The Vague Expression of Quantity

Stephanie Solt

Centre for General Linguistics (ZAS), Berlin

LoMoReVi 2009

September 14-17, 2009

Introduction

- Typical focus:
 - Vague adjectives: tall, expensive, thin, red, old, bald
 - Vague nouns: heap
 - ➤ <u>Dimensions</u>: height, cost, age, hue, etc.

Introduction

- Typical focus:
 - Vague adjectives: tall, expensive, thin, red, old, bald
 - Vague nouns: heap
 - **Dimensions**: size, cost, age, hue, etc.
- Today's focus:
 - Vagueness in the expression of quantity and amount
 - <u>Dimensions</u>: cardinality (number); volume/mass (additive dimensions)

Game Plan

- 1. Inherently vague quantity expressions:
 - Adjectives of quantity: many, few, much, little
- 2. Imprecise interpretations of precise quantity expressions
 - Round number effect (Krifka 2007)
- 3. Case study in vagueness in quantity
 - Most vs. more than half

1. Adjectives of Quantity

- (1) a. Many people I know like jazz
 - b. Few students came to the lecture
 - c. I don't have **much** money
 - d. There is **little** water in the bucket

Gradability

- (2) a. Fred drank **more/less** wine than Barney
 - b. Betty read the most/the fewest books
- (3) a. Fred drank too much wine
 - b. Barney drank **very little** wine
 - c. Betty read as many books as Wilma
 - d. I'm surprised Wilma read that few books

- Gradability
 - (2) a. Fred drank **more/less** wine than Barney
 - b. Betty read the most/the fewest books
 - (3) a. Fred drank **too much** wine
 - b. Barney drank **very little** wine
 - c. Betty read **as many** books **as** Wilma
 - d. I'm surprised Wilma read that few books
- Gap between positive and negative
 - (4) a. Many runners finished the race Both can be false
 - b. Few runners finished the race
 - (5) a. Fred is tall b. Fred is short Same

- Context sensitivity
 - (6) Many students came to the lecture
 - Situation 1: In-class lecture in advanced Semantics class
 - <u>Situation 2</u>: University-wide lecture by Bill Clinton
- Borderline cases
 - 1000 students coming to Clinton's lecture is many
 - 3 is not many
 - But what about 50? 100?

- Sorities Paradox
 - **a.** If 1000 students attend Clinton's lecture, that is many
 - **b.** If *n* students attending Clinton's lecture is many, then *n* 1 students attending Clinton's lecture is many
 - c. 3 students attending Clinton's lecture is many

- Compositional regulation of vagueness
 - For phrases
 - (7) a. Barney owns few books for a professor
 - b. Barney is tall for a jockey
 - Compared to phrases
 - (8) a. Fred owns few books compared to Barney
 - b. Fred is tall compared to Barney

1. Adjectives of Quantity Distinctions from 'Ordinary' Adjectives

Predicative use

(9) a. Fred is tall

- b. The fans were many
- (10) a. I consider Fred tall
- b. *I consider the fans many
- (11) a. Every boy is tall
- b. *Every fan is few

Differential use

- (12) a. Fred drank much/little more than Barney
 - b. *Fred is tall taller than Barney

1. Adjectives of Quantity Lexical Semantics

 Gradability modeled via scales S consisting of set of degrees d ordered by ordering relationship > (Cresswell 1977; Heim 2000; Kennedy 2007; a.o.)

1. Adjectives of Quantity Lexical Semantics

- Gradability modeled via scales S consisting of set of degrees d ordered by ordering relationship > (Cresswell 1977; Heim 2000; Kennedy 2007; a.o.)
- 'Ordinary' gradable adjectives: gradable predicates over individuals

```
(13) a. [[tall]] = \lambda d\lambda x.HEIGHT(x) \ge d
```

b. $[[short]] = \lambda d\lambda x.HEIGHT(x) \le d$

1. Adjectives of Quantity Lexical Semantics

- Gradability modeled via scales S consisting of set of degrees d ordered by ordering relationship > (Cresswell 1977; Heim 2000; Kennedy 2007; a.o.)
- 'Ordinary' gradable adjectives: gradable predicates over individuals

```
(13) a. [[tall]] = \lambda d\lambda x.HEIGHT(x) \ge d
b. [[short]] = \lambda d\lambda x.HEIGHT(x) \le d
```

 Adjectives of quantity: gradable predicates over scalar intervals

```
(14) a. [[many]] = \lambda d\lambda I.d \in I
b. [[few]] = \lambda d\lambda I.d \in INVERSE(I)
```

 Vague expressions interpreted with reference to comparison class (Klein 1980)

(15) Barney is tall for a jockey

'Barney's height exceeds the standard for jockeys'
'Barney is (considerably) taller than the average jockey'
'Barney is taller than most jockeys'


```
(16) [[Barney is tall for a jockey]] = 1 iff HEIGHT(Barney) > N_s,
              where N_S = \text{median}_{x:\text{iockev}(x)}(d:\text{HEIGHT}(x)=d) \pm
                             n \bullet MAD_{x:iockev(x)} (d:HEIGHT(x)=d)
(17) [[POS tall]] = \lambda x.HEIGHT(x) > N_s,
              where N_s = \text{median}_{x \in CC}(d: \text{HEIGHT}(x) = d) \pm
                              n \bullet MAD_{x \in CC}(d:HEIGHT(x)=d)
(18) [[POS]] = \lambda I.N_s \subset I
              where N_s = \text{meadian}_{x \in CC}(d: \text{HEIGHT}(x) = d) \pm d
                              n \bullet MAD_{x \in CC}(d:HEIGHT(x)=d)
```

(19) Barney owns few books for a professor 'Barney owns fewer books than most professors'

(20) [[(19)]] = 1 iff # of books owned by Barney < N_S ,

where N_S = median_{x:professor(x)}(d:x owns d-many books) \pm MAD_{x:professor(x)} (d:x owns d-many books)

A broader view of comparison classes:

- (21) a. Barney is tall for a jockey
 - CC = jockeys (subject of gradable expression ∈ CC)
 - b. Barney owns few books for a professor
 - CC = professors (subject of gradable expression ∉ CC)
 - c. For a Sunday, there are many cars in the lot
 - CC = Sundays (times t)
 - d. Few students came to the lecture
 - Compared to what I expected
 - CC = situations consistent with my expectations (worlds w)
 (cf. Fernando & Kamp 1996)

1. Adjectives of Quantity A Complication

- Cardinal vs. proportional readings (Partee 1989):
 - (22) Few Linguistics students are registered for Psychology of Language
 - Cardinal: a small <u>number</u> of Linguistics students
 - Proportional: a small <u>proportion</u> of the Ling. students

1. Adjectives of Quantity A Complication

- Cardinal vs. proportional readings (Partee 1989):
 - (22) Few Linguistics students are registered for Psychology of Language
 - Cardinal: a small <u>number</u> of Linguistics students
 - Proportional: a small <u>proportion</u> of the Ling. students
- Distinct:

...because there **are** few Linguistics students Cardinal

Grammatically determined:

(23) a. There are few Linguistics students Cardinal

b. Few of the Linguistics students are here Proportional

c. Few students I know like jazz Proportional

1. Adjectives of Quantity Cardinal vs. Proportional

- Proportional reading of Q-adjectives arises when domain of quantification is a topic/presupposed
- Consequence for scale structure: upper bound

Few Linguistics students are registered for Psychology of Language

1. Adjectives of Quantity Vagueness and the Proportional Reading

- Borderline cases remain:
 - (24) Many of the people in this room have blue eyes
 - How many out of 50?
- But context sensitivity reduced:
 - (25) a. Many of the dots on the screen are black
 - b. Few of the dots on the screen are black
 - (26) Few of the people in this room are right handed
 - Cf. Kennedy (2007): maximize contribution of conventional elements
 - Relative gradable adjective: tall (standard context dependent)
 - Absolute gradable adjective: full (standard = endpoint)

2. Round Number Effect

- RNRI Principle (Krifka 2007): Round number words in measuring contexts tend to have round interpretations:
 - (27) a. Forty students came to the party
 - b. Thirty-nine students came to the party
 - (28) a. We bought one hundred kilos of rice
 - b. We bought one hundred and three kilos of rice
 - (29) a. Mary waited for forty-five minutes
 - b. Mary waited for forty minutes
 - (30) a. The wheel turned on hundred and eight degrees
 - b. The wheel turned two hundred degrees

2. Round Number Effect

 Krifka (2007): The result of measuring can be reported with respect to various levels of granularity that differ in density of representation points

Number:

$$----35------40------45------50------\\ -34-35-36-37-38-39-40-41-42-43-44-45-46-47-48-49-50-51-52-$$

Time (minutes):

2. Round Number Effect

The Coarsest Scale Principle:

If a measure expression α occurs on scales that differ in granularity, then uttering α implicates that the most coarse-grained scale on which α occurs is used

—Derived via principles of strategic communication (Parikh 2001): if α is ambiguous between 2 meanings M and M', where M is much more likely than M', then speaker can use α to convey M

(31) a. forty₁₀ = [35,36,....40,... 43,44]
b. forty₁ = [40]
$$p([35,36,50,... 43,44]) > p([40])$$

2. Round Number Effect Language Effects?

 Decimal (e.g. English, German) vs. vigesimal (e.g. Basque) languages?

3. Most vs. More than Half

- Two proportional quantifiers with (superficially) equivalent semantics
 - (32) a. **Most** Americans support Obama's economic program
 - b. More than half of Americans support Obama's economic program

3. Most vs. More than Half

- Two proportional quantifiers with (superficially) equivalent semantics
 - (32) a. **Most** Americans support Obama's economic program
 - b. More than half of Americans support Obama's economic program
 - (33) [[most]] = [[more than half]] = $\lambda X \lambda Y \cdot |X \cap Y| > \frac{1}{2} |X|$
 - (32a,b) true iff # of Americans who support Obama's program > ½ total # Americans

3. *Most* vs. *More than Half* Distinct Interpretation

- Most > more than half
 - (34) Unfortunately, the long term maintenance of the reduced weight is poor, and more than half, if not most, of the persons eventually return to their former obese state
- More than half has sharp lower bound; most does not
 - (35) a. More than half of the U.S. population is female ✓
 - b. Most of the U.S. population is female

??

- The facts: female 50.7% vs. male 49.3% (U.S. Census Bureau 2008)

- Corpus of Contemporary American English (COCA)
 - 400+ million words (20 million/year for 1990-2009)
 - Spoken language
 - Fiction
 - Popular magazines
 - Newspapers
 - Academic texts

- Most > more than half
 - (36) a. The survey showed that **most students (81.5%)** do not use websites for math-related assignments (*Education*, 129(1), pp. 56-79, 2008)
 - b. More than half of respondents (55%) say that making money is more important now than it was five years ago (*Money*, 21(3), p. 72, 1992)

- Most + plural generic; more than half awkward in similar contexts
 - (37) a. **Most teens** want to fit in with their peers (CNN YourHealth, 31/8/2002)
 - b. ?? More than half of teens want to fit in with their peers
 - More than half + plural relatively rare:
 - (38) a. More than half of the doctoral degrees in engineering awarded by American universities each year go to foreigners. (Associated Press, 6/1/2007)
 - b. **More than half of all farmworkers** earn less than \$12,500 annually (*Ms*, 15(2), p. 40, 2005)

- More than half requires domain that can be individuated/counted
 - (39) a. But like **most things**, obesity is not spread equally across social classes (*Mens Health*, 23(7), p. 164, 2008)
 - b. ??But like more than half of things, obesity is not spread equally across social classes
- Most combines with vague predicates
 - (40) a. **Most of our employees** are, like me, ordinarily talented (Fortune, 157(13), p. 129, 2008)
 - b. ?? More than half of our employees are, like me, ordinarily talented

Summary of Corpus Data

- Most and more than half are used to express distinct ranges of proportions
- Most yields a generic interpretation in contexts where more than half is infelicitous or has a 'survey results' interpretation
- More than half (but not most) requires an enumerable domain and a precisely defined predicate
 - The semantics of *more than half* explicitly references counting/measurement; the semantics of *most* does not

Proposal

- The distributional and interpretative differences between most and more than half result from fundamentally different logical forms (cf. Hackl to appear)
- More than half expresses a comparison between numbers or proportions

```
(41) [[more than half]](F)(G) = 1 iff |F \cap G| / |F| > \frac{1}{2}
```

• Most expresses a comparison between sets

```
(42) [[most]](F)(G) = 1 iff F \cap G is larger than F - G
```

More than half

[[more than half]](F)(G) = 1 iff $|F \cap G| / |F| > \frac{1}{2}$

- Explicitly based on counting → sets must be countable
- The choice of *more than half* implies a scale with higher alternatives to *half*; *more than half* is restricted (by implicature) to values close to half

More than half

[[more than half]](F)(G) = 1 iff $|F \cap G| / |F| > \frac{1}{2}$

- Explicitly based on counting → sets must be countable
- The choice of *more than half* implies a scale with higher alternatives to *half*; *more than half* is restricted (by implicature) to values close to half

Most

[[most]](F)(G) = 1 iff $F \cap G$ is larger than F - G

- Does not explicitly encode degrees/proportions → 'larger' may be assessed via counting or a more approximate mode of comparison
 - Dehaene (1992): in addition to the capacity to represent precise numerosities, humans (and animals) possess a separate system for processing approximate quantities:
 - Involved in estimating and comparing quantities
 - Sensitive to differences in magnitude

Most

[[most]](F)(G) = 1 iff $F \cap G$ is larger than F - G

- Does not explicitly encode degrees/proportions → 'larger' may be assessed via counting or a more approximate mode of comparison
 - Dehaene (1992): in addition to the capacity to represent precise numerosities, humans (and animals) possess a separate system for processing approximate quantities:
 - Involved in estimating and comparing quantities
 - Sensitive to differences in magnitude
- Does not participate on a scale of proportion, but rather competes with expressions denoting relationships between sets
 - (43) *Some...many....most....all*
 - Inherently coarse-grained ; all as salient alternative

Degrees and Proportion

- Most → comparison of proportion without encoding degrees
- Parallel to vagueness more broadly?
 - (44) a. More than half of the students are female >50%
 - b. **Most** of the students are female >>50%
 - (45) a. Barney is taller than the average jockey Height(B) > Avg
 - b. Barney is **tall** for a jockey Height(B) >> Avg

Vagueness and Quantity Conclusions

- Role of comparison classes (broadly considered)
- Interpretive effect of scale structure
- Imprecision as granularity
- Vagueness without degrees?