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Overview
The paper develops a formal model for interpreting vague languages in a setting similar
to that of supervaluation semantics. Two modes of semantic variability are modelled,
corresponding to different aspects of vagueness: one mode arises where there can be
multiple definitions of a term involving different attributes or different logical combi-
nations of attributes. The other relates to the threshold of applicability of a vague term
with respect to the magnitude of relevant observable values.

The truth of a proposition depends on both the possible world and the precisifica-
tion with respect to which it is evaluated. Structures representing both possible worlds
and precisifications are specified in terms of primitive functions representing observable
measurements, so that the semantics is grounded upon an underlying theory of physical
reality. On the basis of this semantics, the acceptability of a proposition to an agent is
characterised in terms of a combination of the agent’s beliefs about the world and their
attitude to admissible interpretations of vague predicates.

1 Introduction
The terminology of natural language is highly affected by vagueness. Except in spe-
cialised circumstances, there are no generally agreed criteria that precisely determine
the applicability of our conceptual vocabulary to describing the world. This presents a
considerable problem for the construction of a knowledge representation language that is
intended to articulate information of a similar kind to that conveyed by natural language
communication.

The fundamental idea of the supervaluationist account of vagueness, is that a lan-
guage containing vague predicates can be interpreted in many different ways, each of
which can be modelled in terms of a precise version of the language, which is referred
to as a precisification. If a classical semantics is used to give a denotational valuation
of expressions for each of these precise versions, the interpretation of the vague lan-
guage itself is given by a supervaluation, which is determined by the collection of these
classical valuations.

1Partial support of the Co-Friend project (FP7-ICT-214975, www.cofriend.net) and the EU Framework 7
is gratefully acknowledged. The paper has been enhanced by suggestions made in the detailed comments of
two anonymous reviewers.
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The view that vagueness can be analysed in terms of multiple senses was proposed
by Mehlberg [16], and a formal semantics based on a multiplicity of classical interpre-
tations was used by van Fraassen [18] to explain ‘the logic of presupposition’. It was
subsequently applied to the analysis of vagueness by Fine [8], and thereafter has been
one of the more popular approaches to the semantics of vagueness adopted by philoso-
phers and logicians. In the current paper we introduce a logic based on the essential idea
of supervaluation semantics, but different in several respects from previous systems.

A major strength of the supervaluation approach is that it enables the expressive and
inferential power of classical logic to be retained (albeit within the context somewhat
more elaborate semantics) despite the presence of vagueness. In particular, necessary
logical relationships among vague concepts can be specified using classical axioms and
definitions. These analytic interdependencies (referred to by Fine as penumbral connec-
tions) will be preserved, even though the criteria of correspondence between concepts
and the world are ill-defined and fluid.

Investigation of supervaluation semantics in the philosophical literature tends, as
one might expect, to be drawn towards subtle foundational questions, such as those
concerning the sorites paradox and second-order vagueness. By contrast, the purpose
of the current paper is to flesh out the details of a particular variant of supervaluation
semantics and to develop an expressive formal representation language that could be
employed within information processing applications.

The development of the supervaluation idea in the current paper also departs some-
what from that proposed by Fine. In Fine’s theory, precisifications vary in their level
of precision, so that one precisification may be a more precise version of another. This
gives rise to a partial order on precisifications. Fine then proposes a semantics that takes
account of this ordering and defines a notion of super-truth in terms of the precisification
structure as a whole: super-truth corresponds to truth at all maximally precise and admis-
sible precisifications (where ‘admissible’ means that a precisification is considered a rea-
sonable interpretation of the language and is taken as a primitive notion). Moreover, Fine
suggests that ‘truth’ in a vague language may be identified with this notion of super-truth.

By contrast, in the current paper, we take each precisification to be a maximally
precise version of the language. And we consider truth primarily as a property of propo-
sitions that is relative to a particular precisification, rather than determined by the whole
set of possible precisifications. However, we will also introduce the notion of a propo-
sition holding relative to a standpoint, which is associated with a set of precisifications
considered acceptable by some agent. Formally, this notion is somewhat akin to ‘super-
truth’, except that instead of assuming a fixed set of admissible precisifications, we
consider the set of admissible precisifications to be determined relative to a particular
agent in a particular situation.

Like supervaluation semantics, standpoint semantics may be regarded as a rival to
the fuzzy logic approach to semantic indeterminacy [19]. Whereas fuzzy logic explores
this indeterminacy in terms of degrees of truth and non-classical truth functions, stand-
point semantics focuses on truth conditions rather than truth values, and employs a no-
tion of truth that is close to the classical view, although relativised to account for a va-
riety of possible interpretations. Nevertheless, we believe that strong correspondences
between standpoint semantics and fuzzy logic can be established. By introducing a
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probability distribution over the space of precisifications, degrees of acceptability can
be introduced, and it can be shown that the acceptability of vague conjunctions is gov-
erned by certain of the T -norms commonly used in fuzzy logic. Results in this area are
beyond the scope of the present work, where we focus on the core model theory and
employ a much simpler model of an agent’s attitude to precisifications.

The formalism developed in the current paper takes ideas from previous theories
proposed by Bennett [2, 4] and Halpern [9] and elaborates material presented in [5].
Halpern’s paper analyses vagueness in terms of the subjective reports of multiple agents,
but these play a similar role in his semantics to precisifications in the semantics proposed
in this paper. Our approach also has some commonality with that of [13] and [14].

In [4] the semantics of vague adjectives is characterised in terms of their depen-
dence on relevant objective observables (e.g. ‘tall’ is dependent on ‘height’). One of the
primary aims of the current paper is to provide a rigorous foundation for the notion of
precisification, in which the interpretation associated with a precisification is explicitly
defined in terms of choices made in imposing distinctions with regard to continuously
varying properties manifest in possible states of the world. Bennett [2] proposed a two-
dimensional model theory, in which the interpretations of propositions are indexed both
by precisifications and possible worlds. Whereas a somewhat ad hoc relation of rel-
evance between between vague predicates and observables was introduced in [4], the
current paper makes a much more specific connection, in which thresholds occur explic-
itly in definitions of vague predicates. A concrete example of the use of this approach in
an implemented computer system for processing geographic information can be found
in [17] and [6].

The structure of the paper is as follows: in the next section we give an overview of
the formal theory that will be developed, and consider some examples illustrating differ-
ent kinds of vagueness. In Section 3 we specify a formal language that makes explicit
the structure of both possible worlds and precisifications in terms of possible values
of observable measurements. Section 5 gives a formal model of an agent’s standpoint
with respect to possible worlds that the agent considers plausible and precisifications
that the agent considers admissible. We end with a consideration of further work and
conclusions.

2 Preliminaries
Before getting into the details of our formal language and its semantics, we first clarify
some aspects of our approach.

2.1 Comparison classes
To avoid confusion we briefly consider a phenomenon that is often associated with
vagueness but will not be considered in the current paper. This is the relativity of the
interpretation of vague adjectives to a given comparison class. For instance, when de-
scribing an object or creature as tall, we make a judgement based on the height of that
object or creature. But in judging that a woman is tall we employ a different threshold of
tallness from when describing a giraffe as tall. As in this example, the relevant compar-
ison class is often determined by the count noun used to refer to the object, but it may
sometimes be determined by the particular set of objects present in a given situation.
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However, comparison class relativity is a side-issue that is not essential to vagueness
itself. Even if we restrict attention to a definite class of individuals (say, adult males in
Belgium) the adjective ‘tall’ is still vague. Similar remarks could be made about more
general issues of context variability of the interpretation of terminology. If required, an
explicit model of comparison class dependency of vague adjectives (perhaps similar to
that given in [4]) could be incorporated into an extended version of our theory.

2.2 Distinguishing conceptual and sorites vagueness
An important feature of the proposed theory is that it makes a clear distinction between
two forms of vagueness.

One type of vagueness arises where there is ambiguity with regard to which at-
tributes or conditions are essential to the meaning of a given term, so that it is controver-
sial how it should be defined. We call this conceptual vagueness (or ‘deep ambiguity’).
A good example of conceptual vagueness is the concept of murder. Although in most
cases there will be general agreement as to whether a given act constitutes murder, the
precise definition is subtle and controversial. Judicial systems vary as to the stipulations
they make to characterise the crime of murder. Thus one may debate whether murder
requires malice or intent, whether the murderer must be sane, whether the victim must
be unwilling etc. Moreover, even where conditions are stipulated in great detail, cases
may arise that defy simple judgement.

A somewhat different kind of vagueness occurs when the criteria for applicability of
a term depend on placing a threshold on the required magnitude of one or more variable
attributes. For instance, we may agree that the appropriateness of ascribing the predicate
‘tall’ to an individual depends on the height of that individual, but there is no definite
height threshold that determines when the predicate is applicable. We refer to this as
sorites vagueness, since the essence of the sorites paradox is the indeterminacy in the
number of grains required to make a heap.

So to summarise: in the case of conceptual vagueness there is indeterminism re-
garding which property or logical combination of properties is relevant to determining
whether a concept is applicable, whereas with sorites vagueness the relevant properties
are clear, but the degree to which these properties must be present is indefinite.2

2.2.1 Combined modes of vagueness
It should be emphasised that the two kinds of vagueness I have identified are not ex-
clusive—a single word or phrase may be, and often is, imbued with both conceptual and
sorites vagueness.

For example, [11] considers the conditions under which one might describe a person
as ‘clever’. Here it is not clear what parameter or parameters are relevant to the attri-
bution of cleverness. As Kamp suggests, quick wittedness and problem solving ability
are both indications of cleverness, although one person might be considered more quick
witted that another and yet less capable of problem solving.

Even the adjective ‘tall’, which is almost a paradigm case of sorites vagueness,
is also to some extent affected by conceptual vagueness. This is because there is no
universally agreed specification of exactly how a person’s height should be measured.

2This distinction was identified and analysed in [3], but no formal semantics was presented.
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Perhaps we can agree that shoes should not count towards height and that hair should
also be excluded; but what about a wart on the top of a person’s head? What if a person
stretches their neck or hunches their shoulders? Of course such factors rarely impinge
on actual uses of the word ‘tall’, and if we really wanted an objective measure of height
we could legislate that a particular measurement regime be used. Nevertheless, the very
fact that one might need to carry out such legislation in order to get a reliable objective
measurement of tallness, demonstrates that the natural language adjective ‘tall’ is subject
to conceptual ambiguity.

The adjective ‘bald’ and the count noun ‘heap’, which are also ubiquitous in dis-
cussions of the sorites paradox clearly suffer from considerable conceptual ambiguity as
well as threshold indeterminacy. Baldness is not only judged by the number of hairs on
a head, but also where they are located—it is a matter of coverage, not only numerical
quantity. Likewise, a heap is not just any collection of grains. Intuitively, heap-hood
requires particular structural properties; but the exact nature of these is difficult to pin
down.

Despite their close connection, there are significant differences in the type of seman-
tic variability involved in the two kinds of vagueness—to reiterate: conceptual vague-
ness is indeterminacy in the attribute or combination of attributes that must be present,
whereas sorites vagueness is indeterminacy in the degree to which a continuously vary-
ing attribute (or attributes) must be present. Hence, we believe that a semantics for vague
languages is most clearly specified by separating the two modes.

2.3 Predication, observables and thresholds
Our semantics explicitly models the applicability of vague predicates in terms of thresh-
olds applied to relevant observable measurements. In the simplest case we assume that
our judgement of whether a predicate φ applies to object x depends only on the value
of a single measurement f (x)—the higher the value of f (x), the more we are inclined
to judge that φ(x) is true. Let τ(φ) denote some reasonable threshold that we might set
for the applicability of φ . Then φ(x) is judged to be true if f (x) is greater than τ(φ) and
false if f (x) is less than τ(φ).

The case where we have f (x) = τ(φ) presents a technical issue, in that there is
no obvious basis to decide between assigning truth or falsity. This will be avoided by
restricting the semantics so that a threshold value may not have the same value as any
observable function.

2.4 Relating precisifications to cognitive attitudes
As well as relating precisifications to states of the world, we also model their relation-
ship to the cognitive states of agents. We give an account of an agent’s attitude to vague
propositions in terms of a formalised notion of standpoint, which describes the agents
belief state as well as the range of interpretations of vague terminology that they con-
sider admissible. A standpoint will be modelled by a structure 〈B,A,Ψ〉, where: B is
the set of possible worlds compatible with the agent’s beliefs; A is the set of precisifica-
tions that are acceptable to the agent; and Ψ is a set of definitional theories that specify
different ways in which the meaning of vague predicates can be represented in terms of
some logical combination of threshold constraints. Hence, A models an agent’s stand-
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point with respect to sorites vagueness, while Ψ models the standpoint in relation to
conceptual vagueness.

As is usual in supervaluation-based approaches, we assume that when describing a
particular situation or appraising a given set of propositions, a language user employs
a choice of thresholds that is consistent across usages of all concepts. Thus, where
two or more concepts have some semantic inter-dependence, this will be maintained by
consistent usage of thresholds. For example ‘tall’ and ‘short’ are (in a particular context)
mutually exclusive and are dependent on the objective observable of height. Thus the
height threshold above which a person to be considered ‘tall’ must be greater than the
height threshold below which a person is considered ’short’. However, we do not assume
that an agent’s point of view is determined by a single precisification but rather by a set
of accepted thresholds (or, as in our further work, by a probability distribution over the
set of all precisifications).

3 A language of precise observables and vague predicates
In this section we define a general-purpose formal language that (despite bearing only a
coarse correspondence to the structure and meaning of natural language) is intended to
exhibit some fundamental principles that govern the phenomenon of vagueness.

A key idea underlying the construction of this formalism is that the language should
contain two types of vocabulary:

• A precise vocabulary for describing the results of precise objective measurements
of the state of the world.

• A vague vocabulary which is defined in terms of the precise vocabulary, relative
to a valuation of certain threshold parameters, which may occur in the definitions.

3.1 Measurement structures
At the base of the semantics is a structure that represents the state of a possible world in
terms of a valuation of measurement functions, which specify the results of observations
applied to the entities of some domain.3

An n-ary measurement function over domain D is a function µ : Dn→Q, withQ be-
ing the set of rational numbers. Thus, QDn

is the set of all n-ary measurement functions
and

⋃
n∈NQDn

is the set of all measurement functions of any arity (with domain D).
A measurement structure is a tuple 〈D,M,νM,w〉, where:

• D is a domain of entities;

• M = {. . . , fi, . . .} is a set of measurement function symbols;

• νM : M→ N, is a mapping from the symbols in M to the natural numbers, giving
the arity of each function;

• w : M→
⋃

n∈NQDn
, such that if νM( f ) = m then w( f ) ∈QDm

, is a function map-
ping each n-ary function symbol to a measurement function from Dn to Q.

3Credit is given to one of the anonymous reviewers for suggestions leading to a more precise formulation
of measurement structures than had been given in the originally submitted version of this paper.
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Since each assignment function w characterises the domain and function symbols,
as well as determining a valuation of the measurement functions over the domain, we
regard each w as representing a possible world. A possible world in this sense is an arbi-
trary valuation of the function symbols over the domain. The valuation need not respect
physical laws with regard to possible combinations of measurable values, so, in so far
as the observable functions are intended to correspond to actual kinds of measurements,
such worlds could be physically impossible.

Given a domain D, a set of measurement function symbols M, and an arity specifi-
cation function νM , the set of worlds that can be specified in terms of these elements can
be defined by:

Worlds(D,M,νM) = {w | 〈D,M,νM,w〉 is a measurement structure} .

This definition assumes that we have the same set of entities present in every possi-
ble world—i.e. we have constant domains. There are strong arguments that this condi-
tion is unrealistic for a domain of real physical objects. However, this issue is complex
and tangential to the main concerns of this paper, and will not be addressed here.

A measurement frame is a structure that specifies all possible worlds determined by
a given measurement structure:

〈D,M,νM,W 〉 ,

where W = Worlds(D,M,νM).

3.2 A language of measurements and thresholds
Let us now consider the definition of a predicative language that can be interpreted
relative to a measurement structure.

Let L (M,νM,T,V ) be the set of formulae of a first-order logical language4 whose
non-logical symbols consist of: a finite set of measurement function symbols M =
{ f1, . . . , fk}, a finite set, T = {t1, . . . tl}, of threshold parameter symbols, strict and non-
strict inequality relations (< and ≤), and a denumerable set V = {. . . ,xi, . . .} of variable
symbols. Every atomic formula of L (M,νM,T,V ) takes one of the forms:

A1. f j(x1, . . . ,xn)≤ fk(y1, . . . ,ym)

A2. ti ≤ t j

A3. ti < f j(x1, . . . ,xn)

A4. f j(x1, . . . ,xn)< ti

where n = νM( f j) and m = νM( fk). Nested measurement functions are not allowed,
since they operate on entities and their values are real numbers. Complex formulae are
formed from atomic formulae by means of the standard truth-functional connectives and
quantifiers over the variables (but not over the threshold parameters). L (M,νM,T,V )
includes formulae with free variables.

4In fact, this account does not depend on the specific details the language. I choose standard first-order
logic for definiteness, but there could be reasons to use a more expressive language.
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A realistic theory of observable measurements would model the fact that only certain
measurements can be usefully compared. This could be achieved by classifying the
observable functions into sorts according to the type of quantity that they designate
and then restricting the syntax so that only observable values of the same type can be
compared by means of the≤ relation, thus restricting the syntax of atoms of the form A1.
If the observables correspond to the kinds of measurement used in Newtonian physics,
then the sorts of observable measurement could be classified in terms the fundamental
dimensions of length (L), time (T ) and mass (M), and also combinations of these basic
dimensions formed by products and reciprocals (for example area has type L×L and
velocity has type L/T ). But the classification and comparability of measurement types
is tangential to our primary aim of formalising modes of vagueness; so, for present
purposes, we make the simplifying assumption that all measurements are comparable.

Although the syntactic specification of our language L (M,νM,T,V ) allows arbi-
trary logical combinations of atoms, the different forms of atoms express different kinds
of information, which one would not normally mix within the same proposition. In ap-
plying the language to formalising the semantics and use of particular observables, one
would typically employ formulae of the following forms, which are homogeneous with
respect to the kinds of atoms they contain:

Constraints on observables Formulae containing only atoms of the form A1 (i.e. those
that do not contain threshold parameters) can be regarded as expressing constraints on
the physical structure of the world. However, the language considered here is too lim-
ited to express a fully-fledged physical theory. To specify such a theory we would need
operators designating mathematical functions that govern the relationships between ob-
servables (for instance ∀x[density(x) = mass(x)/volume(x)]). This would require the
language to be extended with an appropriate vocabulary of mathematical functions to
operate upon and combine values of the observables.

Threshold constraints Formulae of the form A2 express ordering constraints between
thresholds. A typical example would be t short≤ t tall, stating that the threshold below
which an individual is considered short is less than the threshold above which and in-
dividual is considered tall. Atoms of the form A2 will not normally occur within more
complex formulae. In applying our representation to describing the semantics of vague
predicates, we have found many cases where it seems appropriate that a strict ordering
be imposed between two different but related thresholds. In certain cases more complex
ordering constraints may be required (such as in the specification for the colour purple,
given below in Section 4).

Judgements A third class comprises those formulae containing atoms of forms A3
and A4, by which the value of an observable measurement function is compared to a
threshold parameter. These are perhaps the most significant type of formulae in the
language as they play a crucial role in our account of vagueness. Simple examples
include t tall < height(x) and weight(x) < t heavy. These express judgements that a
given measurable property of an object lies above or below a given threshold. In the
next section we shall see how these thresholds are linked to vague predicates.
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3.3 Predicate definitions
Each formula of L (M,νM,T,V ) defines a predicate of arity n, where n is the number of
free variables in the formula. Hence, we can extend L by defining new predicate symbols
by means of formulae of the form

PG. ∀x1, . . . ,xn[R(x1, . . . ,xn)↔ Φ(t1, . . . , tm,x1, . . . ,xn)] ,

where Φ(t1, . . . , tm,x1, . . . ,xn) is any formula in L (M,νM,T,V ) incorporating parame-
ters t1, . . . , tm and with free variables x1, . . . ,xn.

For instance, ∀x[Tall(x)↔ (t tall ≤ height(x))] is a typical example of a predicate
defined in this way. Here, height is a measurement function and t tall is a threshold
parameter. An informal interpretation of this formula is that an entity is tall just in case
its height is greater than or equal to the value of the parameter t tall.

3.4 An extended language including defined predicates
The language L (M,νM,T,V ) of measurements and thresholds will serve as a basis for
an extended language incorporating symbols for vague predicates.

Let L (M,νM,T,V,R,νR,N) be the language obtained by supplementing the vocab-
ulary of L (M,νM,T,V ) with a set of predicate symbols R, such that the arity of each
symbol is given by the function νR : R→N and a set of constant symbols N (which will
denote objects of the domain). The set of atomic formulae is extended to include those
of the form

A5. Ri(α1, . . . ,αn),

where each αi ∈ (V ∪N). The complete set of formulae of L (M,νM,T,V,R,νR,N) in-
cludes all formulae constructed from this extended set of atomic formulae by application
of Boolean connectives and quantification over variables in V .

3.5 Predicate grounding theories
Given a language L (M,νM,T,V,R,νR,N), a predicate grounding theory for this lan-
guage is a set of formulae of the form PG, containing one formula for each relation
Ri ∈ R. Thus, the predicate grounding theory defines every relation in R in terms of a
formula of the sub-language L (M,νM,T,V ).

Let Θ be the set of all predicate grounding theories for L (M,νM,T,V,R,νR,N).
Since each of these grounding theories includes a definition of every predicate in the
language, we can define a function,

Def : Θ×R→L (M,νM,T,V ) ,

such that Def(θ ,R) is a formula with νR(R) free variables, which gives a possible defi-
nition of the relation R.

3.6 Parameterised precisification models
We now define a model structure to provide a semantics for L (M,νM,T,V, R,νR,N).
The model incorporates a measurement frame together with mappings from the language



270 Brandon Bennett

symbols onto elements of the frame. Specifically, a parameterised precisification model
is a structure

M= 〈M ,R,νR,N,V,T,Θ,κ,ξ ,P〉 ,

where

• M = 〈D,M,νM,W 〉 is a measurement frame;

• R is a set of predicate symbols;

• νR : R→ N gives the arity of each predicate symbol;

• N is a set {. . . ,ni, . . .} of nominal constants;

• V is a set {. . . ,xi, . . .} of variable symbols;

• T is a finite set {. . . , ti, . . .} of threshold parameter symbols;

• Θ = {. . . ,θi, . . .}, where each θi is a predicate grounding theory for the language;

• κ : N→ D maps nominal constants to entities of the domain;

• ξ : V → D maps variable symbols to entities of the domain;

• P = {p | p : T → (R\Q)}, is the set of all mappings from threshold parameters to
irrational numbers. (P is the set of precisifications.)

The assignment of irrational numbers to threshold parameters is primarily a tech-
nical means to ensure that every observable value is either greater or smaller than any
threshold parameter. However, it can be motivated by regarding the values of thresholds
as cuts (in roughly the same sense as in Dedekind cut) between two sets of rational num-
bers, where all values in one set are strictly lower than all values in the other set. (On the
other hand, it may be preferable to specify the domains of observables and thresholds as
constituting disjoint sub-domains of the rationals.)

3.7 Interpretation function
The semantic interpretation function, [[χ]]w,p,θM , gives the denotation of any formula or
term χ of the language relative to a given model M, a possible world w ∈W , a predi-
cate grounding theory θ ∈ Θ and a precisification p ∈ P. The θ index models semantic
indeterminacy arising from conceptual vagueness, whereas the p index models indeter-
minacy due to sorites vagueness.

To specify the interpretation function, the following auxiliary notations will be used:

• M
x∼M′ means that models M and M′ are identical except for their variable

assignment functions ξ and ξ ′. And moreover, these assignment functions are
identical, except that they may differ in the value assigned to the variable x.

• Subst([x1⇒ α1, . . . ,xn⇒ αn],φ) refers to the formula resulting from φ after re-
placing each variable xi by αi.
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The interpretation function can now be specified. The Boolean connectives and
quantifier have their standard classical interpretation:

• [[¬φ ]]w,p,θM = t if [[φ ]]w,p,θM = f, otherwise = f ;

• [[φ ∧ ψ]]w,p,θM = t if [[φ ]]w,p,θM = t and [[ψ]]w,p,θM = t, otherwise = f ;

• [[∀x[ψ]]]w,p,θM = t if [[ψ]]w,p,θM′ for all M′ such that M x∼M′, otherwise = f.

The inequality relations are interpreted as follows, where γi and γ j may each be either a
threshold parameter or a measurement function term:

• [[γi ≤ γ j]]
w,p,θ
M = t if [[γi]]

w,p,θ
M is less than or equal to [[γ j]]

w,p,θ
M , otherwise = f ;

• [[γi < γ j]]
w,p,θ
M = t if [[γi]]

w,p,θ
M is strictly less than [[γ j]]

w,p,θ
M , otherwise = f.

The value of measurement functions depends on the possible world in which the mea-
surement is made; and hence, their interpretation depends on the w index:

• [[ f (α1, . . . ,αn)]]
w,p,θ
M = w( f )(〈δ (α1), . . . ,δ (αn)〉),

where δ (α) = κ(α) if α ∈ N and δ (α) = ξ (α) if α ∈V .

Interpretation of the threshold parameters depends on the precisification index, p:

• [[t]]w,p,θM = p(t) ;

Finally, the interpretation of the defined predicate and relation symbols is dependent
upon the grounding theory θ :

• [[R(α1, . . . ,αn)]]
w,p,θ
M = [[Subst([x1⇒ α1, . . . ,xn⇒ αn],Def(θ ,R))]]w,p,θM .

On the basis of the interpretation function, a semantic satisfaction relation can be
defined by

M,〈w, p,θ〉  φ iff [[φ ]]w,p,θM = t .

This says that formula φ is true in model M, at world w and precisification p, with
respect to predicate grounding theory θ .

The interpretation set of a proposition relative to a model M is given by:

[[φ ]]M = {〈w, p,θ〉 | (M,〈w, p,θ〉  φ)}.

This is the set of world/precisification/grounding theory triples for which formula φ is
evaluated as true.

We have now established the main result of this paper: we have defined a first-order
language with a semantics that gives a special status to observable measurements and
threshold parameters. The interpretation function for this language is such that each val-
uation of observable measurements corresponds to a possible world, and each valuation
of threshold parameters corresponds to a precisification. In terms of this semantics, each
propositional formula is interpreted as the set of possible world/precisification/grounding
theory triples at which the proposition is considered to be true.
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4 Penumbral connections
A major selling point of supervaluation-based accounts of vagueness is that they provide
a framework within which one can model dependencies among vague predicates—i.e.
penumbral connections. To use an example of Fine, there is a vague borderline demar-
cating the applicability of the terms ‘pink’ and ‘red’ but the terms are exclusive in that
one would not normally describe an object as both pink and red. A primary motivation
for the development of standpoint semantics was to refine and make more explicit the
nature of such interdependencies.

The phenomenon of penumbral connection is of course controversial and is one
of the key points of contention between supervaluationist approaches and fuzzy logics.
Fuzzy logicians tend to the view that an object can be both pink and red to some de-
gree, and consequently a proposition of the form (Pink(x) ∧ Red(x)) may also be true
to some degree. By contrast, a supervaluationist would say that an object may be pink
according to one precisification and red according to another but there is no precisifi-
cation according to which the object is both pink and red, and hence the proposition
(Pink(x) ∧ Red(x)) must be false (indeed super-false). In the present account, we lean
more towards the supervaluationist account, although we do have leeway to accom-
modate some facets of the fuzzy viewpoint. Since our interpretation function evaluates
propositions with respect to a predicate grounding theory (as well as a precisification) we
may weaken dependencies between predicates by allowing that some grounding theories
do not enforce them. But in the present paper we do not consider this possibility in detail.

Within the language L (M,νM,T,V,R,νR,N), penumbral connections are made ex-
plicit by predicate grounding definitions, and also by specifying ordering constraints
between threshold parameters. We conjecture that this approach, is adequate to describe
most, if not all, dependencies between vague predicates. In the case of predicates ‘tall’
and ‘short’, which have provided most of our examples, so far, their penumbral connect-
ion is straightforwardly represented by the definitions ∀x[Tall(x)↔ (t tall≤ height(x))]
and ∀x[Short(x)↔ (height(x)≤ t short)] and the threshold constraint t short < t tall.

As a more tricky example, we consider the vague colour terms red, orange, pink and
peach. We may describe this four-fold categorisation in terms of divisions based on two
threshold parameters, one concerning the observed hue of an object and the other con-
cerning the saturation of the object’s observed colour (low saturation being characteris-
tic of pastel colours such as pink and peach). However, a problem arises concerning the
hue of a colour. Hue is normally measured in terms of a cyclical scale which runs from
red, through the rainbow to violet and then back to red. This measure corresponds well
with our perceptual experience of colour, in that we perceive colours as if they form a
circle in which there is a continuous transition from blue through violet to red. In order to
circumvent this we can adopt a measurement of hue which forms a linear scale based on
the physical frequency spectrum of light. Thus, hue(x) would give the value correspond-
ing to the frequency within the visible spectrum that is most strongly reflected by object
x. Using this measurement of hue, the colour predicates may be defined as follows:

Red(x)↔ ( (hue(x)< t red-orange) ∧ (t pastel < saturation(x)) )

Orange(x)↔ ( (t red-orrange < hue(x)) ∧ (hue(x)< t orange-yellow)

∧ (t pastel < saturation(x)) )
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Pink(x)↔ ( (hue(x)< t red-orange) ∧ (saturation(x)< t pastel)) )

Peach(x)↔ ( (t red-orange < hue(x)) ∧ (hue(x)< t orrange-yellow)

∧ (saturation(x)< t pastel) )

And the threshold constraint (t red-orange < t orange-yellow) should also be specified.
This analysis faces a further complication if we consider a colour such as purple,

where the boundary between a purple hue and a red hue could be interpreted as lying
either near the high end of the scale or at the low end of the scale (if some reddish hues
are regarded as purple). To account for this we must allow that the blue-purple threshold
boundary can be either lower or higher than the purple-red boundary. In the first case
the hue of a purple object must lie both above the blue-purple threshold and below the
purple-red threshold. But in the second case (where the range of purples is regarded
as wrapping round from the high end to the low end of the hue scale) an object will
count as purple if its hue is either higher than the blue-purple threshold or lower than
the purple-red threshold. Thus, we would get the following grounding definition (with
no additional constraint on the ordering of t blue-purple and t purple-red):

Purple(x)↔ ( ( (t blue-purple < t purple-red) ∧
(t blue-purple < hue(x)) ∧ (hue(x)< t purple-red) )

∨
( (t purple-red < t blue-purple) ∧
((t blue-purple < hue(x)) ∨ (hue(x)< t purple-red))

) )

∧ (t pastel < saturation(x))

5 Standpoints and proposition evaluation
In order to take account of an agent’s comprehension of propositional information, we
need to relate the agent’s cognitive state to our formal semantics of propositions, which
gives the meaning of a proposition in terms of an interpretation set. Two aspects of the
cognitive state are clearly relevant: what the agent believes about the state of the world,
and what the agent regards as an acceptable usage of terminology (especially vague
predicates). Whether the agent considers a proposition to be true will depend on both
these aspects.

Beliefs may be modelled either syntactically in terms of formulae expressing facts
and theories that an agent regards as true, or semantically in terms of possible states
of the world that an agent considers plausible. In the framework of classical logic,
where each predicate has a definite meaning, the two perspectives are tightly linked,
since any set of formulae determines a fixed set of possible worlds that satisfy that set.
But if propositions can vary in meaning, according to different interpretations of vague
predicates, the correspondence is more fluid: different interpretations will be true in
different sets of possible worlds. Thus, in order to separate an agent’s beliefs about
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the world from their attitude to linguistic meanings, the beliefs must be modelled in a
way that is not affected by linguistic variability. Hence, our model of belief is primarily
based on sets of plausible possible worlds rather than theories. Of course the structure
of a possible world will still be determined relative to a formal language, but this will be
the limited language of observable measurement functions, which contains no predicates
other than precise ordering relations.

In accordance with the interpretation function, [[χ]]w,p,θM , specified above, the agent’s
attitude to the meanings of vocabulary terms is modelled in terms of both the predicate
grounding definitions and the choices of threshold values that the agent considers to be
acceptable.

5.1 A formal model of a standpoint
We represent an agent’s attitude by a structure that we call a standpoint, which characte-
rises the range of possible worlds and linguistic interpretations that are plausible/accept-
able to the agent. Formally, a standpoint is modelled by a tuple,

〈B,A,Ψ〉 ,
where:

• B⊆W is the agent’s belief set—i.e. the set of possible worlds that are compatible
with the agent’s beliefs,

• A⊆ P is the agent’s admissibility set—i.e. the set of precisifications that the agent
considers to make reasonable assignments to all threshold parameters, and hence
to be admissible,

• Ψ⊆Θ is a set of predicate grounding theories that characterises all possible defi-
nitions of ambiguous predicates that the agent regards as acceptable.

In this model, the belief state of an agent is characterised in purely de re fashion—
that is in terms of states of the world rather than in terms of linguistic propositional
expressions that are accepted as true. This belief model (due to Hintikka [10]) is rela-
tively simple and clear, although may be criticised on the grounds that it treats agents as
logically omniscient—they always believe all logical consequences of their beliefs. In
further development it might be useful to introduce a richer belief theory within which
one can distinguish an agent’s de re beliefs, from explicit propositional belief (along the
lines of [7]).

In order that A adequately models the set of precisifications that are acceptable to an
agent, we may want to place restrictions on which subsets of P are regarded as legitimate
admissibility sets. One plausible requirement is that the set of acceptable values that
could be assigned to any given threshold parameter ought to lie in a range that is convex
with respect to the ordering relation on the value domain. In other words, the possible
values of a parameter include all intermediate values that lie between other possible
values. For example, if one sometimes uses language on the basis of a threshold for
tallness of 180 cm and at other times on the basis of 185 cm being the threshold, then one
may argue that 182 cm or 183 cm must also be reasonable threshold choices. Counter
to this, one might object that, in describing a particular state of the world involving
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specific individuals, it may be natural to divide tall from short individuals only at certain
points, because of the distribution of their heights—i.e. such a break is more natural if
it falls in a gap in the height distribution of the individuals under consideration. The
question of what conditions should be placed on A is a subject of ongoing work. But,
even without any further constraints, our semantics already captures significant aspects
of the interpretation of vague predicates.

The Ψ component of a standpoint allows one to model an agent’s ambivalence with
regard to the appropriate grounding definition for certain predicates. Thus, rather than
specifying each grounding theory θ ∈Ψ separately it would be more feasible to give a
range of possible definitions for each conceptually vague predicate (or group of inter-
dependent group of predicates). An acceptable grounding theory then corresponds to a
selection for each predicate of a particular definition from a set of possible alternatives.

5.2 Truth with respect to a standpoint
For any given model M, we can now formally define the condition that a formula φ

holds with respect to a particular standpoint 〈B,A,Ψ〉. Specifically, we define:

• M,〈B,A,Ψ〉  φ iff (B×A×Ψ)⊆ [[φ ]]M.

So φ holds for a standpoint if it is true at all worlds in the belief set for all admissible
precisifications and all acceptable predicate grounding theories. In other words, the
agent considers that, for any reasonable interpretation of ambiguous predicates and all
choices of threshold parameters, φ is true in all possible worlds consistent with the
agent’s beliefs.

5.3 Weaker forms of assertion relative to a standpoint
Our standpoint semantics also enables us to specify a number of modal-like operators
by means of which we can describe more ambivalent and/or less confident attitudes that
an agent may have to a given proposition:

• M,〈B,A,Ψ〉  CouldSay(φ) iff (B×{p}×{θ})⊆ [[φ ]]M,
for some p ∈ A and some θ ∈Ψ.

• M,〈B,A,Ψ〉  CouldBe(φ) iff ({w}×A×Ψ)⊆ [[φ ]]M, for some w ∈ B.

• M,〈B,A,Ψ〉  CouldBeSay(φ) iff 〈w, p,θ〉 ∈ [[φ ]]M,
for some w ∈ B, p ∈ A and θ ∈Ψ.

CouldSay(φ) asserts that for all worlds in the agent’s belief set, φ is true in some
admissible precisification for some acceptable grounding theory. This operator is used
to characterise an assertion made in a context where an agent is fully confident that
their beliefs relevant to φ are correct, but is unsure about the choice of words used to
express φ . By contrast, CouldBe(φ) means that, for all reasonable interpretations of
predicate definitions and thresholds, there is some world compatible with the agent’s
beliefs where φ is true. In this case the interpretation of the words used to express φ is
taken to be uncontroversial, but the state of reality, which would determine whether φ

is true, is uncertain. Finally, CouldBeSay(φ) indicates that there is some combination
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of acceptable predicate definitions, threshold choices and a world state compatible with
the agent’s beliefs, according to which φ would be interpreted as true.

This distinction between the operators CouldBe and CouldSay is closely related to
distinctions made by J.L. Austin [1], in his analysis of different ways in which the sense
of a predicate may be related to the properties of an object to which it is applied. He
introduced the idea of the onus of match between the sense of a word and the corre-
sponding property of the object, and suggested that in some speech situations one is
clear about the meaning of the word but unsure whether the object possesses the ap-
propriate property, whereas in others one is clear about the properties of the object but
unsure about whether the word adequately describes the object.

A number of other modalities could be defined. In the specifications for CouldSay(φ)
and CouldBeSay(φ), the indices giving the precisification p and grounding theory θ are
both allowed to vary (independently). But we could, for instance, define a modality M
such that M(φ) is true iff (B×A×{θ})⊆ [[φ ]]M for some particular θ ∈Ψ—i.e. there
is some acceptable grounding theory, relative to which φ holds for every admissible pre-
cisification. Such a modality does not have an obvious informal interpretation, since
in ordinary language we tend to conflate conceptual and sorites variability within the
general phenomenon of vagueness; however, it may still provide an informative charac-
terisation of an agent’s attitude to a proposition.

6 Further work and conclusions
We have given an overview of a semantic framework within which various significant
aspects of vagueness can be articulated. Although the theory developed so far is already
quite complex, there are still many loose ends that would need to be tied up in order to
provide a solid foundation for representing and reasoning with information expressed
in terms of vague predicates. As such, the framework is intended to provide a plat-
form upon which more practical knowledge representation languages can be developed.
Such development would most likely involve both simplification of some parts of the
formalism and elaboration of others.

In the current work, the focus has been on semantics. Although the syntax of a
formal representation has been specified, nothing has been said about the proof theory
governing valid inference within this system. In fact, since the basic language is essen-
tially a variant of first-order logic, standard proof systems can be be applied. However,
if (as suggested in Section 5.3) the language is extended by modal operators to express
the ambivalent truth status of vague propositions, then additional inference rules will be
needed in order to take account of these operators. Investigation of the proof theory of
such extended languages is the subject of ongoing work.

An obvious major extension to the theory would be to add probability distributions
over the belief set and/or the set of admissible precisifications to model the relative
plausibility of different possible worlds and the relative acceptability of different pre-
cisifications. Indeed, work has already been carried out on such an extension. Initial
investigations seem to be fruitful and indicate that this approach may be fruitful as a
means to explain the famous sorites paradox and related phenomena.

Another interesting direction for further work would be to study the assimilation of
new information in terms of the transformation from an agent’s initial standpoint to a
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modified standpoint. Here the issue arises that when an agent receives information that
is incompatible with their current standpoint, they must choose whether to modify their
beliefs or to try to interpret the information from the point of view of a different stand-
point. This study could extend to more general aspects of the exchange of information
between two agents in the presence of vagueness. The notion of context is likely to be
relevant to such an investigation.

For practical applications it may be convenient to replace the somewhat elaborate
model theory we have given with a more standard first-order semantics. This would
require that the semantic indices (worlds and precisifications) were in some way in-
corporated into the object language. This could be achieved in a similar way to how
temporal logics are often treated within AI formalisms (e.g. by a Situation Calculus [15]
style formulation such as Holds(φ ,〈w, p,θ〉)).

In summary, this paper has outlined the structure of a formal semantics for interpret-
ing vague languages, that models both the definitional ambiguity of conceptual terms
and the variability of thresholds used to determine their applicability. The framework
characterises an explicit link between the thresholds governing predicate applicability
and observable properties of the world. This link provides a basis for detailed semantic
modelling of the modes of variability in the meanings of particular vague predicative
terms. It also enables specification of complex penumbral connections between related
terms. Additionally, the paper has suggested a model of the cognitive standpoint of an
intelligent agent incorporating both a belief state and an attitude towards the interpreta-
tion of vague terms.
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