ �∗ ψ

where relevant worlds assigned ϕ a fixed value higher than that of the actual world
w?. A weaker, yet perhaps more intuitive, semantics for counterfactuals will consider
worlds assigning ϕ a value that is minimally higher than that of w?. We will call this
semantics more-than-actual semantics. See Figure 4 for the set of possible truth values
for antecedent ϕ in relevant worlds.

Figure 4. Possible truth-values for antecedent ϕ in more-than-actual semantics.



Many-Valued Semantics for Vague Counterfactuals 357

There is a noticeable difference between the finite-valued case and the infinite-
valued one. In the finitely-valued case, say {0 = r0,r1, . . . ,rk−1,rk = 1} with rm < rm+1,
we could simply set the lower bound r for the value of the antecedent to be minimally
higher than the actual value: so, if ew?(ϕ) = rm, then the designed value to be considered
should be rm+1. Each such case is a particular instance of the r-semantics considered
above. In contrast, if the set of truth-values is dense, the notion of a next-degree does not
make sense; so we cannot apply a r-semantics, because there is not any minimal value
higher than r and, by definition of counterfactuals, we cannot set r = ew?(ϕ) either.

In order to capture this notion of more-than-actual semantics, we propose a defini-
tion based both on the r-semantics and the notion of limit lim. As usual, limx→c+ f (x)
denotes the limit of f (x) as x approaches to c from the right, i.e. as x decreases its value,
while remaining strictly greater than c.

DEFINITION 24 Let ∗ be a basic t-norm, ϕ,ψ formulas and r ranges on all values
> ew(ϕ). The more than actual semantics e?(·) for would and might counterfactuals is:

e?w(ϕ�∗ ψ) = limr→ew(ϕ)+ er
w(ϕ�∗ ψ)

e?w(ϕ�∗ ψ) = limr→ew(ϕ)+ er
w(ϕ�∗ ψ)

We have that e?w(ϕ�∗ ψ) is undefined iff for all r > ew(ϕ), er
w(ϕ�∗ ψ) is undefined.

It is obvious that the finite-valued case is a particular instance of this definition:

e?w(ϕ�∗ ψ) = erm+1
w (ϕ�∗ ψ), where rm = ew(ϕ)

It is interesting to observe the behavior of function f (r) := er
w(ϕ �∗ ψ) in com-

parison to the actual value of the (non-modal) residuated implication ew?(ϕ →∗ ψ). We
may have examples where the limit of f (r) (for counterfactuals) coincides with that of
the implication, and examples where these two values do not coincide:

EXAMPLE 25 Consider the comparative counterfactual If I were richer, I would be
happy. We assume a continuous system of spheres, with sphere Sr containing the most
similar worlds where I am rich (= ϕ) in degree r, for any r > ew?(ϕ). That is, worlds
in Sr are minimal w.r.t. changes in propositions other than ϕ . The distance of worlds in
sphere Sr is r− ew?(ϕ). In the case that a small increase (say less than 1 cent) did not
make a difference, the previous semantics gives a function f (r) whose limit coincides
with the actual value of the residuated implication ϕ →∗ ψ . In this case, e?w?(p�∗ q)
= ew?(p→∗ q). See Figure 5 (left). In contrast, consider the following situation: you
have $10, and you want to buy a music CD, which is sold for $10 plus some (obligatory
but arbitrary) tip. Buying this CD would make you happier. The limit of function f (r)
does not coincide now with the implication ew?(ϕ →∗ ψ). See Figure 5 (right).

As before, we can prove for the Łukasiewicz t-norm that�Ł and�Ł are interde-
finable according to the more-than-actual-semantics.

PROPOSITION 26 Let W be a set of possible worlds, w ∈W. Then:

e?w(ϕ�Ł ψ) = e?w(¬Ł(ϕ�Ł ¬Łψ))

e?w(ϕ�Ł ψ) = e?w(¬Ł(ϕ�Ł ¬Łψ))
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Figure 5. The limit of function f (r) and the actual truth-value of ϕ→∗ ψ coincide (left)
and do not coincide (right). In both graphics, wr denotes an arbitrary world in sphere Sr.

Proof We show the former claim e?w(ϕ�Ł ψ) = e?w(¬Ł(ϕ�Ł ¬Łψ)), since the proof
of the other is analogous. We have e?w(¬Ł(ϕ�Ł ψ)) =

= limr→ew(ϕ)+ er
w(¬Ł(ϕ�Ł ¬Łψ)) = Definition 24

= limr→ew(ϕ)+ er
w(ϕ�Ł ¬Łψ) = Proposition 22

= e?w(ϕ�Ł ψ) Definition 24 2

We give some examples of (non-)tautologies for the semantics presented above:

EXAMPLE 27 For any of the above semantics, and any basic t-norm ∗, counterfactuals
of the following form are tautologies (in systems $ that are universal, centered and
satisfying the Limit Assumption):

ϕ�∗ (ψ →∗ ϕ), (ϕ ∧∗ψ)�∗ ϕ

In contrast, these expressions are not tautologies for all ϕ,ψ:

ϕ�∗ (ψ�∗ ϕ), ϕ →∗ (ψ�∗ ϕ)

Proof: About the first tautology: this follows from the fact that for any t-norm, any
fuzzy model ew satisfies: ew(ϕ →∗ (ψ →∗ ϕ)) = 1. Hence, whatever be r ∈ [0,1], and
w ∈ Kr, the r-semantics assigns this counterfactual the value 1. Finally, for the more-
than-actual semantics, say > r = ew?(ϕ), we just have the limit of r-semantics is again 1,
for any r′ > r.

The reasoning about the second tautology in similar, using that (ϕ ∧∗ψ)→∗ ϕ is a
tautology in any model ew, for an arbitrary t-norm.

For the first non-tautology we show it for Łukasiewicz t-norm and r-semantics with
r = 0.7. Consider a set of possible worlds W and w?,w′,w′′ ∈W such that ew?(ϕ) = 0.3,
ew′(ϕ) = 0.7, ew′′(ϕ) = 0.2, and ew′′(ψ) = 0.7. Let it be a similarity relation that induces
a system of spheres $w?

in which ew?(ϕ�∗ (ψ�∗ ϕ)) = inf{ew(ϕ→∗ (ψ�∗ ϕ)) |
w ∈K0.7}= ew′(ϕ→∗ (ψ�∗ ϕ)) and a system of spheres $w′ in which ew′(ψ�∗ ϕ)
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= inf{ew(ψ →∗ ϕ)) | w ∈ K0.7} = ew′′(ψ →∗ ϕ) = 0.5. So, ew?(ϕ �∗ (ψ �∗ ϕ)) =
inf{ew(ϕ→∗ (ψ�∗ ϕ)) |w∈K0.7}= ew′(ϕ→∗ (ψ�∗ ϕ)) = 0.7⇒∗ 0.5 = 0.8 < 1.

For the second non-tautology we show it for Łukasiewicz t-norm and r-semantics
with r = 0.7. Consider a set of possible worlds W and w?,w′ ∈W such that ew?(ϕ) = 0.6,
ew′(ψ) = 0.8 and ew′(ϕ) = 0.1. Let it be a similarity relation that induces a system of
spheres $w?

in which ew?(ψ �∗ ϕ) = inf{ew(ψ →∗ ϕ) | w ∈ K0.7} = ew′(ψ →∗ ϕ) =
0.8⇒∗ 0.1 = 0.3. So, ew?(ϕ →∗ (ψ�∗ ϕ)) = 0.6⇒∗ ew?(ψ�∗ ϕ) = 0.6⇒∗ 0.3 =
0.7 < 1.

7 Expanding the language
It is usual in the literature on fuzzy propositional logic, to study expansions of the lan-
guage by some set of truth-constants or Baaz’ operator ∆. In this section we study the
expressivity of the language of counterfactuals when expanded in some of these ways.
Informally, expanding the language by truth-constants permits to talk about truth-values
within formulas, thus making possible to express that some formula is true at least (at
most, exactly) in a certain degree. On the other hand, the Delta operator ∆ allows us to
distinguish whether a formula is 1-true or not.

7.1 Expanding the language with ∆

The ∆ operator was introduced by Baaz in [1]. The semantics for this operator is:

e(∆ϕ) =

{
1 if e(ϕ) = 1
0 otherwise

For instance, for e(ϕ) = 0.9, we have e(∆ϕ) = 0, while if e(ϕ) = 1, then e(∆ϕ) = 1.

Thus, this operator requires that the formula under its scope is absolutely true. In our
context, this operator has the following consequences:

• If ∆ is applied to the antecedent of a counterfactual ϕ�∗ ψ , i.e. for ∆ϕ�∗ ψ ,
then the r-semantics collapses to the 1-semantics (the latter in a language with-
out ∆).

• If, in addition, ∆ is also applied to the consequent, i.e. ∆ϕ �∗ ∆ψ , then each
of our semantics collapse to the classical case of Lewis (applied to a language
with ∆).

These claims are shown by the following propositions:

PROPOSITION 28 Let W,w ∈W and $ be given, and let ∗ be a basic t-norm. For any
formulas ϕ,ψ , and a fixed r > ew(ϕ),

er
w(∆ϕ�∗ ψ) = e1

w(ϕ�∗ ψ)

Proof We have er
w(∆ϕ�∗ ψ) =

= inf{ew′(∆ϕ →∗ ψ) | w′ ∈Kr
ϕ}= Definition 19

= inf{ew′(∆ϕ →∗ ψ) | w′ ∈K1
ϕ}= since ew′(∆ϕ)≥ r⇔ ew′(∆ϕ) = 1

= inf{ew′(ϕ →∗ ψ) | w′ ∈K1
ϕ}= since ew′(∆ϕ) = 1⇔ ew′(ϕ) = 1

= e1
w(ϕ�∗ ψ) Definition 15 2
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PROPOSITION 29 Let ec
w(·) denote Lewis’ semantics and W a set of multi-valued pos-

sible worlds. For any system of spheres $, any world w ∈W and any r > 0, the r-
semantics er

w(·) definition gives:

ec
w(ϕ� ψ) = er

w(∆ϕ�∗ ∆ψ)

ec
w(ϕ� ψ) = er

w(∆ϕ�∗ ∆ψ)

Proof We prove the result just for the would counterfactual�∗, since the prove for the
other operator is analogous. We have that ec

w(ϕ�ψ) = 1 iff either [∆ψ] = /0 or each ϕ-
world w′ in the $-closest sphere S containing a ϕ-world, is a ψ-world. This is equivalent
to the infimum of er

w′(∆ϕ →∗ ∆ψ) being 1. But this is just er
w′(∆ϕ �∗ ∆ψ) = 1 for

each such world w′. 2

Hence, in counterfactuals with ∆ in the antecedent and the consequent, there is no
need for many-valued truth conditions since these counterfactuals cannot take values
besides 0 and 1.

This language expansion permits to define truth-conditions for the following ex-
amples: (1) If I were absolutely rich, I would be happy, ∆ϕ �∗ ψ , and (2) If I were
absolutely rich, I would be absolutely happy, ∆ϕ� ∆ψ .

7.2 Expanding the language with truth-constants
Truth-constants were introduced by Pavelka (in [9]; see also Hájek [7]) for the case of
Łukasiewicz t-norm (for other t-norms, see [2] and [3]). This formalism consists in
introducing a suitable set of truth-constants into the language propositional fuzzy logic.
By suitable we mean a subset C of the set of truth-values, closed under the operations
of the truth-value algebra. Each new constant r can only take the truth-value r in any
evaluation: e(r) = r, for any e. For any t-norm ∗, it is always true that r∧∗ s⇔ r ∗ s and
r→∗ s⇔ r⇒∗ s. As an example, e(0.4→∗ p) = 1 iff e(p)≥ 0.4. An evaluated formula,
as defined in [2], is a formula of the form r→∗ ϕ , or ϕ→∗ r, or ϕ ≡∗ r, where ϕ contains
no truth-constant but ⊥ or 1. In the following, we assume that the set of formulas
expanded by truth-constants is restricted to evaluated formulas of the form r→∗ ϕ .

In our context, this operator has the following consequences:

• If evaluated formulas (of the mentioned kind) occur only in the the antecedent
of a counterfactual, i.e. (s→∗ ϕ)�∗ ψ , then the 1-semantics captures the r-
semantics, for any r > 0.

• The r-semantics (without truth-constants) collapses to the classical semantics of
Lewis applied to counterfactuals whose antecedent and consequent are evaluated
formulas of the mentioned kind.

These claims are proved next:

PROPOSITION 30 Let W,w and $ be given, and let ∗ be a basic t-norm. For any
formulas ϕ,ψ , and a fixed r > ew(ϕ),

er
w(ϕ�∗ ψ) = e1

w((r→∗ ϕ)�∗ ψ)
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Proof We have e1
w((r→∗ ϕ)�∗ ψ) =

= inf{ew′((r→∗ ϕ)→∗ ψ) | w′ ∈K1
ϕ}= Definition 15

= inf{ew′(ϕ →∗ ψ) | w′ ∈Kr
ϕ}= since ew′(r→∗ ϕ) = 1⇔ ew′(ϕ)≥ r

= er
w(ϕ�∗ ψ) Definition 19 2

PROPOSITION 31 Let ec
w(·) denote Lewis’ semantics and W a set of many-valued pos-

sible worlds. For any system of spheres $ and any world w ∈W,

er
w(ϕ�∗ ψ)≥ s ⇐⇒ ec

w((r→∗ ϕ)�∗ (s→∗ ψ)) = 1

er
w(ϕ�∗ ψ)≥ s ⇐⇒ ec

w((r→∗ ϕ)�∗ (s→∗ ψ)) = 1

Proof We will prove the result just for the would counterfactual�, since the proof for
the other operator is analogous.

We have that er
w(ϕ �∗ ψ) ≥ s if and only if each world w′ which gives ϕ a value

greater or equal than r in the $-closest sphere S containing a world w′′ which gives ϕ a
value greater or equal than r, gives ϕ →∗ ψ a value greater or equal than s. So, w′ is a
world such that (i) gives the formula r→∗ ϕ value 1, (ii) is an element of the $-closest
sphere S containing a world w′′ giving the formula r→∗ ϕ value 1, and (iii) gives the
formula s→∗ ψ value 1. 2

The next examples illustrate instances of natural language expressions that can be
expressed in a language expanded by truth-constants.

EXAMPLE 32 Assume we interpret truth at degree (at least) 0.8 as very true. Then the
following sentences:

(1) If I were very rich, I would be happy. (0.8→∗ ϕ)� ψ

(2) If I were very rich I would be quite happy. (0.8→∗ ϕ)� (0.7→∗ ψ)

8 Conclusions
We have addressed the problem of generalizing Lewis’ system of spheres semantics to
the many-valued case, making use of t-norm based semantics. This permits to provide
truth-conditions for vague counterfactuals in a faithful way. Due to the plurality of truth-
values, we do not obtain a unique semantics as a result. We define several semantics,
each one meaningful in a different context a vague counterfactuals can be uttered.

For the case of Łukasiewicz t-norm, we prove that would and might counterfactuals
are interdefinable just like in the classical case. Then, we also show for which pairs of se-
mantics, one can be reduced to the other (including here semantics defined on expanded
languages). See the scheme in the next figure for a summary of this reducibility.
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P. Cintula, Z. Haniková and V. Švejdar (eds.) Witnessed years: Essays in Honour of Petr Hájek, College
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Campus UAB s/n 80193, Bellaterra, Catalunya
Email: {cerami, pardo}@iiia.csic.es


