object AnalyticInductionProver
- Alphabetic
- By Inheritance
- AnalyticInductionProver
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply(axioms: AxiomFactory, prover: ResolutionProver): AnalyticInductionProver
Creates a new analytic induction prover.
Creates a new analytic induction prover.
- axioms
The axiom factories used by the prover.
- prover
The internal prover that is to be used for proof search.
- returns
A new analytic induction prover that uses the provided objects for proof search.
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
singleInduction(sequent: Sequent[(String, Formula)], variable: Var)(implicit ctx: MutableContext): LKProof
Tries to prove the given sequent by using a single induction on the specified variable.
Tries to prove the given sequent by using a single induction on the specified variable.
- sequent
A sequent of the form
Γ, :- ∀x.A
- variable
An eigenvariable
α
for the sequentΓ, :- ∀x.A
- ctx
The context which defines the inductive types, etc.
- returns
If the sequent is provable with at most one induction on
α
then a proof which uses a single induction on the formulaA[x/α]
and variableα
is returned, otherwise the method does either not terminate or throws an exception.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
This is the API documentation for GAPT.
The main package is gapt.