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1 Introduction and Notation

Motivated by McNaughton's theorem ([7]) we de�ne in the following a resolution calcu-

lus for the in�nite-valued propositional logic of �ukasiewicz (short IPL) in a new and

compared to existing resolution calculi very di�erent way. Our approach is based on Mc-

Naughton's characterization of the truth value functions in �ukasiewicz's in�nite-valued

propositional logic. Grounded on this characterization we introduce the concept of a Mc-

Naughton normal form, which, however, is semantically de�ned in contrast to other normal

forms. This McNaughton normal form will form the basis for our resolution calculus. In

classical resolution calculi the basic constituents of a clause are literals (or weighted lit-

erals). In our approach literals are replaced by linear expressions. Concerning (weak)

satis�ability these linear expressions de�ne linear inequalities, which represent cutting

planes. Our resolution rule is then based on well-known transformation rules for such

linear inequalities. Therefore our resolution calculus can be regarded as a natural gener-

alization of the cutting plane method for the classical 2-valued propositional calculus ([1])

to in�nite-valued propositional logic.

Let V = fX

i

j i 2 Ng be an in�nite set of propositional variables. The set of formulas

is de�ned inductively: each propositional variable is a formula, 0 and 1 are formulas, and

whenever A and B are formulas, then so are :A, (A�B), (A ^B), (A _B). For a formula

A we will also write A (X

1

; : : : ;X

n

), indicating that at most the propositional variables

X

1

,: : : ,X

n

occur in A. It is well known that (A _B) and (A ^B) could have been de�ned

by (A _B) := : (:A�B)�B and (A ^B) := : (:A _ :B). (A! B) and (A$ B) are

introduced as abbreviations: (A! B) := (:A�B) and (A$ B) := (A! B)^(B ! A).

We adopt the usual conventions for omitting parentheses. So for instance we also write

A�B instead of (A�B) and A

1

^ : : : ^A

n

instead of (: : : ((A

1

^A

2

) ^A

3

) ^ : : : ^A

n

).

For de�ning the semantics we use the interval [0; 1] (this is the set of all reals r with

0 � r � 1) as the set of logical values. The semantics of our logical language is based

on the concept of interpretation. An interpretation I is a mapping I : V ! [0; 1]. We

usually denote an interpretation I with I (X

k

) = x

k

by the !-sequence (x

0

; x

1

; : : : ). Let

I denote the set of all interpretations. The value of a propositional variable X

k

under an

interpretation I = (x

0

; x

1

; : : : ) is x

k

, the values of 0 and 1 are always 0 and 1 respectively,

and if the values of the formulas A and B under interpretation I are respectively a and b,

then under interpretation I :A has the value 1� a, (A�B) has the value min (1; a+ b),

(A _B) has the value max (a; b) and (A ^B) has the value min (a; b). We denote the value

of a formula A under an interpretation I by val (A; I). By this de�nition it is obvious that

to each formula A = A (X

1

; : : : ;X

n

) there exists a unique function f

A

(x

1

; : : : ; x

n

) in
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the variables x

1

,: : : ,x

n

such that the value of A under the interpretation I = (y

0

; y

1

; : : : )

equals f

A

(y

1

; : : : ; y

n

).

A formula A is satis�able if and only if there is an interpretation I such that A has

the value 1 under this interpretation. A is weak satis�able if and only if there is an

interpretation I such that A has a value > 0 under I. A is valid if and only if :A is not

weak satis�able, i.e. if and only if for all interpretations I A has the value 1. Finally two

formulas A and B are equivalent if and only if (A$ B) is valid.

2 McNaughton Normal Form

Let us call a function f : [0; 1]

n

! [0; 1] in n variables x

1

,: : : ,x

n

de�nable if and only if

there is a formula A of IPL such that f = f

A

. In [7] McNaughton proved the following

deep result concerning de�nability.

Theorem 1 (McNaughton's characterization theorem)

A function f = f (x

1

; : : : ; x

n

) : [0; 1]

n

! [0; 1] is de�nable if and only if

1. f is a continuous function.

2. There exists a �nite number of distinct linear functions p

1

,: : : ,p

k

of the form

p

j

= m

1

x

1

+ : : :+m

n

x

n

�m

where m

1

; : : : ;m

n

and m are integers such that for all x

1

,: : : ,x

n

2 [0; 1] there is a

j, 1 � j � k, such that

f (x

1

; : : : ; x

n

) = p

j

(x

1

; : : : ; x

n

) :

While the only-if direction is very easy to prove, McNaughton proved the other direc-

tion using a non-constructive argument. Only recently Mundici ( [9]) gave a constructive

proof of this direction.

McNaughton's characterization will form the basis for a normal form, which we will

introduce now. By McNaughton's theorem, if p = m

1

x

1

+ : : : + m

n

x

n

� m is a linear

function in x

1

,: : : ,x

n

and m

1

,: : : ,m

n

and m are integers (henceforth all linear functions

are assumed to have such a form), then the function f

p

de�ned by

f

p

(x

1

; : : : ; x

n

) = min (max (0; p) ; 1)

is de�nable by a formula A

p

of IPL. This formula A

p

is called associated to p:

De�nition 2 A formula A is in McNaughton normal form if and only if it is of the form

A = A

1

^ : : : ^A

k

, where each A

i

= A

i1

_ : : : _A

in

i

and each A

ij

is associated to a linear

function (1 � i � k, 1 � j � n

i

).

A similar proof as in the easy part of McNaughton's theorem shows that every formula

can be transformed into an equivalent McNaughton normal form.

Theorem 3 For every formula of IPL there is an equivalent formula A in McNaughton

normal form.
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3 A resolution calculus

The McNaughton normal form, we introduced in the last section, will be the basis for

the following resolution calculus. Formulas A, which are associated to linear functions

g

A

, correspond with respect to weak satis�ability to cutting planes g

A

> 0. In this

way we can represent a McNaughton normal form by a �nite set of clauses, where each

clause corresponds to a �nite set of such cutting planes. So our resolution calculus is not

formulated in a pure logical language. Rather it is a generalization of the cutting plane

proof method in classical 2-valued logic obtained by using a modi�ed resolution principle.

We begin by de�ning the clauses and formulas of our resolution calculus.

3.1 Syntax

We have an in�nite set V

0

= fx

i

j i 2 Ng of variables and for each integer a 2 Z a constant

a. Further we have the following symbols: +; �; (; ); f; g. Sometimes we also use the

symbols x; y; z possibly with indices for variables.

De�nition 4 1. If a is a constant and x

i

is a variable, then a and a � x

i

are linear

expressions with length a and 1 + jaj + i 2 N respectively. If E and F are linear

expressions with length kEk and kFk and a is a constant, then a � E and (E + F )

are linear expressions with length jaj+ kEk and kEk+ kFk respectively.

2. A clause is a �nite set of linear expressions. The length of a clause C (short: kCk)

is the sum of the length of the linear expressions occuring in C.

3. A formula is a �nite set of clauses. The length of a formula M (short: kMk) is the

sum of the length of the clauses occuring in M .

Using that + and � are associative and assuming that binding by � is stronger than

binding by + we can omit parentheses in linear expressions. Further we write for instance

3 � x

1

� 2 � x

2

instead of 3 � x

1

+ (�2) � x

2

. Also a factor 1 in a linear expression is usually

omitted. A constant a is said to be positive (negative, nonpositive) if and only if the

integer a is positive (negative, nonpositive). A variable x

i

is positive (negative) in a linear

expression a

1

� x

1

+ : : :+ a

n

� x

n

+ a if a

i

is positive (negative) constant.

De�nition 5 A linear expression E is n-positiv if and only if there are n positive variables

in E. A Horn clause is a clause which contains at most one 1-positive linear expression

and no n-positive linear expression for any n > 1.

A clause is a Krom clause if and only if it contains at most two linear expressions.

A formula is a Horn formula (Krom formula) if each clause is a Horn clause (Krom

clause).

3.2 Semantic

For de�ning a satis�ability notion we use the structure

R = (R;+; �; fa 2 R j a integerg) .

(For binary addition and multiplication we use the same symbols as in linear expressions.

In each case the meaning should be clear from the context). An interpretation is a mapping

I : V

0

! R. As for IPL we denote an interpretation I with I (x

k

) = y

k

by the !-sequence
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(y

0

; y

1

; : : : ). The value val (E; I) of a linear expression E under an interpretation I is then

de�ned by

- val (a; I) := a

- val (x

i

; I) := I (x

i

)

- val (a � E; I) := a � val (E; I) and

- val ((E + F ) ; I) := val (E; I) + val (F; I).

De�nition 6 An interpretation I weakly satis�es ( satis�es) a clause C if and only if

there is a linear expression E in C such that val (E; I) > 0 (val (E; I) � 1).

A clause C is weak satis�able ( satis�able) if and only if there is an interpretation I

weakly satisfying (satisfying) C.

An interpretation I weakly satis�es ( satis�es) a formula M if and only if I weakly

satis�es (satis�es) each clause of M .

A formula M is weak satis�able ( satis�able) if and only if there is an interpretation

I weakly satisfying (satisfying) M .

To any formula A 2 IPL in McNaughton normal form we can assign a formula M

A

of our resolution calculus in the following way. To each formula B 2 IPL, which is

associated to a linear function, there is a linear expression E

B

, such that for (y

0

; y

1

; : : : )

with y

i

2 [0; 1] and i 2 N

val (B; (y

0

; y

1

; : : : )) = max (0;min (1; val (E

B

; (y

0

; y

1

; : : : )))) :

Assume A = A

1

^ : : :^A

n

, where each A

i

is a disjunction. To each A

i

= A

i1

_ : : :_A

in

i

we

assign the clause C

A

i

=

n

E

A

i1

; : : : ; E

A

in

i

o

. To A the formula M

A

= fC

A

1

; : : : ; C

A

n

g is

assigned. Let x

1

; : : : ; x

k

be all the variables occuring in any of the clauses C

A

i

, 1 � i � n.

We set X

A

:= ffx

i

g ; f1� x

i

g j 1 � i � kg and X

s

A

:= ff1 + x

i

g ; f2� x

i

g j 1 � i � kg.

Weak satis�ability of X

A

means that the variables x

i

1 � i � k, have values > 0 and < 1.

Similarly satis�ability of X

s

A

expresses that the variables x

i

have values � 0 and � 1.

Lemma 7 A formula A 2 IPL in McNaughton normal form is weak satis�able if and

only if M

A

[X

A

is weak satis�able.

A formula A 2 IPL in McNaughton normal form is satis�able if and only if M

A

[X

s

A

is satis�able.

3.3 A resolution rule

Using similar rules as in the cutting plane method we de�ne a resolution rule in such a

way that the resulting resolution calculus can be seen as a generalization of the cutting

plane method and in some sense of the resolution calculus for 2-valued classical logic.

De�nition 8 Let C;C

1

; C

2

be clauses. C is a resolvent of C

1

; C

2

(denoted by C =

R (C

1

; C

2

)) if and only if there are linear expressions E

1

2 C

1

, E

2

2 C

2

and positive

constants a and b such that C = (C

1

n fE

1

g) [ (C

2

n fE

2

g) [ fa �E

1

+ b � E

2

g.

Remark 1 For shortness of the exposition we have chosen a very liberal form for the def-

inition of a resolvent. In fact if one is interested in an implementation one can formulate

very de�nite restrictions on the choice of a and b. Later on we shall give an example which

will clarify this point.
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De�nition 9 A clause C is obtained from a clause C

1

by simpli�cation if and only if

there is a linear expression E

1

2 C

1

, such that either

1. C = C

1

n fE

1

g [ fEg, where E is obtained from E

1

by �nitely many applications of

the following rules for simpli�cation:

(a) + is commutative and associative.

(b) � is commutative, associative and distributive over +.

(c) 0 �E

0

= 0 for any linear expression E

0

.

(d) Common expressions may be combined (i.e. a � E + b � E may be replaced by

(a+ b) � E):

(e) Sums and products of constants may be �evaluated� (i.e. if a+b = n then a+b

may be replaced by n, similarly for a � b).

or

2. E

1

= n for a nonpositive integer n and C = C

1

n fE

1

g.

De�nition 10 Let M be a set of clauses.

A resolution deduction of C from M is a �nite sequence C

1

; : : : ; C

n

= C, such that

each C

i

is either a member of M or is a simpli�cation of a clause C

j

for 1 � j < i or is

a resolvent of clauses C

j

; C

k

for 1 � j; k < i.

If there is such a resolution deduction of C from M , we say that C is resolution

provable from M and write M `

R

C.

A resolution deduction of the empty clause ? from M is called a resolution refutation

of M . In this case we say that M is resolution refutable.

R (M) is the closure of M under resolution deduction, i.e. R (M) is the set of all

clauses C, such that there is a resolution deduction of C from M .

Example 11 Consider the following clauses:

A

1

= f3 � x+ 2 � y � 3; 3 � z � 1g

A

2

= f�2 � y + 1g

A

3

= f�3 � x+ 1g

A

4

= f�6 � z + 1g :

A resolvent of A

1

and A

2

is f3 � x+ 2 � y � 3� 2 � y + 1; 3 � z � 1g, which can be simpli�ed

to A

5

= f3 � x� 2; 3 � z � 1g. Similarly we can deduce by resolution and simpli�action

from A

5

and A

3

the clause A

6

= f�1; 3 � z � 1g, which further can be simpli�ed to A

7

=

f3 � z � 1g.

A

8

= f2 � (3 � z � 1) + (�6 � z + 1)g is a resolvent of A

7

and A

4

. Finally A

8

can be

simpli�ed to f�1g, which then can be simpli�ed to ?.

Lemma 12 1. If C

1

is a satis�able clause and C is a simpli�cation of C

1

, then C is

satis�able.

2. If C

1

; C

2

are satis�able clauses and C = R (C

1

; C

2

), then C is a satis�able clause.
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Theorem 13 (Soundness of resolution) If there is a resolution refutation of a formula

M , then M is unsatis�able.

Proof: If C

1

; : : : ; C

n

= ? is a resolution refutation from M , then, using lemma 12,

any interpretation I satisfying M satis�es each C

i

, 1 � i � n. Especially I satis�es ?. As

? is not satis�able, M cannot be satis�able.�

For proving completeness of our resolution calculus we de�ne the degree of a formula.

De�nition 14 The degree deg (C) of a clause C is the number of linear expressions in

C. The degree deg (M) of a formula M is de�ned by deg (M) =

Q

C2M

deg (C).

Lemma 15 A �nite set

fa

i

� x+ c

i

> 0 j k; a

i

2 N; c

i

2 Z; 1 � i � kg

[ f�b

j

� x+ d

j

> 0 j m; b

j

2 N; d

j

2 Z; 1 � j � mg

of strict linear inequalities in one variable x has a real valued solution if and only if

b

j

� c

i

+ a

i

� d

j

> 0

for all i and j with 1 � i � k; 1 � j � m.

Theorem 16 (Completeness of resolution)

If M is an unsatis�able set of clauses, then ? 2 R (M).

Proof: By induction on deg (M) and within this induction by induction on the number

n of di�erent variables of M . We omit some trivial cases.

deg (M) = 1 and induction step n! n+ 1 :

Let M be a formula with n+1 di�erent variables occuring in it. By the simpli�cation

rules we can assume, that any linear expression occuring in some clause ofM has the form

a

1

� x

1

+ : : :+ a

k

� x

k

with x

i

6= x

j

for i 6= j. Furthermore not all of the variables are positive resp. negative in

M . So there is a variable w.l.o.g x

1

with positive and negative occurence.

Assume that

fa

1

� x

1

+E

1

g

.

.

.

fa

k

� x

1

+E

k

g

(k > 0) are all the clauses with positive occurence of x

1

and that

�

�b

1

� x

1

+E

0

1

	

.

.

.

�

�b

m

� x

1

+E

0

m

	

(m > 0) are all the clauses with negative occurence of x

1

.

Let M

0

be the set of the remaining clauses of M .
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M

00

:=M

0

[

nn

b

j

�E

i

+ a

i

�E

0

j

o

j 1 � i � k 1 � j �m

o

.

We then have

M is unsatis�able if and only if M

00

is unsatis�able. (1)

Proof of (1):

�Only if� is trivial.

For the �if� case assume that I satis�es M

00

.

We have to �nd an interpretation I

0

which satis�esM

0

and all the clauses fa

i

� x

1

+E

i

g,

n

�b

j

� x

1

+E

0

j

o

for 1 � i � k, 1 � j � m. By the preceeding lemma the set

�

a

i

� x+ I (E

i

) > 0 ; �b

j

� x+ I

�

E

0

j

�

> 0 j 1 � i � k; 1 � j � m

	

(2)

of strict inequalities in one variable x has a solution if and only if

�

b

j

� I (E

i

) + a

i

� I

�

E

0

j

�

> 0 j 1 � i � k; 1 � j � m

	

. (3)

By assumption I satis�es M

00

, so b

j

� I (E

i

) + a

i

� I

�

E

0

j

�

> 0 is true for all i and j with

1 � i � k, 1 � j � m. Therefore (2) has a solution x = c. Let I

0

be the following

interpretation

I

0

(x

i

) =

�

c if i = 1

I (x

i

) else .

So I

0

satis�es M

0

and also all the clauses fa

i

� x

1

+E

i

g,

n

�b

j

� x

1

+E

0

j

o

for 1 � i � k,

1 � j � m. Hence I

0

satis�es M . This proves (1).

Continuing the case deg (M) = 1:

As the number of di�erent variables of M

00

is n, we have by induction hypotheses that

? 2 R (M

00

). By computing

�

b

j

� a

i

� x

1

+ b

j

�E

i

� a

i

� b

j

� x

1

+ a

i

�E

0

j

	

as a resolvent of fa

i

� x

1

+E

i

g and

n

�b

j

� x

1

+E

0

j

o

and some application of the simpli�-

cation rules, we get, that

n

b

j

� E

i

+ a

i

�E

0

j

o

2 R (M) for all i and j with 1 � i � k; 1 �

j � m. So M

00

� R (M). Consequently ? 2 R (M).

Therefore the case deg (M) = 1 is proved.

deg (M) > 1 :

There exists a clause C in M with deg (C) > 1. Further let M

0

:= M n fCg and

C

0

:= CnfEg for some linear expression E 2 C. AsM is unsatis�able, bothM

0

[fC

0

g and

M

0

[ffEgg are unsatis�able. The degrees of M

0

[fC

0

g and M

0

[ffEgg are less deg (M).

So by induction hypotheses ? 2 R (M

0

[ fC

0

g). From this we can conclude that ? 2

R (M

0

[ C) = R (M) or fEg 2 R (M). For fEg 2 R (M) we haveM

0

[ffEgg � R (M), as

M

0

�M . Consequently R (M

0

[ ffEgg) � R (M). AsM

0

[ffEgg is unsatis�able and the

degree ofM

0

[ffEgg is less deg (M), we get by induction hypotheses ? 2 R (M

0

[ ffEgg),

hence ? 2 R (M).�
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Remark 2 It is a consequence of our completeness proof, that the proof complexity of

this resolution calculus, i.e. the number of proof steps of a shortest proof, measured in the

length of the formula, is O

�

2

p(n)

�

for some polynomial p. For a lower bound: there are

already clauses containing only one linear expression which need O (2

n

) proof steps. So

our resolution calculus is by no means e�cient.

4 Related decision problems

In the following we will consider satis�ability problems for some classes of formulas of our

resolution calculus RC

IPL

. These are given by the decision problem for the corresponding

sets. Here we are mainly interested in the complexity of decision algorithms (not in

the proof complexity) for formulas, which correspond to formulas of IPL. Therefore

we are considering only such formulas, in which every linear expression has the form

a

1

� x

1

+ : : : + a

n

� x

n

+ a with a; a

1

; : : : ; a

n

constants and x

i

6= x

j

for 1 � i < j � n.

Linear expressions of this form are called simple linear expressions. We denote the set of

formulas in our resolution calculus RC

IPL

consisting only of such simple linear expressions

by SIPL.

SAT

SIPL

:= fF 2 SIPL j F is satis�ableg,

SAT

Horn

:= SAT

SIPL

\ fF 2 SIPL j F Horn formulag and

SAT

Krom

:= SAT

IPL

\ fF 2 IPL j F Krom formulag.

Here we shall consider only these satis�ability problems. For the corresponding decision

problems concerning weak satis�ability the same results can be obtained.

Theorem 17 SAT

SIPL

is NP -complete.

Proof:

NP -hard: Obvious.

In NP : This follows immediately by a polynomial translation into the �

1

-fragment of

the theory TH(R;+; <;=; 0; 1). By a result of von zur Gathen and Sieveking ([3]) this

�

1

-fragment is NP -complete.�

For classical 2-valued propositional calculus the decision problem for Krom formulas

is known to be complete (with respect to logspace-reductions) for the complexity class

NLOGSPACE. Without any further restriction the corresponding satis�ability problem

SAT

Krom

is NP -complete:

Theorem 18 SAT

Krom

is NP -complete. In fact we have the stronger result:

The satis�ability problem for Krom clauses, where at most two di�erent variables are

occuring in a Krom clause, is NP -complete.

Proof: By the NP -completeness of the unrestricted satis�ability problem we only have

to prove the NP -hardness.

In [6] the decision problem for SLIA (simple linear inequalities), which is the following

decision problem

Instance: A system � of m inequalities in n variables. Each inequality has the form

x

i

� x

j

� 0, x

i

� x

j

� �1 or jx

i

� x

j

j � 1.

Question:Does the system � have a solution?

is shown to be NP -complete.
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We assign clauses to the inequalities in the following way:

x

i

� x

j

� 0 : fx

i

� x

j

+ 1g

x

i

� x

j

� �1 : fx

i

� x

j

+ 2g

jx

i

� x

j

j � 1 : fx

i

� x

j

; x

j

� x

i

g :

So there is an obvious polynomial time reduction of SLIA to SAT

Krom

with the

property, that each clause contains at most two di�erent variables. We therefore get the

NP -hardness for this satis�ability problem.�

Remark 3 The satis�ability problem for Krom formulas, where each clause contains at

most one variable, is NLOGSPACE-complete.

(In NLOGSPACE follows by a logspace reduction to a satis�ability problem for Krom

formulas in classical propositional logic. The hardness property is trivial.)

Unfortunately, we currently don't have so nice completeness results in the case of Horn

formulas. Of course we have that SAT

Horn

is in NP and that SAT

Horn

is P -hard (with

respect to logspace reductions), as the satis�ability problem for Horn formulas in classical

2-valued propositional logic is P -complete. Restricted classes of Horn formulas in IPL

have been investigated by Escalada et al. ([2]) and � generalizing the result of [2] � by

Hähnle ([5]).

Theorem 19 The satis�ability problem for Horn clauses, in which every linear expression

contains at most one variable, is P -complete

Containment in P follows by [5]. P -hardness follows by the already mentioned logspace

reduction of the satis�ability problem of Horn formulas in classical 2-valued logic to the

considered special case of SAT

Horn

.
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