
Verifying Textbook Proofs

Claus Zinn

�

Lehrstuhl f�ur K�unstliche Intelligenz

Universit�at Erlangen-N�urnberg

In the �rst half of the 1960s, Paul Abrahams implemented a Lisp program for the

machine veri�cation of mathematical proofs [1]. The program, named Proofchecker,

\was primarily directed towards the veri�cation of textbook proofs, i.e., proofs resembling

those that normally appear in mathematical textbooks and journals". Abrahams did not

succeed. If, so Abrahams, \a computer were to check a textbook proof verbatim, it would

require far more intelligence than is possible with the current state of the programming art".

Therefore, so Abrahams, \the user must create a rigorous, i.e., completely formalised,

proof that he believes represents the intent of the author of the textbook proof, and use the

computer to check this rigorous proof". Abrahams points further out that \it it a trivial

task to program a computer to check a rigorous proof; however, it it not a trivial task to

create such a proof from a textbook proof".

Abrahams was right. In all later projects, proofs had to be written in a formal lan-

guage in order to verify them. One well-known example is the the Automath project: van

Benthem-Jutting formalised a whole textbook of Landau, the `Grundlagen der Analysis',

into a formal language, aut-qe [8]. A second example is the Mizar project [5]: proofs have

to be written in the Mizar formalism to get them veri�ed.

The machine veri�cation of textbook proofs | without human interaction that translates

them into a formal language | has been tackled seriously �rst by Simon [6]. In the same

line is our work.

The automatic veri�cation of mathematical textbook proofs is a complex task. Think

about some problems a student might face when trying to understand a mathematical

argument: no proof outline is given; the reasoning is incomplete; lemmas necessary for the

understanding of the proof are omitted; several steps have been done at once etc. And,

of course, often it is the student that has not the required knowledge about the theory

behind the theorem to be proven and about common proof techniques.

Our goal is to implement a program for the machine veri�cation of textbook proofs.

This program reads textbook proofs and is able to communicate its knowledge about what

it has read. This proof understander is able to recognise the proof structure as well as obvi-

ous de�nitorial and logical dependencies. It answers questions about the proof accurately

and is capable to identify gaps or aws in the argumentation line. The proof system o�ers a

high-level analysis of the proof as well as a technical low-level access to details of the proof.

Of course, this is a text understanding task. The text, however, is of a very special

nature. Because textbook proofs are not written in some logic formalism but in a natural

�

IMMD-VIII, Am Weichselgarten 9, 91058 Erlangen, Germany, zinn@informatik.uni-erlangen.de

262



language, it is far more di�cult to parse them. Nevertheless, the expert language used

by mathematicians has several characteristics that seem to make this task feasible: its

poor vocabulary, the use of standard phrases and keywords that introduce and combine

simple sentences, the large use of terms and formulae for abbreviation etc. In addition,

the art of writing good mathematical texts focuses at clearness and conciseness and not

on an embellished style of expression. Albeit those characteristics, all kinds of linguistic

phenomena which can occur in other text-sorts, show also up in textbook proofs.

Next, textbook proofs are, in general, a highly structured form of discourse. Deriving

the discourse relations of a given textbook proof means reconstructing the logical struc-

ture of the proof: identifying assumptions and conclusions, the scope and quanti�cation

of variables, substructures which itself form subproofs etc.

Verifying textbook proofs faces thus three major problems: parsing, structuring and

verifying, all closely interconnected:

1. Parsing the textbook proof: proceeding incrementally, sentence by sentence. The

semantics of the current phrase is determined using the context that has been es-

tablished by having parsed the former sentences.

2. Recognising the proof structure: doing high-level proof analysis, structuring the

internal representation by attaching a proof plan to it. The resulting object, the

proof sketch, does not only reveal the proof structure but also logical dependencies

between parts of the structure. Proof gaps and minor aws, common in textbook

proofs, are detected and repaired.

3. Re�ning the proof sketch: bridging the large gap between a high-level proof to a

formal proof. The proof sketch is expanded into a formal proof by re�ning proof

plans to low-level inference steps.

Understanding textbook proofs involves the combination of techniques from both Nat-

ural Language Processing and Automated Reasoning. A theorem is always proven in some

mathematical theory obeying some proof plan. Often, the form of the theorem presupposes

possible proof plans and the concepts it contains often hint to de�nitions being used in

the proof. Naturally, during semantics construction, a text proof parser could exploit this

logical information employing an external automated theorem prover as a tool to verify

intermediate parse results. Does the parsing result of some sentence (i) is in contradiction

with some part of the formal theory under study, (ii) contributes something new to the

proof, (iii) �ts into the currently assumed proof plan?

We are writing a prototypical textbook proof reader to implement our ideas. A lin-

guistic analysis of mathematical texts, focusing on the treatment of terms and formulae,

is given in [9]. We propose a DRT-based semantics construction. We have implemented

(in Prolog) a su�ciently large lexicon and grammar such that the �rst proofs of [4] can

be parsed. Textbook proofs have been analysed in order to extract their proof plan by

hand. For computing structure automatically, we are interested how to identify segmen-

tal boundaries in the proof. These proof segments then serve as a local context for the

interpretation of referential expressions. The identi�cation and classi�cation of discourse

relations has been started using keywords, cue phrases and proof plans. The problem of

proof re�nement has not yet been tackled. The intermediate results of our system are very

encouraging.

263



References

[1] P. W. Abrahams. Machine veri�cation of mathematical proofs. PhD thesis, MIT, 1963.

[2] D. G. Bobrow. Natural language input for a computer problem solving system. PhD

thesis, MIT, 1964.

[3] A. Bundy, L. Byrd, and G. Luger. Solving mechanics problems using meta-level infer-

ence. In 6th. International Joint Conference on Arti�cial Intelligence, pages 1017{1027,

1979.

[4] G. Hardy and E. Wright. An introduction to the theory of numbers. Oxford at the

Clarendon Press, 4th. edition, 1971.

[5] P. Rudnicki. An overview of the MIZAR project. Technical report, Department of

Computer Science, University of Alberta, Edmonton, 1992.

[6] D. L. Simon. Checking natural language proofs. In 9th. International Conference on

Automated Deduction, volume 310 of Lecture Notes in Computer Science. Springer,

1988.

[7] D. Solow. How to read and do proofs. John Wiley & Sons, 1990.

[8] L.S. van Benthem Jutting. Checking Landau's "Grundlagen" in the Automath system.

PhD thesis, Technische Hogeschool Eindhoven, 1977.

[9] C. Zinn. A DRT-based approach for formula parsing in textbook proofs. In Third

International Workshop on Computational Semantics (IWCS-3), Tilburg, 1999. To

appear.

264


