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Abstract

In this paper we illustrate by means of an example, namely SHn-logics, a method

for translation to clause form and automated theorem proving for �rst-order many-

valued logics based on distributive lattices with operators.

1 Introduction

The main goal of this paper is to present a method for translation to clause form and

automated theorem proving in �nitely-valued logics having as algebras of truth values

distributive lattices with certain types of operators. Many non-classical logics that occur in

practical applications fall in this class. One of the advantages of distributive lattices (with

well-behaved operators) is the existence, in such cases, of good representation theorems,

such as the Priestley representation theorem. The method for translation to clause form

we present uses the Priestley dual of the algebra of truth values. The ideas behind this

method are very natural, even if the algebraic notions used may at �rst sight seem involved.

This is why in this paper we illustrate the ideas by one example, namely SHn-logics.

The particular properties of SHn-logics allow us to further improve the e�ciency of the

automated theorem proving procedure for certain types of formulae in SHn-logics, by

exploiting the structure of the Priestley dual of the algebra of truth values. This e�ect

is di�cult to explain in a general setting; the case of SHn-logics can be considered a

case-study, in which we take �rst steps in this direction.

The main sources of inspiration for our work are the many-valued resolution method

of Baaz and Ferm�uller [2], and the results due to H�ahnle [5]. In this paper we use the

particular structure of the algebra of truth values: our method leads to a reduction of

the number of clauses compared to methods using the algebra of truth values, when the

di�erence between the number of elements of the algebra of truth values and the number

of elements of its Priestley dual is large. Moreover, resolution procedures are discussed

(in particular, a negative hyperresolution procedure that extends the results established

for regular clauses in [5]).

The paper is structured as follows. In Section 2 we briey present the main notions

needed in the paper. In Section 3 SHn-logics are de�ned. In Section 4 our method

for translation to clause form for SHn-logics is presented. In Section 5 resolution-based

methods for automated theorem proving are briey presented.
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2 Preliminaries

Partially-ordered sets and lattices. In what follows we assume known standard no-

tions, such as partially-ordered set and lattice, order-�lter and order-ideal in partially-

ordered sets, meet- and join-irreducible elements, and (prime) �lter and (prime) ideal in

lattices. For the de�nitions and further informations we refer to [3]. Given a partially-

ordered set (P;�), by O(P ) we will denote the set of order-�lters of P ; for every i 2 P ,

we will use the following notations: " i = fj 2 P j j � ig, and # i = fj 2 P j i � jg. Note

also that every ideal in a �nite distributive lattice is of the form # i and every �lter is of

the form " i for some element i in the lattice); such an ideal (resp. �lter) is prime i� i is

meet-irreducible (resp. join-irreducible).

Priestley duality. The Priestley representation theorem [3] states that every distributive

lattice A is isomorphic to the lattice of clopen (i.e. closed and open) order �lters of the

ordered topological space having as points the prime �lters of A, ordered by inclusion, and

the topology generated by the sets of the form X

a

= fF j F prime �lter, a 2 Fg and their

complements as a subbasis. The partially ordered set of all prime �lters of A, ordered

by inclusion, and endowed with the topology mentioned above will be denoted D(A) (we

will refer to it as the dual of A). Given an ordered topological space X = (X;�; �), its

lattice of clopen order �lters will be denoted by ClopenOF(X) or E(X). In particular, if A

is �nite, the topology on D(A) is discrete, and A is isomorphic to O(D(A)).

Many-valued logics. We briey de�ne the syntax and semantics of many-valued logics.

Let A be a (�nite) set of truth values. The semantics of a many-valued logic L with

language (X;O;P;�; fQ

1

; : : : ; Q

k

g) (where X is an in�nite (countable) set of variables; O

a set of function symbols; P a set of predicate symbols; � = f�

1

; : : : ; �

r

g a set of logical

operators; and Q

1

; : : : ; Q

k

are (one-place) quanti�ers) is given as follows: (i) to every

� 2 � with arity n we associate a truth function �

A

: A

n

! A; (ii) to every quanti�er

Q we associate a truth function Q : P(A)n; ! A. An interpretation for a language

(X;O;P;�; fQ

1

; : : : ; Q

k

g) and a set of truth values A is a tuple (D; I; d) where D is a non-

empty set, the domain, I is a signature interpretation, i.e. a function assigning a function

I(f) : D

n

! D to every n-ary function symbol f 2 O, and a function I(R) : D

n

! A

to every n-ary predicate symbol R 2 P , and d : X ! D a variable assignment. Every

interpretation I = (D; I; d) induces a valuation v

I

: Fma(L) ! A on the set Fma(L)

of formulae of L. For details we refer to [2]. A formula � will be called valid i� for all

interpretations I, v

I

(�) = 1; � will be called satis�able i� there exists an interpretation I

with v

I

(�) = 1.

3 SHn-logics

The propositional SHn-logics were introduced by Iturrioz in [7]. The language of SHn-

logics is a propositional language, whose formulas are built from propositional variables

taken from a set Var, with operations _ (disjunction), ^ (conjunction), ) (intuitionistic

implication), �;: (a De Morgan resp. an intuitionistic negation), and a family fS

i

j i =

1; : : : ; n� 1g of unary operations (expressing the degree of truth of a formula). Recently,

Iturrioz noticed that SHn-logics provide a relevant source of examples for L

t

f

-logics, which

have been introduced by Rasiowa to formalize the reasoning of a poset of intelligent agents.

A Hilbert style axiomatization of SHn-logics is given in [8] and [9]. We present it below:
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Axioms: (A1) a) (b) a)

(A2) (a) (b) c)) ) ((a) b) ) (a) c))

(A3) (a ^ b) ) a

(A4) (a ^ b) ) b

(A5) (a) b) ) ((a) c) ) (a) (b ^ c)))

(A6) a) (a _ b)

(A7) b) (a _ b)

(A8) (a) c) ) ((b) c) ) ((a _ b) ) c))

(A9) �� a$ a

(A10) S

i

(a ^ b) $ S

i

(a) ^ S

i

(b)

(A11) S

i

(a) b) $ (

V

n

k=i

S

k

(a) ) S

k

(b))

(A12) S

i

(S

j

(a)) $ S

j

(a), for every i; j = 1; : : : ; n� 1

(A13) S

1

(a) ) a

(A14) S

i

(� a) $� S

n�i

a; for i = 1; : : : ; n� 1

(A15) S

1

(a) _ :S

1

(a)

where :(a) = (a)� (a) a)) and a$ b is an abbreviation for (a) b) ^ (b) a).

Inference rules:

(R1)

a; a) b

b

(R2)

a) b

� b)� a

(R3)

a) b

S

1

(a) ) S

1

(b)

3.1 Algebraic semantics for propositional SHn-logics

In [7, 8], Iturrioz gave a lattice-based semantics for SHn-logics, by means of symmetrical

Heyting algebras of order n, or for short SHn-algebras.

De�nition 1 An abstract algebra A = (A; 0; 1;^;_;);:;�; S

1

; : : : ; S

n�1

) is said to be a

symmetric Heyting algebra of order n (SHn-algebra for short) if:

(1) (A; 0; 1;^;_;);:) is a Heyting algebra,

(2) � is a De Morgan negation on A,

(3) For every a; b 2 A and for all i; j 2 f1; : : : ; n� 1g, the following equations hold:

(S1) S

i

(a ^ b) = S

i

(a) ^ S

i

(b),

(S2) S

i

(a) b) = (

V

n

k=i

S

k

(a) ) S

k

(b)),

(S3) S

i

(S

j

(a)) = S

j

(a), for every i; j = 1; : : : ; n� 1,

(S4) S

1

(a) _ a = a,

(S5) S

i

(� a) =� S

n�i

(a); for i = 1; : : : ; n� 1,

(S6) S

1

(a) _ :S

1

(a) = 1, with :a = a) 0.

The class of SHn-algebras is a variety, which will be denoted SHn in what follows.

Iturrioz [8] proved that this variety is generated by one �nite SHn-algebra S

n

2
(represented

in the left-hand side of Figure 1) de�ned as follows.

De�nition 2 Let n � 2 and let S

n

2
be the cartesian product L

n

� L

n

where L

n

=

f0;

1

n�1

; : : : ;

n�1

n�1

g. Consider the following operations on S

n

2
:
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(1) (x

1

; y

1

) ^ (x

2

; y

2

) = (min(x

1

; x

2

);min(y

1

; y

2

)),

(2) (x

1

; y

1

) _ (x

2

; y

2

) = (max(x

1

; x

2

);max(y

1

; y

2

)),

(3) � (x; y) = (1� y; 1� x) for every (x; y) 2 S

n

2,

(4) S

i

(x; y) = (S

i

(x); S

i

(y)), where S

i

(

j

n�1

) =

(

1 if i+ j � n;

0 if i+ j < n;

(5) (x

1

; y

1

) ) (x

2

; y

2

) = (x

1

) x

2

; y

1

) y

2

), where ) is the Heyting relative pseudo-

complementation

1

on L

n

,

(6) :(x; y) = (x) 0; y ) 0).

In [7] it is proved that SHn-logics are sound and complete with respect to the variety

of SHn-algebras. Since the variety SHn is generated by S

n

2 it follows that the SHn-logics

can be regarded as many-valued logics having S

n

2 as an algebra of truth values.

A Priestley representation theorem for SHn-algebras is established in [8], see also [12].

In particular we give a description of the dual of the generator S

n

2
of the variety of SHn-

algebras. The Priestley dual of S

n

2
, D(S

n

2
) is the set of prime �lters of S

n

2
, with the

(0,0)

(0,1) (1,0)

(1,1)

(n-2/n-1, 0)

(1/n-1,0)(0,1/n-1)

(0,n-2/n-1)

(1,1/n-1)

(1,n-2/n-1)(n-2/n-1, 1)

(1/n-1,1)

(0, n-j/n-1)

(0, 2/n-1)

(0, i/n-1)

(0, n-2/n-1)

(0, 1)

(0, 1/n-1) (1/n-1, 0)

(2/n-1, 0)

(j/n-1, 0)

(n-i/n-1, 0)

(n-2/n-1, 0)

(1, 0)

s
j s

i

g

g

Figure 1: S

n

2
and its Priestley dual D(S

n

2
)

discrete topology, and ordered by inclusion. Every prime �lter of S

n

2
is of the form " a

where a is a join-irreducible element of S

n

2
. The set of join-irreducible elements of S

n

2

(encircled in Figure 1) is f(0;

i

n�1

) j i = 1; : : : ; n� 1g [ f(

i

n�1

; 0) j i = 1; : : : ; n � 1g with

the order de�ned pointwise. Thus, D(S

n

2
) (the right-hand side of Figure 1) is the set

f" (0;

i

n�1

) j i = 1; : : : ; n � 1g [ f" (

i

n�1

; 0) j i = 1; : : : ; n � 1g. Additional operations

g; s

1

; : : : ; s

n�1

are de�ned for every prime �lter F of S

n

2
by g(F ) = S

n

2
n �

�1

(F ); and

s

i

(F ) = S

�1

i

(F ): Therefore, g(" (0;

i

n�1

)) = " (

n�i

n�1

; 0); g(" (

i

n�1

; 0)) = " (0;

n�i

n�1

); and,

for every j = 1; : : : ; n � 1, s

j

(" (0;

i

n�1

)) = " (0;

n�j

n�1

); s

j

(" (

i

n�1

; 0)) = " (

n�j

n�1

; 0). By

1

The Heyting relative pseudocomplementation on L

n

is de�ned by: a) b is the largest element c of L

n

such that a ^ c � b. Hence, for every a; b 2 L

n

, a ) b =

�

1 if a � b

b if a > b

. The pseudocomplementation

induced by ) is de�ned by :a := a) 0. Hence, :a =

�

1 if a = 0

0 if a > 0

.
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the Priestley representation theorem for SHn-algebras, since the topology of D(S

n

2
) is

discrete, it follows that there exists an isomorphism � : S

n

2
' O(D(S

n

2
)):

3.2 A �nite Kripke-style frame for SHn-logics

In [9], Iturrioz and Or lowska give a completeness theorem for SHn-logics with respect

to a Kripke-style semantics. We will show that one can regard D(S

n

2
) as a particular

Kripke-style frame for SHn-logics, and that a formula is an SHn-theorem if and only if it

is valid in this frame. As in [9] where Kripke-style models for SHn-logics are investigated,

we will assume that all meaning functions for D(S

n

2) have as values order-�lters.

De�nition 3 Let m : Var ! O(D(S

n

2)) be a meaning function, and let m : Fma(Var) !

O(D(S

n

2
)) be the unique extension of m to formulae. We de�ne: (i) D(S

n

2
)

r

j=

m;x

� i� x 2 m(�); (ii) D(S

n

2
)

r

j=

m

� i� m(�) = D(S

n

2
); (iii) D(S

n

2
)

r

j= � i� D(S

n

2
)

r

j=

m

� for every m:Var! O(D(S

n

2
)):

Proposition 1 ([12]) Every formula � of SHn-logic is a SHn-theorem i� D(S

n

2
)

r

j= �:

(D(S

n

2
);�; g; s

1

; : : : ; s

n�1

) is in particular a Kripke-style frame as de�ned in [9], and the

relation

r

j= de�ned above agrees with the satis�ability relation for SHn-models de�ned in

[9], i.e. for every meaning function m : Var! O(D(A)), the following hold:

D(S

n

2
)

r

j=

m;x

p i� x 2 m(p); for p 2 Var,

D(S

n

2)

r

j=

m;x

� _  i� D(S

n

2)

r

j=

m;x

� or D(S

n

2)

r

j=

m;x

 ,

D(S

n

2
)

r

j=

m;x

� ^  i� D(S

n

2
)

r

j=

m;x

� and D(S

n

2
)

r

j=

m;x

 ,

D(S

n

2)

r

j=

m;x

�)  i� for all y, if x � y and D(S

n

2)

r

j=

m;y

� then D(S

n

2)

r

j=

m;y

 ,

D(S

n

2
)

r

j=

m;x

:� i� for all y, if x � y then D(S

n

2
) 6

r

j=

m;y

�,

D(S

n

2)

r

j=

m;x

S

i

(�) i� D(S

n

2)

r

j=

m;s

i

(x)

�,

D(S

n

2)

r

j=

m;x

� � i� D(S

n

2) 6

r

j=

m;g(x)

�.

3.3 First-order SHn-logics

Following [2] we de�ne �rst-order SHn-logics as many-valued logics having S

n

2
as set of

truth values.

A �rst-order SHn-logic is de�ned by specifying a setX of variables, a set O of operation

symbols and a set P of predicate symbols. The set of logical connectives is f_;^;);:;�g,

and they are interpreted in S

n

2
as explained in Section 3.1. We allow only two quanti�ers,

namely 9 and 8 (interpreted as a generalized join, resp. meet).

Frames and interpretations are de�ned in the usual way; note that due to the fact that

S

n

2 is isomorphic to O(S

n

2), an alternative (and equivalent) notion of frame (and resp.

interpretation) can be de�ned, where the signature interpretation I assigns with every

n-ary predicate symbol R 2 P a function I(R) : D

n

! O(D(A)). For every interpretation

in O(D(A)), I = (D; I; d), the induced valuation function v

I

: Fma(L) ! O(D(A)) is

de�ned in the usual way; so are the notions of validity and satis�ability. Taking into

account the fact that the largest element of the lattice O(D(A)) is D(A), it follows that a

formula � is valid i� for all interpretations I in O(D(A)), v

I

(�) = D(A); and satis�able

i� v

I

(�) = D(A) for some interpretation I in O(D(A)).
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4 Translation into clause form

The main idea of our approach is to use signed literals, where the signs are \possible

worlds", i.e. elements of D(S

n

2) (corresponding to prime �lters of truth values) instead

of truth values (as done in [2]) or arbitrary sets of truth values (as done in [4, 5]). The

idea of using \valuations in f0; 1g" instead of values appears already for instance in [11]

for the case of  Lukasiewicz logics. In what follows, given an interpretation I = (D; I; d)

in O(D(S

n

2
)) we use the following notation:

� �

t

in I means \� is true at �" in the interpretation I (i.e. � 2 v

I

(�))

� �

f

in I means \� is false at �" in the interpretation I (i.e. � 62 v

I

(�))

where � is an element of D(S

n

2
). Note that if � �

t

in I and � � � then � �

t

in I.

De�nition 4 (Literal, Clause, Signed CNF, Satis�ability) Let L be an atomic for-

mula and � 2 D(S

n

2
). Then � L

t

is a positive literal (with sign � ) and � L

f

is a

negative literal (with sign � ). A set of (positive or negative) signed literals is called a

(signed) clause. A formula in signed conjunctive normal form (CNF) is a �nite set of

signed clauses. We require that the clauses in a formula have disjoint variables.

A positive literal � L

t

(resp. a negative literal � L

f

) is satis�able if for some

interpretation I of L in O(D(A)), L is true (resp. false) in I at �. A signed clause

is satis�able if at least one of its literals is satis�able. A formula � in signed CNF is

satis�able if all clauses in � are simultaneously satis�able by the same interpretation.

We give a structure-preserving transformation method to clause form in �rst-order

logic. The main idea of such methods is to introduce, for every non-atomic subformula  

of �, a new atomic formula of the form P

 

(x), where P

 

is a new predicate symbol and x

are the free variables in  .

The next result is a consequence of the fact that a formula � is valid i� there exists no

interpretation I in O(D(S

n

2
)) such that � is false in I at some world � 2 D(S

n

2
) (and,

thus, at some minimal world), taking into account the renamings mentioned before.

Proposition 2 The formula � is valid if and only if there exists no interpretation I =

(D; I; d) of L in O(D(S

n

2)) such that

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

" (0; 1) P

f

�

_ " (1; 0) P

f

�

in I;

( � P

 

(x

1

; : : : ; x

n

)

t

_ � �(P

 

1

; : : : ; P

 

m

)

f

)

( � P

 

(x

1

; : : : ; x

n

)

f

_ � �(P

 

1

; : : : ; P

 

m

)

t

)

in I; for every � 2 D(A) for all subformulae  = �( 

1

; : : : ;  

m

)

of � and all instantiations in D of the free variables x

1

; : : : ; x

n

of  ;

( � P

 

(x

1

; : : : ; x

n

)

t

_ � (Qx)P

 

1

(x; x

1

; : : : ; x

n

)

f

)

( � P

 

(x

1

; : : : ; x

n

)

f

_ � (Qx)P

 

1

(x; x

1

; : : : ; x

n

)

t

)

in I; for every � 2 D(A) for all subformulae  = (Qx) 

1

(x; x

1

; : : : ; x

n

)

of � and all instantiations in D of the free variables x

1

; : : : ; x

n

of  :

The elimination rules for the operators and quanti�ers use the correspondence between

the operations on S

n

2
and the corresponding operations on D(S

n

2
), as showed below.

Lemma 3 For any atomic formulae L;L

1

; L

2

; : : : ; L

n

, in any given interpretation I:
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(_, t) � (L

1

_ L

2

)

t

i� � L

t

1

_ � L

t

2

; (_, f) � (L

1

_ L

2

)

f

i� � L

f

1

^ � L

f

2

.

(^, t) � (L

1

^ L

2

)

t

i� � L

t

1

^ � L

t

2

; (^, f) � (L

1

^ L

2

)

f

i� � L

f

1

_ � L

f

2

.

(S

j

, t) � (S

j

(L

1

))

t

i� s

j

(�) L

t

1

; (S

j

, f) � (S

j

(L

1

))

f

i� s

j

(�) L

f

1

.

(�, t) � (� (L

1

))

t

i� g(�) L

f

1

; (�, f) � (� (L

1

))

f

i� g(�) L

t

1

.

(:, t) � (:L)

t

i� 8� � �, � L

f

; (:, f) � (:L)

f

i� 9� � � with � L

t

.

(), t) � (L

1

) L

2

)

t

i� 8� � �, � L

f

1

_ � L

t

2

.

(), f) � (L

1

) L

2

)

f

i� maxf� j � � �g L

t

1

, � L

f

2

, and 8�

1

6= �

2

� �; �

1

L

t

1

_ �

2

L

f

2

.

Proof : The cases (_; t), (_; f), (^; t), (^; f), (S

j

, t), (S

j

; f), (�; t), (�; f), (:, t),

(:, f), and (); t) follow immediately. We present the case (); f) in detail. We know

that � (p

1

) p

2

)

f

i� for some � � �, � p

t

1

and � p

f

2

. By distributivity, the formula

W

���

( � p

t

1

^ � p

f

2

) can be written as

V

S

1

;S

2

;S

1

\S

2

=;

S

1

[S

2

=f�j���g

�

W

�

1

2S

1

�

1

p

t

1

_

W

�

2

2S

2

�

2

p

f

2

�

:

We then use the fact that, for every � 2 D(S

n

2
), the set f� j � � �g is �nite and

totally ordered, hence every non-empty set S

1

� f� j � � �g, contains a maximal element

max(S

1

) and every non-empty S

2

� f� j � � �g contains a minimal element min(S

2

),

and

W

�

1

2S

1

�

1

p

t

1

i� max(S

1

) p

t

1

, resp.

W

�

2

2S

2

�

2

p

f

2

i� min(S

2

) p

f

2

. Additionally, since

S

1

\ S

2

= ;, max(S

1

) 6= min(S

2

). Hence,

� (p

1

) p

2

)

f

i� maxf� j � � �g p

t

1

^

V

S

1

;S

2

6=;;S

1

\S

2

=;

S

1

[S

2

=f�j���g

�

max(S

1

) p

t

1

_ min(S

2

) p

f

2

�

^ � p

f

2

;

i� maxf� j � � �g p

t

1

^

V

�

1

;�

2

��;

�

1

6=�

2

�

�

1

p

t

1

_ �

2

p

f

2

�

^ � p

f

2

. 2

For quanti�ers we have the following results (for related results we refer to [6]).

Lemma 4 Let I = (D; I; d) be an interpretation of L in O(D(A)). The following hold:

(8) � (8xL(x; x

1

; : : : ; x

n

))

t

in I if and only if � (L(x; x

1

; : : : ; x

n

))

t

in I

x=d

for every

instantiation d 2 D of x.

(9) � (9xL(x; x

1

; : : : ; x

n

))

t

in I if and only if � (L(f

�

(x

1

; : : : ; x

n

); x

1

; : : : ; x

n

))

t

in I

(where f

�

is a new function symbol).

It is easy to see that for every � 2 D(A) the branching factor induced by the rules

above is 3 in case of _ and ^; 2 for S

1

; : : : ; S

n�1

, �, and 8;9; O(n) for :; and O(n

2

) (i.e.

linear in the size of the set of truth values) for ).

After this translation, from any formula � we obtain a formula � in clause form,

containing literals of the form � L

t

and � L

f

where L is an atom and � 2 D(S

n

2), such

that � is a theorem i� � is unsatis�able.

Proposition 5 The number of clauses generated from a given formula � is O(n

3

l), where

l is the number of subformulae of �, and n

2

the number of truth values. If the formula �

does not contain the connective ), then the number of clauses generated from � is O(n

2

l).

If the formula � does not contain the connectives ) and :, then the number of clauses

generated from � is O(nl).

Proof : The maximal number of clauses is generated by the subformulae of the form

 =  

1

)  

2

. In this case, for every � 2 D(S

n

2
) the number of clauses generated by
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( � p

f

 

_ �  

t

) is jf� j � � �gj, and the number of clauses generated by ( � p

t

 

_ �  

f

)

is 2+jf(�

1

; �

2

) j �

1

6= �

2

; �

1

; �

2

� �gj. Thus, the number of clauses generated from a given

formula � has as upper bound 1 + 2l�

n�1

i=1

(i+ i(i� 1) + 2) = 1 + 4l(n� 1) + l

(n�1)n(2n�1)

3

.

Hence, the number of clauses generated from a given formula � is O(n

3

l). If � does

not contain the operator ), then the maximal number of clauses is generated by the

subformulae of the form  = : 

1

. In this case, for every � 2 D(S

n

2
) the number of

clauses generated by ( � p

f

 

_ �  

t

) is equal to jf� j � � �gj; ( � p

t

 

_ �  

f

)

gives rise to only one clause. The number of clauses generated from � is thus bounded by

1 + 2l�

n�1

i=1

(i+ 1) = 1 + l(n

2

+n� 2). The estimations for formulae not containing ) or :

follow from the fact that the branching factor is constant for �, S

1

; : : : ; S

n�1

, _;^, 9;8.

2

For comparison, we point out that the very general structure-preserving methods for

translation to clause form that use the algebra of truth values given in [2], the split degree

of rules of the type (2; v)

+

induced by a k-ary operator 2, given a truth value v, is at

most jW j

k�1

, if W is the set of truth values. Since in a structure-preserving translation

to clause form such rules have to be considered for every truth value v, the clause form of

a formula with n occurrences of at most r-ary operators and m occurrences of quanti�ers

contains no more than njW j

r

+m2

jW j

+ 1 clauses if optimal rules are used (cf. [2]). In the

presence of operators that are at most binary, and if the only quanti�ers are 8 and 9, the

number of clauses generated this way is in the worst case quadratic in the number of truth

values, and generate O(ln

4

) clauses for formulae containing at least one binary operator.

This upper bound is actually reached in the case of SHn-logics if the very general rules in

[2] are used as presented there. Additional improvements may be achieved by exploiting

the particular properties of the algebra of truth values. For linearly-ordered sets of truth

values, for instance, it can be shown that by using more re�ned methods, such as that

of Salzer [10], the number of clauses generated by conjunction, disjunction, and Heyting

implication is linear in the number of truth values. However, it is not clear to us whether

the same holds for sets of truth values which are not linearly ordered.

One of the main advantages of the method we present here is that only elements of

the Priestley dual of the set of truth values are used as signs, thus fewer signs have to be

taken into account in the process of translation to clause form. Our method proves to be

especially e�cient in situations when the di�erence between the number of elements of

the algebra of truth values and the number of elements of its Priestley dual is large (this

is not the case, for instance, if the set of truth values is linearly ordered).

4.1 Further improvements

The structure of D(S

n

2
) can be used in order to further reduce the number of clauses

2

.

For this, we use the fact that D(S

n

2
) consists of two branches and that the transformation

rules for the operations in f_;^;:;)g preserve the branch of D(S

n

2
). For formulae that

do not contain the De Morgan negation �, all the clauses generated by the renaming of

subformulae only contain signs in one of the branches of D(S

n

2
). It is su�cient to give a

refutation for the clauses corresponding to one of the branches of D(S

n

2
). For the other

branch a similar refutation can be constructed by simply renaming the nodes, and they

can be then combined to a refutation by resolution for the clause form of �.

2

We thank L. Iturrioz who suggested that it may be possible to further improve the e�ciency of

automated theorem proving for SHn-logics by exploiting the structure of D(S

n

2
); the remarks below show

that this is possible; a more thorough research, also for more general logics, is planned for future work.
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The set of signed clauses that would be generated in this case corresponds to the

following conjunction of formulae:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

" (1; 0) P

f

�

in I;

( " (i; 0) P

 

(x

1

; : : : ; x

n

)

t

_ " (i; 0) �(P

 

1

; : : : ; P

 

m

)

f

)

( " (i; 0) P

 

(x

1

; : : : ; x

n

)

f

_ " (i; 0) �(P

 

1

; : : : ; P

 

m

)

t

)

in I; for every i = 1; : : : ; n� 1; for all subformulae  = �( 

1

; : : : ;  

m

)

of � and all instantiations in D of the free variables x

1

; : : : ; x

n

of  ;

( " (i; 0) P

 

(x

1

; : : : ; x

n

)

t

_ " (i; 0) (Qx)P

 

1

(x; x

1

; : : : ; x

n

)

f

)

( " (i; 0) P

 

(x

1

; : : : ; x

n

)

f

_ " (i; 0) (Qx)P

 

1

(x; x

1

; : : : ; x

n

)

t

)

in I; for every i = 1; : : : ; n� 1; for all subformulae  = (Qx) 

1

(x; x

1

; : : : ; x

n

)

of � and all instantiations in D of the free variables x

1

; : : : ; x

n

of  :

In [13], where we focus on theorem proving for sets of signed clauses, we note that the

translation to clause form described above is a translation to (many-sorted) classical logic

( � L

t

stands for holds(L;�), and � L

f

for :holds(L;�)). This also explains the fact

that the polarity of formulae can be used to further reduce the number of clauses that

are generated during the translation to clause form. We think that the number of clauses

generated (e.g. by (), f)) can be further reduced by using redundancy elimination rules.

5 Resolution

Satis�ability of sets of signed clauses can be checked by using a signed resolution procedure:

C _ x L

t

D _ y L

f

C;D

provided that x � y.

A version of negative hyperresolution for signed clauses, inspired by the method for regular

clauses in [5], is presented below. Soundness and completeness can be proved as in [1, 5].

Negative Hyperresolution

n

x

1

p

f

1

o

[D

1

; : : : ;

n

x

n

p

f

n

o

[D

n

;

n

y

1

p

t

1

; : : : ; y

n

p

t

n

o

[ E

D

1

[ : : : [D

n

[ E

provided that n � 1, y

i

� x

i

for all i = 1; : : : ; n and D

1

; : : : ; D

n

; E are negative.

Alternatively, as shown in [13], the validity of � can be checked by applying classical

resolution to the set �

c

of classical clauses obtained from the signed CNF of � by replacing

� L

t

with holds(L;�), and � L

f

with :holds(L;�), to which the set of clauses Her =

ff:holds(x; �); holds(x; �)g j � � �g, expressing the heredity of truth, is adjoined.

6 Conclusions

In this paper we illustrated by one example, namely SHn-logics, an e�cient transfor-

mation procedure to a signed clause form, and a refutation procedure based on negative

hyperresolution for many-valued logics based on distributive lattices with operators. The

signed formulae we use, namely � �

t

and � �

f

, are very similar to the \positive and

negative regular formulae" of the form � i � resp. � i � introduced in [5] for regular

logics. The only di�erence is that in [5] totally ordered sets are considered, whereas we

consider duals of �nite distributive lattices

3

. In the particular case of totally ordered

3

For the linearly-ordered case, the negation of \ � i � is true" is \ � i� 1 � is true", in cases when

the set of truth values is not linearly ordered this does not necessarily hold.
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lattices of truth values, H�ahnle's notions of positive and negative literal are recovered:

� i � corresponds to � �

t

and � i� 1 � to � �

f

, where � =" i, which justi�es the

terminology \literal with positive (negative) polarity" in [5]. A detailed presentation of

these ideas for SHn-logics, an extension to a more general framework, and the description

of a Prolog implementation can be found in [12]. The detailed presentation of a general

method based on these ideas is the subject of an extended paper, currently in preparation

[14].
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