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1 Introduction

Cleverly designed software often fails to satisfy its requirements strictly, but instead satis-

�es them behaviorally, in the sense that they appear to be satis�ed under every experiment

that can be performed on the system. A good example is the traditional implementation

of sets by lists, where union as implemented by append fails to strictly satisfy basic laws

like commutativity and idempotency, but does satisfy them behaviorally. It is becoming

increasingly clear that behavioral speci�cation is more appropriate to software engineering

than traditional approaches that rely on strict satisfaction of axioms, and it is therefore

becoming increasingly important to develop powerful techniques for behavioral veri�ca-

tion. This paper presents some techniques of this kind in the area called hidden algebra,

clustered around the central notion of coinduction. We believe hidden algebra is the nat-

ural next step in the evolution of algebraic semantics and its �rst order proof technology.

Hidden algebra originated in [7], and was developed further in [8, 10, 3, 12, 5] among other

places; the most comprehensive survey currently available is [12].

Proofs by coinduction are dual to proofs by induction, in that the former are based

on a largest congruence, and the latter on a smallest subalgebra (e.g., see [12]). Inductive

proofs require choosing a set of constructors, often called a basis; the dual notion is cobasis,

and as with bases for induction, the right choice can result in a dramatically simpli�ed

proof. An interesting complication is that the best choice may not be part of the given

signature, but rather contain operations that can be de�ned over it.

An important recent development is the notion of congruent operations (these were

called \coherent"

2

in [5, 4], where they were introduced), which considerably expands the

applicability of hidden algebra and coinduction by allowing operations that have more

than one hidden argument, thus going well beyond what is possible in coalgebra (e.g., see

[14, 17]).

The most signi�cant contributions of this paper are a slightly more general notion of

congruence, the notion of cobasis, some rules of deduction for hidden algebra, and an easy

to check criterion for operations to be congruent; the �rst two items build on work in

[4]. There is also a hidden version of the so called \theorem of constants," and Theorem

25, which says congruent operations can be added or subtracted to the set of behavioral

operations as convenient, still yielding an equivalent speci�cation. The main conceptual

advance of this paper is to extend all main concepts and results of hidden algebra to

encompass operations with more than one hidden argument.

Because of space limitations, we must omit some proofs, and assume familiarity with

many sorted �rst order equational logic, including the notions of many sorted signature,

algebra, homomorphism, term, equation, and satisfaction; e.g., see [12, 11]. We let f ; g

denote the composition of f : A ! B with g : B ! C. Recall that T

�

(X) denotes the

�-algebra of all �-terms with variables from X.

2 Hidden Algebra

De�nition 1 A hidden signature is a triple (	;D;�), often denoted just �, where

1

On leave from Fundamentals of Computer Science, Faculty of Mathematics, University of Bucharest,

Romania.
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We feel that the word \congruent" better describes the role that these operations actually play.
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� 	 is a V -sorted signature and D is a 	-algebra, called the data algebra,

� � is a (V [H)-sorted signature extending 	 and such that each operation in � with

both its arguments and its result visible lies in 	, and

� V and H are disjoint sets, called visible sorts and hidden sorts, respectively.

For technical reasons, we assume that for every element d in the data algebra D there

exists exactly one constant in 	, also denoted d.

The operations in � with one hidden argument and visible result are called attributes,

those with one hidden argument and hidden result are called methods, and those with

visible arguments and hidden result are called hidden constants. A hidden subsig-

nature of � is a hidden signature (	;D;�) with � � �. A behavioral (or hidden)

�-speci�cation or -theory is a triple (�;�; E), where � is a hidden signature, � is a

hidden subsignature of �, and E is a set of �-equations. The operations in � � 	 are

called behavioral.

A hidden �-algebra is a many sorted �-algebra A such that Aj

	

= D. 2

The behavioral operations in a speci�cation are the ones that can be used in experiments,

i.e., they de�ne behavioral equivalence. The results of experiments lie in the data algebra.

Philosophically, it seems that an assertion that an operation is behavioral should be a

kind of sentence; from this view, it is an accident that the set of such sentences forms a

signature, as in the \extended signatures" of [4].

Example 2 Below is a behavioral speci�cation for sets, written in the CafeOBJ language

[5] (however, the CafeOBJ parser does not accept it, because behavioral operations with

more than one hidden argument are currently prohibited):

mod* SET1 { *[ Set ]* pr(NAT)

bop _in_ : Nat Set -> Bool ** attribute

op empty : -> Set ** hidden const

bop add : Nat Set -> Set ** method

bop _U_ : Set Set -> Set

bop _&_ : Set Set -> Set

bop neg : Set -> Set ** method

vars N N' : Nat vars X X' : Set

eq N in empty = false .

eq N in add(N',X) = (N == N') or (N in X) .

eq N in (X U X') = (N in X) or (N in X') .

eq N in (X & X') = (N in X) and (N in X') .

eq N in neg(X) = not (N in X) . }

Here \*[Set]*" declares Set to be a hidden sort, \bop" indicates a behavioral operation,

and \pr(NAT)" indicates that the module NAT of natural numbers is imported in \protect-

ing" mode, i.e., the naturals are not compromised by the new declarations and equations.

The constant empty is the only non-behavioral operation, and neg is complement with

respect to the set of all natural numbers. We will see later that this spec is equivalent to

another having in as its only behavioral operation. 2

De�nition 3 Given a hidden signature �, an (appropriate) �-context of sort s is a visible

term in T

�

(fzg[Z) having exactly one occurrence of a special variable

3

z of sort s, where

Z is an in�nite set of special variables. We let C

�

[z : s] denote the set of all �-contexts

of sort s, and var(c) the �nite set of variables of c, except z. Given a hidden signature

�, a hidden subsignature � of �, and a �-algebra A, each �-context c generates a map

A

c

: A

s

� A

var(c)

! D de�ned by A

c

(a; �) = a

�

�

(c), where a

�

�

is the unique extension of

the map (denoted a

�

) that takes z to a and each z

0

2 var(c) to �(z

0

). The equivalence

3

\Special variables" are assumed to be di�erent from any other variable in a given situation.
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given by a �

�

�

a

0

i� A

c

(a; �) = A

c

(a

0

; �) for all �-contexts c and all maps � : var(c) ! A

is called �-behavioral equivalence on A. Given any equivalence � on A, an operation

� in �

s

1

:::s

n

;s

is congruent for � i� A

�

(a

1

; :::; a

n

) � A

�

(a

0

1

; :::; a

0

n

) whenever a

i

� a

0

i

for

i = 1:::n. An operation � is �-behaviorally congruent for A i� � is congruent for

�

�

�

; we will often say just \congruent" instead of \behaviorally congruent"

4

. A hidden

�-congruence on A is an equivalence on A which is the identity on visible sorts and such

that each operation in � is congruent for it. 2

The following is the basis for several of our results, especially coinduction; it generalizes

a similar result in [12] to operations that can have more than one hidden argument.

Theorem 4 Given a hidden subsignature � of � and a hidden �-algebra A, then �-

behavioral equivalence is the largest hidden �-congruence on A.

Proof: We �rst show that �

�

�

is a hidden �-congruence. It is straightforward that it is

the identity on visible sorts because we can take the context c = z. Now let � : s

1

:::s

n

! s

be any operation in �, let a

1

�

�

�;s

1

a

0

1

, ..., a

n

�

�

�;s

n

a

0

n

, let c be any �-context of sort

s, and let � : var(c) ! A be any map. Let z

1

; :::; z

n

be variables in Z distinct from

z and from those in var(c), and take the �-contexts c

j

= c[�(z

1

; :::; z

j�1

; z; z

j+1

; :::; z

n

)]

of sorts s

j

and the maps �

j

: fz

1

; :::; z

j�1

; z; z

j+1

; :::; z

n

g [ var(c) ! A to be de�ned by

�

j

(z

i

) = a

0

i

for 1 � i < j, �

j

(z

i

) = a

i

for j < i � n, and �

j

(z

0

) = �(z

0

) for z

0

2

var(c), for 1 � j � n. Notice that A

c

(A

�

(a

1

; :::; a

n

)) = A

c

1

(a

1

; �

1

), that A

c

j

(a

j

; �

j

) =

A

c

j

(a

0

j

; �

j

) for all 1 � j � n because a

j

�

�

�;s

j

a

0

j

and c

j

and �

j

are appropriate �-

contexts and maps, that A

c

j

(a

0

j

; �

j

) = A

c

j+1

(a

j+1

; �

j+1

) for all 1 � j < n, and that

A

c

n

(a

0

n

; �

n

) = A

c

(A

�

(a

0

1

; :::; a

0

n

); �). Then A

c

(A

�

(a

1

; :::; a

n

); �) = A

c

(A

�

(a

0

1

; :::; a

0

n

); �), that

is, A

�

(a

1

; :::; a

n

) �

�

�;s

A

�

(a

0

1

; :::; a

0

n

). Therefore � is �-behaviorally congruent for A, and

so �

�

�

is a hidden �-congruence.

Now let � be another hidden �-congruence on A and let a �

s

a

0

. Because each

operation in � is congruent for �, A

c

(a; �) � A

c

(a

0

; �) for any �-context c of sort s and

any map � : var(c)! A, and because� is the identity on visible sorts, A

c

(a; �) = A

c

(a

0

; �).

Therefore a �

�

�;s

a

0

, that is, ���

�

�

. 2

De�nition 5 A hidden �-algebra A �-behaviorally satis�es a conditional �-equation

e = (8X) t = t

0

if t

1

= t

0

1

; :::; t

n

= t

0

n

i� for each � : X ! A, if �(t

i

) �

�

�

�(t

0

i

) for i = 1; :::; n,

then �(t) �

�

�

�(t

0

); in this case we write A j�

�

�

e. If E is a set of �-equations, we write

A j�

�

�

E if A �-behaviorally satis�es each equation in E. When � and � are clear from

context, we may write � and j� instead of �

�

�

and j�

�

�

, respectively. We say that A

behaviorally satis�es (or is a model of) a behavioral speci�cation B = (�;�; E) i�

A j�

�

�

E, and in this case we write A j� B; we write B j� e whenever A j� B implies

A j�

�

�

e. An operation � 2 � is behaviorally congruent for B i� � is behaviorally

congruent for every A j� B. 2

Example 6 Let SET2 be SET1 without the operation neg and the last equation. Then one

model of SET2 is �nite lists of natural numbers, with in as membership, empty the empty

list, add placing a number at the front of a list, U appending two lists, and & giving a

list containing each element in the �rst list that also appears in the second. Notice that

multiple occurrences of natural numbers are allowed in the \sets" of this model. Two lists

are behaviorally equivalent i� they contain exactly the same natural numbers, without

regard to order or number of occurrences. 2

Fact 7 If B = (�;�; E) is a behavioral speci�cation, then all operations in � and all

hidden constants are behaviorally congruent for B. 2

4

A similar notion has been given by Padawitz [16].

215



Example 8 All operations in SET1 in Example 2 are congruent. Moreover, we will show

that they are going to be congruent even if in is the only behavioral operation. 2

The following reduces behavioral congruence to behavioral satisfaction of a certain

equation, which further underlines the assertional character of this property.

Proposition 9 Given a behavioral speci�cation B = (�;�; E) and an operation � 2

�

v

1

:::v

m

h

1

:::h

k

;s

, let e

�

be the conditional �-equation (8Y; x

1

; x

0

1

; :::; x

k

; x

0

k

) �(Y; x

1

; :::; x

k

) =

�(Y; x

0

1

; :::; x

0

k

) if x

1

= x

0

1

; :::; x

k

= x

0

k

, where Y = fy

1

: v

1

; :::; y

m

: v

m

g. Then

1. � is �-behaviorally congruent for a hidden �-algebra A i� A j�

�

�

e

�

and

2. � is behaviorally congruent for B i� B j� e

�

. 2

The next result supports the elimination of hidden universal quanti�ers in proofs.

Theorem 10 Theorem of Hidden Constants: If B = (�;�; E) is a behavioral

speci�cation, e is the �-equation (8Y;X) t = t

0

if t

1

= t

0

1

; :::; t

n

= t

0

n

, and e

X

is the

(� [X)-equation (8Y ) t = t

0

if t

1

= t

0

1

; :::; t

n

= t

0

n

, where � [X is the hidden signature

obtained from � adding the variables in X as hidden constants, then B j� e i� B

X

j� e

X

,

where B

X

= (� [X;�; E).

Proof: Suppose B j� e, let A

0

be a (�[X)-algebra such that A

0

j� B

X

, and let A be the

�-algebra Aj

�

. Notice that the �-behavioral equivalences on A and A

0

coincide, and that

A j�

�

�

E. Let � : Y ! A

0

be such that �

�

(t

i

) = �

�

(t

0

i

) for i = 1:::n, and let � : Y [X ! A

0

be de�ned by �(y) = �(y) for all y 2 Y , and �(x) = A

0

x

for all x 2 X. Notice that

�

�

(t

i

) = �

�

(t

i

) = �

�

(t

0

i

) = �

�

(t

0

i

) for i = 1:::n, and A j�

�

�

e since A j�

�

�

E. Therefore

�

�

(t) = �

�

(t

0

), so that �

�

(t) = �

�

(t

0

). Consequently, A

0

j�

�

�[X

e

X

, so that B

X

j� e

X

.

Conversely, suppose B

X

j� e

X

, let A be a �-algebra with A j� B, and let � : Y [X ! A

be such that �

�

(t

i

) = �

�

(t

0

i

) for i = 1:::n. Let A

0

be the (� [X)-algebra with the same

carriers as A, and the same interpretations of operations in �, but with A

0

x

= �(x) for

each x in X. Notice that the �-behavioral equivalences on A and A

0

coincide. Also notice

that A

0

j�

�

�[X

E, so that A

0

j�

�

�[X

e

X

. Let � : Y ! A

0

be the map de�ned by �(y) = �(y)

for each y 2 Y . It is straightforward that �

�

(t

i

) = �

�

(t

i

) = �

�

(t

0

i

) = �

�

(t

0

i

) for i = 1:::n, so

that �

�

(t) = �

�

(t

0

), that is, �

�

(t) = �

�

(t

0

). Therefore A j�

�

�

e, so that B j� e. 2

The following justi�es implication elimination for conditional hidden equations:

Fact 11 Given behavioral speci�cation B = (�;�; E) and t

1

; t

0

1

; :::; t

n

; t

0

n

ground hidden

terms, let E

0

be E [ f(8;) t

1

= t

0

1

; :::; (8;) t

n

= t

0

n

g, and let B

0

be the behavioral speci�-

cation (�;�; E

0

). Then B

0

j� (8X) t = t

0

i� B j� (8X) t = t

0

if t

1

= t

0

1

; :::; t

n

= t

0

n

. 2

3 Rules of Inference

This section introduces and justi�es our rules for hidden congruent deduction. B =

(�;�; E) is a �xed hidden speci�cation throughout. The following shows soundness.

Proposition 12 The following hold:

1. B j� (8X) t = t .

2. B j� (8X) t = t

0

implies B j� (8X) t

0

= t .

3. B j� (8X) t = t

0

and B j� (8X) t

0

= t

00

imply B j� (8X) t = t

00

.

4. If B j� (8Y ) t = t

0

if t

1

= t

0

1

; :::; t

n

= t

0

n

and � : Y ! T

�

(X) is a substitution such

that

B j� (8X) �

�

(t

i

) = �

�

(t

0

i

) for i = 1:::n, then B j� (8X) �

�

(t) = �

�

(t

0

) .

5. If � 2 �

s

1

:::s

n

;s

is a congruent operation for B and t

i

; t

0

i

2 T

�;s

i

(X) for i = 1:::n such

that

B j� (8X) t

i

= t

0

i

for i = 1:::n, then B j� (8X) �(t

1

; :::; t

n

) = �(t

0

1

; :::; t

0

n

).

2

Substituting equal terms into a term is not always sound for behavioral satisfaction, be-

cause 5 above is not valid for non-congruent operations; the rules below take account of
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this fact. Let us de�ne � by B � (8X) t = t

0

i� (8X) t = t

0

is derivable from B using

(1){(5) below.

(1) Reexivity: (8X) t = t is derivable,

(2) Symmetry: (8X) t = t

0

derivable implies (8X) t

0

= t derivable,

(3) Transitivity: (8X) t = t

0

and (8X) t

0

= t

00

derivable imply (8X) t = t

00

derivable,

(4) Substitution: Given (8Y ) t = t

0

if t

1

= t

0

1

; :::; t

n

= t

0

n

in E and � : Y ! T

�

(X)

such that (8X) �(t

i

) = �(t

0

i

) for i = 1:::n are derivable, then (8X) �(t) = �(t

0

) is

derivable,

(5) Congruence: If � 2 �

s

1

:::s

n

;s

is a congruent operation and (8X) t

i

= t

0

i

are

derivable for i = 1:::n, then (8X) �(t

1

; :::; t

n

) = �(t

0

1

; :::; t

0

n

) is derivable.

Rule (5) is not fully syntactic, because the notion of congruent operation is semantic. But

Fact 7 tells us that all visible and all behavioral operations, as well as all hidden constants

are congruent, so we already have many cases where (5) can be applied. Later we will

see how other operations can be shown congruent; this is important because our inference

system becomes more powerful with each new operation proved congruent. The following

result expresses soundness of these rules with respect to both equational and behavioral

satisfaction.

Proposition 13 If B � (8X) t = t

0

then E j=

�

(8X) t = t

0

and B j� (8X) t = t

0

. If all

operations are behaviorally congruent, then equational reasoning is sound for the behav-

ioral satisfaction. 2

The rules (1){(5) above di�er from those in [4] in allowing both congruent and non-

congruent operations; moreover, CafeOBJ's behavioral rewriting [5] is a special case in

the same way that standard rewriting is a special case of equational deduction. Unlike

equational deduction, these rules are not complete for behavioral satisfaction; but they do

seem to provide proofs for most cases of interest.

3.1 Coinduction and Cobases

In this subsection, we assume B

0

= (�

0

;�

0

; E

0

) is a conservative extension of B, i.e., �

is a hidden subsignature of �

0

and for every model A of B there exists a model A

0

of B

0

such that A

0

j

�

= A. Also let � be a hidden subsignature of �

0

.

De�nition 14 Let T (�

0

;�; z :h;Z) be the indexed set of all (�

0

[�)-terms  with variables

in fzg [ Z, such that each subterm of  rooted in any operation � in � has exactly one

occurrence of z which is an argument of �, and these are the only occurrences of z in .

We let var() denote the set of variables di�erent from z of . Then � is a cobasis for B

i� for any �-context c over z of hidden sort h there is some  in T (�

0

;�; z :h; var(c)) such

that B

0

j� (8z; var(c)) c = , and � is context complete for B i� for any �-context c

over z of sort h there is some  in T

�

(fzg [ var(c)) such that B

0

j� (8z; var(c)) c = . 2

Often B = B

0

and � = �, and in this case � is both context complete and a cobasis for

B. The following justi�es coinduction:

Lemma 15 If � is a cobasis for B and B

0

j� (8Z

j

;X) �(Z

j

; t) = �(Z

j

; t

0

) for all appropri-

ate (in the sense that the sort of t and t

0

is s

j

) � : s

1

:::s

n

! s in � and for j = 1; :::; n,

where Z

j

is the set of variables fz

1

: s

1

; :::; z

j�1

: s

j�1

; z

j+1

: s

j+1

; :::; z

n

: s

n

g and �(Z

j

; t) is

the term �(z

1

; :::; z

j�1

; t; z

j+1

; :::; z

n

), then B j� (8X) t = t

0

.

Proof: We �rst prove by structural induction that B

0

j� (8Z;X) [t] = [t

0

] for all

 in T (�

0

;�; z : h;Z). If  = �(

1

; :::; 

n

) with � 2 �

0

and 

1

; :::; 

n

are terms in

T (�

0

;�; z :h;Z) such that B

0

j� (8Z;X) 

i

[t] = 

i

[t

0

] for i = 1:::n, then by 5 of Proposition

12, B

0

j� (8Z;X) �(

1

[t]; :::; 

n

[t]) = �(

1

[t

0

]; :::; 

n

[t

0

]). If  = �(

1

; :::; 

j�1

; z; 

j+1

; :::; 

n

)
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with � : s

1

:::s

n

! s in � and 

1

; :::; 

j�1

; 

j+1

; :::; 

n

2 T

�

0

(Z), then by 4 of Propo-

sition 12, B

0

j� (8Z;X) �(

1

; :::; 

j�1

; t; 

j+1

; :::; 

n

) = �(

1

; :::; 

j�1

; t

0

; 

j+1

; :::; 

n

). Thus

B

0

j� (8Z;X) [t] = [t

0

].

Let c be a �-context for t and t

0

over z, and let  be a term in T (�

0

;�; z :h; var(c)) such

that B

0

j� (8z; var(c)) c = . By 4 of Proposition 12, B

0

j� (8 var(c);X) c[t] = [t] and

B

0

j� (8 var(c);X) c[t

0

] = [t

0

], so by 3 of Proposition 12, B

0

j� (8 var(c);X) c[t] = c[t

0

].

Let A be any hidden �-algebra such that A j� B and letA

0

be a hidden �

0

-algebra such that

A

0

j� B

0

andA

0

j

�

A. ThenA

0

j� (8 var(c);X) c[t] = c[t

0

], i.e., A j� (8 var(c);X) c[t] = c[t

0

].

Because c was arbitrary, A j� (8X) t = t

0

, and thus B j� (8X) t = t

0

. 2

(6) �-Coinduction: Given t; t

0

2 T

�

(X) such that (8Z

j

;X) �(Z

j

; t) = �(Z

j

; t

0

) is

derivable from B

0

for all appropriate � : s

1

:::s

n

! s in � and for j = 1; :::; n, then

(8X) t = t

0

is derivable from B.

Notice that equations previously proved by coinduction can be used in another such proof.

Proposition 16 De�ne�

�

by B �

�

(8X) t = t

0

i� (8X) t = t

0

is derivable from B under

rules (1){(6). Then �

�

is sound for behavioral satisfaction if � is a cobasis for B. 2

Notice that �

�

is not necessarily sound with respect to equational satisfaction. The

special case of �-coinduction where � consists of all the attributes is called attribute

coinduction. The special case of attribute coinduction is implemented in Kumo [9], and

we will soon implement the coinduction rule (6) in its general form.

De�nition 17 Given a (not necessary hidden) signature �, a derived operation  :

s

1

:::s

n

! s of � is a term in T

�;s

(fz

1

; :::; z

n

g), where z

1

; :::; z

n

are special variables of sorts

s

1

; :::; s

n

. For any �-algebra A, the interpretation of  in A is the map 

A

: A

s

1

� � � � �

A

s

n

! A

s

de�ned as 

A

(a

1

; :::; a

n

) = �

�

(), where � : fz

1

; :::; z

n

g ! A takes z

i

to a

i

for

all i = 1:::n. We let Der(�) denote the signature of all derived operations of �. 2

A common case is that B

0

= (Der(�);�; E) and � is a subsignature of derived operations

over �. The following further extends the applicability of coinduction:

Fact 18 If B

0

= (Der(�);�; E) then B

0

is a conservative extension of B, and if in addition

� � Der(�) is context complete for B, then � is a cobasis for B. 2

In many cases, the form of equations suggests which operations to put into �, as in the

STACK speci�cation (Example 20), where it is easily seen that any context over top, push

and pop is equivalent to a context over only top and pop. Following [1, 2], an algorithm

for reducing the number of contexts based on context rewriting is given in [15] for certain

behavioral speci�cations

5

to reduce the number of contexts; it can be applied to get a

context complete � (when B

0

= (Der(�);�; E), see Fact 18).

The �rst e�ective algebraic proof technique for behavioral properties was context in-

duction, introduced by Rolf Hennicker [13] and further developed in joint work with Michel

Bidoit; unfortunately, context induction can be awkward to apply in practice, as noticed

in [6]. Hidden coinduction was proposed as a way to avoid this awkwardness.

4 Proving Congruence

This section discusses techniques for proving that operations are congruent with respect

to �. We �rst give a general method that requires deduction, and then a more speci�c

but surprisingly applicable method that only requires checking the form of equations.

Example 19 Consider the following behavioral theory of sets that di�ers from the one

in Example 2 by having just one behavioral operation, in; it is also written in CafeOBJ:

5

There is only one hidden sort and all operations have at most one hidden sort, but we think the method

should extend to behavioral operations with many hidden sorts as in our framework.
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mod* SET { *[ Set ]* pr(NAT)

bop _in_ : Nat Set -> Bool ** attribute

op empty : -> Set ** hidden constant

op add : Nat Set -> Set ** method

op _U_ : Set Set -> Set

op _&_ : Set Set -> Set

op neg : Set -> Set ** method

vars N N' : Nat vars X X' : Set

eq N in empty = false .

eq N in add(N',X) = (N == N') or (N in X) .

eq N in (X U X') = (N in X) or (N in X') .

eq N in (X & X') = (N in X) and (N in X') .

eq N in neg(X) = not (N in X) . }

We prove that all operations are congruent. By Fact 7, both in and empty are congruent.

Let � be the signature of NAT together with in and notice that � is a cobasis for SET

(because � contains exactly the signature of NAT and the behavioral operations), so the

six inference rules are sound for the behavioral satisfaction.

Congruence of add: By Proposition 9, we have to prove that

SET j� (8N : Nat;X;X

0

: Set) add(N;X) = add(N;X

0

) if X = X

0

:

By the theorem of hidden constants (Theorem 10), this is equivalent to proving that

SET

X

j� (8N : Nat) add(N;x) = add(N;x

0

) if x = x

0

;

where SET

X

adds to SET two hidden constants, x and x

0

. By Fact 11, it is equivalent to

SET

0

j� (8N : Nat) add(N;x) = add(N;x

0

) ;

where SET

0

adds to SET

X

the equation (8;) x = x

0

. Now we use the six inference rules to

prove that SET

0

�

fing

(8N : Nat) add(N;x) = add(N;x

0

) : The following inferences give

the proof:

1: SET

0

�

fing

(8M;N : Nat)M =M (1)

2: SET

0

�

fing

(8M;N : Nat) x = x

0

(4)

3: SET

0

�

fing

(8M;N : Nat)M in x =M in x

0

(5)

4: SET

0

�

fing

(8M;N : Nat) (M == N) = (M == N) (1)

5: SET

0

�

fing

(8M;N : Nat) (M == N) or (M in x) = (M == N) or (M in x

0

) (5)

6: SET

0

�

fing

(8M;N : Nat)M in add(N; x) = (M == N) or (M in x) (4)

7: SET

0

�

fing

(8M;N : Nat)M in add(N; x

0

) = (M == N) or (M in x

0

) (4)

8: SET

0

�

fing

(8M;N : Nat)M in add(N; x) =M in add(N; x

0

) (2); (3)

9: SET

0

�

fing

(8N : Nat) add(N; x) = add(N; x

0

) (6)

The rest follows by the soundness of the six rule inference system.

Congruence of U : By Proposition 9, Theorem 10 and Fact 11, this is equivalent to

SET

0

j� (8;) x

1

U x

2

= x

0

1

U x

0

2

; where SET

0

adds to SET the hidden constants x

1

; x

0

1

; x

2

; x

0

2

and the equations (8;) x

1

= x

0

1

; (8;) x

2

= x

0

2

. One can infer the following:

1: SET

0

�

fing

(8N : Nat) N in x

1

= N in x

0

1

(1); (4); (5)

2: SET

0

�

fing

(8N : Nat) N in x

2

= N in x

0

2

(1); (4); (5)

3: SET

0

�

fing

(8N : Nat) (N in x

1

) or (N in x

2

) = (N in x

0

1

) or (N in x

0

2

) (5)

4: SET

0

�

fing

(8N : Nat) N in (x

1

U x

2

) = (N in x

1

) or (N in x

2

) (4)

5: SET

0

�

fing

(8N : Nat) N in (x

0

1

U x

0

2

) = (N in x

0

1

) or (N in x

0

2

) (4)

6: SET

0

�

fing

(8N : Nat) N in (x

1

U x

2

) = N in (x

0

1

U x

0

2

) (2); (3)

7: SET

0

�

fing

(8;) x

1

U x

2

= x

0

1

U x

0

2

(6)

The rest follows by the soundness of the six rule inference system. The congruences of &

and neg follows similarly. 2

A similar approach was used in proving the congruence of the operations in the previous

example. We capture it in the following method for proving the congruence of an operation
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� : wh

1

:::h

k

! s for a hidden speci�cation B = (�;�; E):

Method for Proving Congruence:

� Step 1: Choose a suitable � � � and show that it is a cobasis. Usually �

is just �, in which case it is automatically a cobasis.

� Step 2: Introduce appropriate new hidden constants x

1

; x

0

1

; :::; x

k

; x

0

k

, and

new equations (8;) x

1

= x

0

1

,...,(8;) x

k

= x

0

k

. Let B

0

denote the new hidden

speci�cation.

� Step 3: Show B

0

�

�

(8Y ) �(Y; x

1

; :::; x

k

) = �(Y; x

0

1

; :::; x

0

k

); where Y is a

set of appropriate visible variables.

The correctness of this method follows from Proposition 9, Theorem 10 and Fact 11. Let's

see how it works on another example:

Example 20 The following is a CafeOBJ behavioral theory of stacks of natural numbers:

mod* STACK { *[Stack]* pr(NAT)

bop top : Stack -> Nat ** attribute

bop pop : Stack -> Stack ** method

op push : Nat Stack -> Stack ** method

var N : Nat var X : Stack

eq top(push(N,X)) = N .

beq pop(push(N,X)) = X . }

Let us prove the congruence of push using the strategy described above:

� Step 1: Let � be the signature of NAT together with top and pop. Then � is a

cobasis for STACK because it contains exactly the data signature and the behavioral

operations.

� Step 2: Introduce two hidden constants x and x

0

and the equation (8;) x = x

0

. Let

STACK

0

be the new hidden speci�cation.

� Step 3: Prove (8N : Nat) push(N;x) = push(N;x

0

). One natural proof might be:

1: STACK

0

�

ftop;popg

(8N : Nat) top(push(N; x)) = N (4)

2: STACK

0

�

ftop;popg

(8N : Nat) top(push(N; x

0

)) = N (4)

3: STACK

0

�

ftop;popg

(8N : Nat) top(push(N; x)) = top(push(N; x

0

)) (2); (3)

4: STACK

0

�

ftop;popg

(8N : Nat) pop(push(N; x)) = x (4)

5: STACK

0

�

ftop;popg

(8N : Nat) pop(push(N; x

0

)) = x

0

(4)

6: STACK

0

�

ftop;popg

(8N : Nat) x = x

0

(4)

7: STACK

0

�

ftop;popg

(8N : Nat) pop(push(N; x)) = pop(push(N; x

0

)) (2); (3)

8: STACK

0

�

ftop;popg

(8N : Nat) push(N; x) = push(N; x

0

) (6)

2

4.1 A Congruence Criterion

Let B = (�;�; E) be a hidden speci�cation and let � : v

1

:::v

m

h

1

:::h

k

! h be an oper-

ation in �, where v

1

; :::; v

m

are visible sorts and h

1

; :::; h

k

; h are hidden sorts. If W =

fy

1

: v

1

; :::; y

m

: v

m

; x

1

: h

1

; :::; x

k

: h

k

g is a set of variables then �(W ) denotes the term

�(y

1

; :::; y

m

; x

1

; :::; x

k

). Then

Theorem 21 If � is a cobasis for B in a conservative extension B

0

= (�

0

;�

0

; E

0

) of B and

if for each appropriate � : s

1

:::s

n

! s in �, there is some  in T

�

0

(Z

j

[W ) such that

6

B

0

j� (8Z

j

;W ) �(Z

j

; �(W )) =  for j = 1; :::; n, then � is behaviorally congruent for B.

Proof: By Proposition 9, the Theorem of Hidden Constants (Theorem 10) and Fact

11, it su�ces to show that B

X;X

0

j� (8Y ) �(Y; x

1

; :::; x

k

) = �(Y; x

0

1

; :::; x

0

k

), where B

X;X

0

=

(� [ X [ X

0

;�; E [ f(8;) x

1

= x

0

1

; :::; (8;) x

k

= x

0

k

g). Let B

0

X;X

0

be the hidden spec-

6

We use the same notational conventions as in Lemma 15.
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i�cation (�

0

[ X [ X

0

;�

0

; E

0

[ f(8;) x

1

= x

0

1

; :::; (8;) x

k

= x

0

k

g). It is straightforward

that B

0

X;X

0

is a conservative extension of B

X;X

0

and that � is also a cobasis for B

X;X

0

.

We claim that B

0

X;X

0

j� (8Z

j

; Y ) �(Z

j

; �(Y; x

1

; :::; x

k

)) = �(Z

j

; �(Y; x

0

1

; :::; x

0

k

)). Indeed,

it is not di�cult to observe that B

0

X;X

0

behaviorally satis�es (8Z

j

;W ) �(Z

j

; �(W )) =

, so by 4 of Proposition 12, B

0

X;X

0

satis�es (8Z

j

; Y ) �(Z

j

; �(Y; x

1

; :::; x

k

)) = 

x

and

B

0

X;X

0

satis�es (8Z

j

; Y ) �(Z

j

; �(Y; x

0

1

; :::; x

0

k

)) = 

x

0

, where 

x

and 

x

0

are  in which

each variable x

i

in X is replaced by the corresponding constants x

i

and x

0

i

, respec-

tively, and since  contains only operations in �

0

(which are behaviorally congruent for

B

0

X;X

0

), by 4 of Proposition 12, we get B

0

X;X

0

j� (8Z

j

; Y ) 

x

= 

x

0

. Then by Lemma 15,

B

X;X

0

j� (8Y ) �(Y; x

1

; :::; x

k

) = �(Y; x

0

1

; :::; x

0

k

), that is, � is behaviorally congruent for B.

2

Corollary 22 Congruence Criterion: If for each appropriate � : s

1

:::s

n

! s in � and

each j = 1; :::; n such that s

j

= s, there is some  in T

�

(Z

j

[W ) such that the �-equation

(8Z

j

;W ) �(Z

j

; �(W )) =  is in

7

E, then � is behaviorally congruent for B. 2

Most examples fall under this easy to check criterion, including every example in this

paper, and it would be easy to implement the criterion in a system like CafeOBJ.

5 Reducing the Behavioral Operations

The fewer operations � has, the easier it is to apply the �-coinduction rule. Most often,

� contains the data signature and only behavioral operations, either all or only part of

them. Therefore, it is important to have as few behavioral operations as possible in a

hidden speci�cation.

De�nition 23 Hidden speci�cations B

1

= (�;�

1

; E

1

) and B

2

= (�;�

2

; E

2

) over the same

hidden signature are equivalent i� for any hidden �-algebra A, A j� B

1

i� A j� B

2

and

in this case, �

�

1

�

=�

�

2

�

on A. 2

Assumption: B

1

= (�;�

1

; E) and B

2

= (�;�

2

; E) are two hidden speci�cations over the

same signature with the same equations and with �

1

� �

2

; also the �-equations in E have

no conditions of hidden sorts.

Fact 24 B

1

and B

2

are equivalent i� A j� B

1

implies�

�

1

�

��

�

2

�

for every hidden �-algebra

A; moreover, B

1

is a conservative extension of B

2

. 2

Theorem 25 B

1

and B

2

are equivalent i� all operations in �

2

are behaviorally congruent

for B

1

.

Proof: If B

1

and B

2

are equivalent then �

�

1

�

=�

�

2

�

for every hidden �-algebra A with

A j� B

1

. Since the operations in �

2

are congruent for �

�

2

�

(see Theorem 4), they are also

congruent for �

�

1

�

, so they are behaviorally congruent for B

1

.

Conversely, suppose that all operations in �

2

are behaviorally congruent for B

1

and let

A be a hidden �-algebra such that A j� B

1

. Then for every a; a

0

2 A

h

such that a �

�

1

�;h

a

0

,

for every �

2

-context c and for every � : var(c) ! A, we get A

c

(a; �) = A

c

(a

0

; �), that is,

a �

�

2

�;h

a

0

. Therefore �

�

1

�

��

�

2

�

, so by Fact 24, B

1

and B

2

are equivalent. 2

Example 26 The restriction on conditional equations cannot be neglected: Consider the

following CafeOBJ behavioral theory:

mod* B1 { *[ S ]*

bop f : S -> Bool ** attribute

op g : S -> Bool ** attribute

vars X X' : S

bceq g(X) = g(X') if X == X' . }

7

Modulo renaming of variables.
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Notice that g is congruent for B1. Now let us consider another CafeOBJ behavioral theory

in which g is also behavioral:

mod* B2 { *[ S ]*

bop f : S -> Bool ** attribute

bop g : S -> Bool ** attribute

vars X X' : S

bceq g(X) = g(X') if X == X' . }

Let � be the (common) signature of B1 and B2, containing the operations on the booleans

plus f : S -> Bool and g : S -> Bool. Then for any hidden �-algebra A, A j� B1 i�

A

f

(a) = A

f

(a

0

) implies A

g

(a) = A

g

(a

0

) for any a; a

0

2 A

s

, and A j� B2 under no re-

strictions. Therefore B1 and B2 are not equivalent because there exist hidden �-algebras

satisfying B2 which do not satisfy B1. Because B1 and B2 satisfy all the hypotheses in The-

orem 25 except the one regarding the conditional equations, it follows that this restriction

cannot be omitted. 2

Example 27 SET1 of Example 2 and SET of Example 19 are equivalent, because all be-

havioral operations in SET1 are congruent for SET. Similarly, STACK of Example 20 is

equivalent to the behavioral speci�cation where push is also behavioral. 2

Proposition 28 If �

1

is context complete

8

for B

2

then B

1

and B

2

are equivalent.

Proof: Let A be any hidden �-algebra such that A j� B

1

, and let a �

�

1

�;h

a

0

. Since

for every �

2

-context c over z of sort h there is some  in T

�

1

(fzg [ var(c)) such that

B

1

j� (8z; var(c)) c = , we get that A

c

= A



as functions A

h

� A

var(c)

! D, where A



is de�ned similarly to A

c

, that is, A



(a; �) = a

�

�

(). As  has visible sort and contains

only operations in �

1

(which are congruent for �

�

1

�

), we get A



(a; �) = A



(a

0

; �) for any

� : var(c) ! A. Therefore A

c

(a; �) = A

c

(a

0

; �) for any �, that is, a �

�

2

�;h

a

0

. Therefore

�

�

1

�

��

�

2

�

, and so by Fact 24, B

1

and B

2

are equivalent. 2

Example 29 Let LIST be the following behavioral speci�cation:

mod* LIST { *[ List ]* pr(NAT)

bop car : List -> Nat

bop cdr : List -> List

bop cons : Nat List -> List

bop _in_ : Nat List -> Bool

vars N N' : Nat var L : List

eq car(cons(N,L)) = N .

beq cdr(cons(N,L)) = L .

eq N' in cons(N,L) = (N == N') or (N in L) . }

If 	 is its data signature (natural numbers and booleans), and � and E are its hidden

signature and equations, then the spec is (�;	[ fcar; cdr; cons; ing; E). By the congru-

ence criterion (Corrolary 22), cons is congruent for LIST1 = (�;	 [ fcar; cdr; ing; E),

and so Theorem 25 implies that LIST and LIST1 are equivalent. They have many models,

including the standard �nite lists (a reachable model) and in�nite lists (an unreachable

model). Note that car and in can behave unexpectedly on the unreachable states of some

models.

Now let LIST2 be the behavioral speci�cation (�;	 [ fing; E). Again by the con-

gruence criterion, cons is behaviorally congruent for LIST2. One model for LIST2 is the

�-algebra of �nite lists (with any choice for car(nil) and cdr(nil), such as 0 and nil),

in which two lists are behaviorally equivalent i� they contain the same natural numbers

(without regard to their order and number of occurrences). Therefore car and cdr are

not behaviorally congruent for LIST2.

8

This makes sense becasue B

1

is a conservative extension of B

2

.
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Another interesting behavioral speci�cation is LIST3 = (�;	 [ fcar; cdrg; E), for

which cons is also behaviorally congruent, but in is not necessarily congruent, because it

can be de�ned in almost any way on unreachable states. 2
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