
Completeness and Redundancy

in Constrained Clause Logic

Reinhard Pichler

�

Technische Universit�at Wien

Abstract

In [CZ 91], a resolution-based inference system on c-clauses (i.e. constrained

clauses) was introduced, incorporating powerful deletion rules for redundancy elimi-

nation. This inference system was extended to resolution re�nements in subsequent

papers of Caferra et al. (e.g. [CP 95] and [CP 96]). The completeness proofs given

for the purely refutational calculi (i.e.: the inference systems without deletion rules)

are basically "translations" of the corresponding results from standard clause logic to

constraint clause logic.

This work focusses on the deletion rules of the calculi of Caferra et al. and, in

particular, on the c-dissubsumption rule, which is considerably more powerful than

the usual subsumption concept in standard clause logic. We will show that the "con-

ventional" method for proving the completeness of (standard clause) resolution re-

�nements with subsumption fails when the powerful deletion rules of Caferra et al.

are considered. Therefore, in order to prove the completeness of the c-clause calculi,

a di�erent strategy is required. To this end we shall use the well-known concept of

semantic trees, which can be easily extended from standard clause logic to c-clause

logic.

In general, purely non-deterministic application of the inference rules is not suf-

�cient to ensure refutational completeness. It is intuitively clear, that some sort of

"fairness" must be required. The completeness proof via semantic trees gives us a hint

for de�ning precisely what it means for a rule application strategy to be "fair".

Finally other methods for proving completeness and de�ning redundancy criteria

are contrasted with completeness via semantic trees and c-dissubsumption. In partic-

ular, it is shown that the redundancy criterion of Bachmair/Ganzinger (cf. [BG 94])

is incomparable with c-dissubsumption.

1 Introduction

In [CZ 91], a refutational calculus based on factoring and resolution is carried over in a

natural way from standard clause logic to constrained clause logic. This inference system

was extended to resolution re�nements in subsequent papers of Caferra et al. (e.g. [CP 95]

and [CP 96]). The completeness of the resulting calculi is proven in 2 steps: First the

ground completeness is proven, exploiting the fact that ground resolution on c-clauses

coincides with ground resolution on standard clauses. Then the completeness for (general)

c-clauses is shown by proving the lifting property of the refutational calculus consisting of

c-factoring and (possibly re�ned) c-resolution.

However, one is not contented with the purely refutational calculus. In order to in-

crease e�ciency, deletion rules have to be added to the inference system, so as to delete

�

Technische Universit�at Wien, Institut f�ur Computersprachen, Abteilung f�ur Anwendungen der For-

malen Logik, Resselgasse 3/1/3, A-1040 Wien, AUSTRIA, reini@logic.at

193

"redundant" clauses, e.g.: rules for deleting tautologies and subsumed clauses. But this

deletion of (c-)clauses may, in principle, destroy the completeness of the original refu-

tational calculus. Hence, the compatibility of the deletion rules incorporated into the

inference system with the original refutational rules is not trivial and must be proven

separately for every refutational calculus, e.g.: in [Lei 97] the completeness of hyperreso-

lution and of A-ordering resolution, respectively, when combined with tautology deletion

and subsumption is proven for standard clauses.

The classical deletion rules in standard clause logic aim at the deletion of the "whole"

clause, if it is detected to be redundant. Of course, these concepts of redundancy elimina-

tion can be easily translated to c-clause logic. However, the additional expressive power

provided by c-clause logic not only allows the deletion of redundant c-clauses as a whole

but also the deletion of redundant "parts" of a c-clause by introducing additional con-

straints. This is what the so-called model construction rules de�ned by Caferra et al.

actually do (cf. [CZ 91]).

Obviously, on the one hand, the additional power of the deletion rules will, in general,

make the resulting inference system on c-clauses more e�cient (if we take into account

only the number of derived clauses and if we do not care about the actual cost for checking

the redundancy), since the deletion of only parts of the ground instances of a c-clause may

already su�ce to prevent the deduction of certain resolvents. On the other hand, the

refutational completeness of the resulting inference system is by no means trivial. An

example in chapter 4 illustrates that the completeness proof in [Lei 97] for A-ordering

resolution together with subsumption is no longer valid if c-dissubsumption is applied.

Hence, the original proof idea for the purely refutational calculus (i.e.: �rst proving the

ground completeness and then the lifting property) will no longer su�ce and, therefore,

a di�erent strategy for the completeness proof is called for. To this end we use the well-

known concept of semantic trees, which can be easily extended from standard clause logic

to c-clause logic.

In general, purely non-deterministic application of the inference rules is not su�cient

to ensure refutational completeness. It is intuitively clear, that some sort of "fairness"

must be required. The completeness proof via semantic trees gives us a hint for de�ning

an appropriate rule application strategy, thus making the concept of "fairness" precise.

The principal result of this work is summarized in de�nition 3.3 and theorem 3.4, i.e.: a

precise de�nition of an inference system based on a c-resolution re�nement and a su�cient

criterion for its refutational completeness. Theorem 3.4 can then be applied to prove the

completeness of inference systems based on two common c-resolution re�nements, namely

semantic clash c-resolution and A-ordering c-resolution (cf. theorem 3.5).

In [FL 96], the concept of H-subsumption was introduced, which is a much stronger

redundancy criterion than the familiar subsumption rule. Example 4.3 shows that in

general the usual completeness proof for resolution re�nements with subsumption no longer

works, if H-subsumption is applied. By showing that H-subsumption is a special case of

the c-dissubsumption rule of Caferra et al., the completeness of semantic clash resolution

or A-ordering resolution in combination with H-subsumption is an immediate consequence

of theorem 3.5.

Finally the completeness criterion via semantic trees and the rules for redundancy

elimination of Caferra et al. are compared with other approaches in the literature. In par-

ticular, it is shown that the redundancy criterion of Bachmair/Ganzinger (cf. [BG 94]) is

incomparable with c-dissubsumption, i.e.: On the one hand, there exist clauses redundant

in the sense of [BG 94], which cannot be deleted by c-dissubsumption. On the other hand,

there are clauses which can be deleted by c-dissubsumption but whose redundancy cannot

194

be established by the criterion of [BG 94].

This work is structured as follows: In section 2, some principal aspects of the rule

system of Caferra et al. and the concept of semantic trees are revised very brie
y. In

section 3, the completeness of inference sytems based on some c-resolution re�nement and

the non-refutational rules of Caferra et al. is investigated. In section 4, subsumption on

standard clauses is revisited. Finally, in chapter 5, the completeness criterion via semantic

trees and the rules for redundancy elimination of Caferra et al. are compared with other

approaches in the literature. In chapter 6, the main results of this work are summarized

and directions for future research are indicated.

2 Basic Concepts

2.1 A Rule System on Constrained Clauses

Caferra et al. de�ned a calculus based on unre�ned c-resolution for constraint clauses

(cf. [CZ 91]) which was then further developed to c-resolution re�nements like semantic

c-resolution and semantic clash c-resolution (cf. [CP 95] and [CP 96]). Furthermore,

ordering re�nements were already discussed in the original paper [CZ 91]. Analogously to

standard clause logic, many more c-resolution re�nements are conceivable. Throughout

this paper, we shall therefore use the notation cRes

x

to denote an arbitrary c-resolution

re�nement.

The calculus of Caferra et al. comprises 3 kinds of rules, namely refutational rules,

model construction rules and structural rules. The rule de�nitions of the refutational rules

and of those model construction rules which aim at the deletion of parts of c-clauses, play

the most important role as far as completeness is concerned. Their de�nition is recalled

below. In contrast to the cDtaut- and cDsub-rule, the other model construction rules (i.e.:

the cDfact-, cDres-, GPL-, EGPL-, GMPL-rule) and the structural rules do not delete any

ground instances of c-clauses, i.e.: The cDfact-rule and the cDres-rule replace a c-clause

by two new c-clauses which contain together exactly the same set of ground instances as

the original c-clause. Moreover, the GPL-, EGPL- and GMPL-rule add new c-clauses and

the structural rules allow the transformation of a c-clause into an equivalent c-clause. For

details on these rules, the original papers have to be referred to (e.g.: [CZ 91], [CP 95],

[CP 96]). Moreover, a short overview on some principle aspects of constrained clauses and

equational problem can also be found in [Pic 98a]. Note that in contrast to the papers of

Caferra et al., we distinguish between the notation "�" (to denote syntactical identity of

equational problems) and "�" (for the equivalence of equational problems).

De�nition 2.1 (refutational rules and redundancy elimination rules) Let H(C)

be a �xed Herbrand universe. Then the rules cFact, cRes, cDtaut and cDsub are de�ned

as follows:

1. (binary) c-factorization: From the c-clause C = [L(s) _ L(t) _ c : X] over the Her-

brand universe H(C), the following c-clause may be derived:

[L(s) _ L(t) _ c : X]

[L(s) _ c : X ^ s = t]

cFact(C)

2. c-resolution: Let C

1

= [L(s)_c : X] and C

2

= [L

d

(t)_d : Y] be c-clauses over H(C).

Then the following c-clause may be derived:

[L(s) _ c : X] [L

d

(t) _ d : Y]

[c _ d : X ^ Y ^ s = t]

cRes(C

1

; C

2

)

195

3. c-distautology: Let C = [L

i

1

(s

i

1

) _ L

i

2

(s

i

2

) _ c : X] be a c-clause over H(C), where

the order of the literals is chosen s.t. the �rst 2 literal symbols are complementary,

i.e.: L

i

1

= L

d

i

2

. By the c-distautology rule, the original c-clause C may be replaced

by the following c-clause "cDtaut(C)":

[L

i

1

(s

i

1

) _ L

i

2

(s

i

2

) _ c : X]

[L

i

1

(s

i

1

) _ L

i

2

(s

i

2

) _ c : X ^ s

i

1

6= s

i

2

]

cDtaut(C)

4. c-dissubsumption: Let C

1

= [L

1

(s

1

)_ : : :_L

n

(s

n

) : X] be a c-clause over H(C) with

a �xed order of the literals and let x denote the free variables of the constraint X.

Furthermore let C

2

= [M

i

1

(t

i

1

) _ : : : _M

i

n

(t

i

n

) _ c : Y] be c-clause over H(C) with

some appropriately chosen order of the literals, s.t. the literal symbols L

j

and M

i

j

are identical. Then, by the c-dissubsumption rule, the original c-clause C

2

may be

replaced by the following c-clause "cDsub(C

1

; C

2

)":

[L

1

(s

1

) _ : : : _ L

n

(s

n

) : X] [M

i

1

(t

i

1

) _ : : : _M

i

n

(t

i

n

) _ c : Y]

[M

i

1

(t

i

1

) _ : : : _M

i

n

(t

i

n

) _ c : Y ^ Z]

cDsub(C

1

; C

2

)

where Z � :(9x)(X ^ s

1

= t

i

1

^ : : : ^ s

n

= t

i

n

):

The 2 redundancy elimination rules de�ned above have the following meaning: The

cDtaut-rule eliminates all tautological ground instances C� from the original c-clause

C. Likewise, the cDsub-rule allows the deletion of those ground instances C

2

� from C

2

,

which are subsumed by the c-clause C

1

.

2.2 Semantic Trees in c-Clause Logic

In [KH 69], the concept of semantic trees is introduced and several de�nitions like failure

node, inference node and closed semantic tree are given for standard clause logic. Since

these de�nitions can be taken over almost literally from the standard clause case to con-

straint clause logic, they are not repeated here. De�nition 2.2 of completeness via semantic

trees is slightly modi�ed w.r.t. the original de�nition in [KH 69].

De�nition 2.2 (completeness via semantic trees) Let cRes

x

be a c-resolution re�ne-

ment. Then cRes

x

is called complete via semantic trees, i� for every unsatis�able set of

c-clauses C the following conditions hold:

1. There is a �nite semantic tree T with some particular property P, s.t. T is closed

for C.

2. Let T be a closed, �nite semantic tree T with property P. Then there is an inference

node N in T and there are c-clauses C

1

; : : : ; C

k

in C which fail at nodes N

1

; : : : ; N

k

immediately below N but not at N itself, s.t. there is a c-clause D which is derived

by cRes

x

from c-factors of C

1

; : : : ; C

k

and which fails at N .

3. The semantic tree which results from deleting the nodes immediately below N from

T (N , T according to condition 2 above) can be reduced to a semantic tree T

0

which

is closed for C [fDg and which again has property P.

Although our de�nition 2.2 di�ers slightly from the one given in [KH 69], the following the-

orem on the relationship between refutational completeness and completeness via semantic

trees can be proven by exactly the same ideas as theorem 2 in [KH 69].

196

Theorem 2.3 (refutational completeness) Let cRes

x

be a c-resolution re�nement

which is complete via semantic trees. Then cRes

x

is refutationally complete, i.e.: for

every unsatis�able set C of c-clauses the empty c-clause 2 can be derived in the refuta-

tional calculus consisting of the cFact-rule and the cRes

x

-rule (and, possibly, structural

rules).

3 Complete Inference Systems

By theorem 2.3, completeness via semantic trees is a su�cient criterion for the com-

pleteness of the purely refutational calculus. In order to investigate the e�ect of the

non-refutational rules of Caferra et al. on a closed semantic tree, we introduce a binary

relation ")" on c-clauses in a derivation. Roughly speaking, "C) D" means that C is

either replaced by D or c-dissubsumed by D. In theorem 3.2 we shall show that, whenever

a c-clause C, that fails at some node N , is deleted through a non-refutational rule, then

there is a c-clause D, s.t. C) D and D fails at N .

De�nition 3.1 (relations ")" and ")

�

") Let C

0

; C

1

; : : : be the sets of c-clauses in a

derivation. We de�ne a binary relation ")" on c-clauses as follows: Suppose that for

some c-clause C there exists an i � 0 s.t. C 2 C

i

but C 62 C

i+1

. Then we distinguish 2

cases:

1. c-dissubsumption is applied to C: Suppose that there is a c-clause D 2 C

i

s.t. the

cDsub-rule w.r.t. D is applied to C and C

0

= cDsub(D;C). Then C) D and

C) C

0

.

2. any other non-refutational rule is applied to C: If there is a single c-clause C

0

2

C

i+1

s.t. C is replaced by C

0

, then C) C

0

. Likewise, if C is replaced by 2 c-clauses

C

1

; C

2

2 C

i+1

, then C) C

1

and C) C

2

.

By ")

�

" we denote the re
exive and transitive closure of the relation ")".

Theorem 3.2 (e�ect of non-refutational rules) Let C be an unsatis�able set of c-

clauses and T be a �nite semantic tree which is closed for C. Let C 2 C be a c-clause

which fails at a leaf node N of T . Furthermore suppose that C

0

is obtained from C by

applying some model construction rule (i.e.: cDtaut, cDsub, cDfact, cDres) or structural

rule to C s.t. C 62 C

0

. Then there is a c-clause D 2 C

0

, s.t. C) D and D fails at N .

Proof (sketch): Note that failure of a c-clause C at some node N only depends on the

set of ground instances contained in C and not on a speci�c representation of C. The

structural rules leave the set of ground instances of a c-clause unchanged. The model

construction rules of c-disfactorization and c-disresolution replace the original c-clause C

by 2 new c-clauses C

1

and C

2

s.t. the ground instances of C are partitioned into the

2 sets of ground instances of C

1

and C

2

. Therefore, we only consider c-distautolgy and

c-dissubsumption here, since these are the only rules which lead to the actual deletion of

ground instances. Let C = [c : X] and let c� be an instance of C which fails at N .

1. cDtaut: Suppose that C is replaced by the c-clause C

0

= cDtaut(C) = [c : X ^ Y].

But a tautology cannot fail at any node and, hence, the ground instance c� is still

contained in C

0

. Furthermore, by de�nition 3.1, C) C

0

.

197

2. cDsub: Suppose that some of the instances of C are deleted by applying the cDsub-

rule to C w.r.t. some c-clause D 2 C. Then, by de�nition 3.1, C) D and C) C

0

,

where C

0

= cDsub(D;C). We have to distinguish 2 cases:

(a) If c� is not among the deleted ground instances, then the resulting c-clause C

0

still fails at N .

(b) If D = [d : Y] subsumes c�, then there exists a ground instance d� of D, s.t.

all literals of d� are contained in the literals of c�. But then d� fails at any

node at which c� fails. Hence, also D fails at N . 3

We are now ready to formulate the main result of this work, namely a precise de�nition of

an inference system in constrained clause logic (including, in particular, a concrete de�ni-

tion of the notion of "fairness") and a su�cient condition for its refutational completeness

(cf. de�nition 3.3 and theorem 3.4):

De�nition 3.3 (inference system based on a c-resolution re�nement) Let cRes

x

be a c-resolution re�nement. Then we de�ne the inference system I

x

through the following

rule system and rule application strategy.

� rule system:

1. refutational rules: cFact, cRes

x

2. model construction rules: cDsub, cDtaut, cDfact, cDres

3. structural rules: normalization rules, variable elimination rules

� rule application strategy:

The rules may be applied non-deterministically. However, the following 3 restrictions

must be complied with:

1. fairness w.r.t. cRes

x

: Suppose that the current c-clause set C

t

at some stage in

the deduction process contains the c-clauses C

1

; : : : ; C

k

to which cRes

x

can be

applied. Then, after a �nite number of steps, the cRes

x

-resolvent D of appro-

priate c-factors C

0

1

; : : : ; C

0

k

must be actually derived. If a c-resolution step is

due and some c-clause C

i

is no longer contained in the new c-clause set C

t

0

,

then all cRes

x

-resolvents which exist for (c-factors of) D

1

; : : : ;D

k

have to be

derived instead, where D

i

2 C

t

0

and C

i

)

�

D

i

.

2. availability of appropriate c-factors: If a resolution step is to be carried out on

the c-clauses C

1

; : : : ; C

k

, then appropriate c-factors must be available, i.e.: If

L

i

is the literal to be resolved upon in c-clause C

i

, then all c-factors of C

i

which

result from unifying L

i

with any subset of literals in C

i

have to be derived before.

3. normalization of the empty clause: If a c-clause [2;X] is derived, s.t. X 6� ?,

then the normalization rule yielding the empty clause 2 has to be applied.

Remark: The above condition of "fairness w.r.t. cRes

x

" of a rule application strategy is a

generalization of the usual level saturation strategy, i.e.: A c-clause set C

i

is transformed to

the set C

i+1

by �rst deriving all possible (re�ned) c-resolvents from C

i

and then simplifying

the resulting set by �nitely many applications of structural and model construction rules.

198

Theorem 3.4 (completeness of an inference system based on a c-resolution

re�nement) Let cRes

x

be a c-resolution re�nement and I

x

be the inference system based

on cRes

x

according to de�nition 3.3. If cRes

x

is complete via semantic trees, then the

inference system I

x

is refutationally complete, i.e.: If C is an unsatis�able set of c-clauses

and the rules of I

x

are applied to C according to the rule application strategy of I

x

, then

eventually the empty c-clause 2 is derived.

Proof (sketch): Let C be an unsatis�able set of c-clauses. By assumption, the c-resolution

re�nement cRes

x

is complete via semantic trees. Hence, by condition 1 of de�nition 2.2,

there is a �nite semantic tree T with some particular property P, s.t. T is closed for C.

We prove the refutational completeness of I

x

by induction on the number of nodes n of

T :

If T has 1 node (i.e.: T consists of the root node only), then some c-clause in C must fail at

the root of T . But only a c-clause of the form [2;X] 2 C with X 6� ? can fail at the root

node. By condition 3 of the rule application strategy, we have to apply the normalization

rule, thus deriving the empty c-clause 2.

If T has n > 1 nodes then by condition 2 of de�nition 2.2, there is an inference node N in

T and there are c-clauses C

1

; : : : ; C

k

in C which fail immediately below N s.t. there is a

c-clause D derivable by cRes

x

from c-factors of C

1

; : : : ; C

k

, s.t. D fails at N . According

to condition 1 of the rule application strategy, this resolution step eventually has to be

carried out. Now suppose that some c-clause C

i

is deleted prior to this resolution step.

Then theorem 3.2 together with a simple induction argument guarantees the existence of

a c-clause D

i

in the current c-clause set, s.t. C

i

)

�

D

i

and either D

i

fails at N or D

i

can

take the place of C

i

in the resolution step at the inference node N . In the latter case, the

rule application strategy requires that this resolution step be actually carried out. But this

leads to a closed semantic tree with less than n nodes, to which the induction hypothesis

can be applied. 3

We now put theorem 3.4 to work by applying it to inference systems based on two common

c-resolution re�nements, namely semantic clash resolution and A-ordering resolution. For

a precise de�nition of these resolution re�nements on c-clauses, cf. [CP 96] and [NR 95],

respectively.

Theorem 3.5 (examples of complete inference systems) Let H be a Herbrand universe.

Furthermore let M be an interpretation over H and let <

A

be an A-ordering over H.

Then the inference systems I

M

and I

<

A

based on the c-resolution re�nements cRes

M

and cRes

<

A

, respectively, are refutationally complete.

Proof (sketch): By theorem 3.4 it su�ces to prove that cRes

M

and cRes

<

A

are complete

via semantic trees. But the completeness proof for semantic clash resolution and A-

ordering resolution on standard clauses given in [KH 69] can be easily extended to c-

clauses. 3

4 Subsumption on Standard Clauses

The c-dissubsumption rule de�ned for c-clauses in de�nition 2.1 restricts the admissible set

of ground instances of a c-clause by strengthening the constraints. To this aim, usually, new

disequations are added. In some cases this introduction of disequations can be simulated

in standard clause logic by replacing the original clause through an appropriate instance

199

thereof. However, in general, this kind of simulation is not possible. Example 4.1 shows

both cases.

Example 4.1 Let C = fC

1

; C

2

; C

3

; C

4

; C

5

g be a clause set over the Herbrand universe

H(�) with � = fa

0

; f

1

; P

2

; Q

2

g, and let the C

i

's be de�ned as follows:

C

1

= P (x; y) _Q(x; y) C

3

= P (x; x) C

5

= :P (a; f(a))

C

2

= P (x; a) C

4

= :Q(a; f(a))

The clause C

1

corresponds to the c-clause [P (x; y) _Q(x; y) : >] and C

2

to [P (x; a) : >].

Application of the cDsub-rule yields the c-clause cDsub(C

2

; C

1

) = [P (x; y) _ Q(x; y) :

y 6= a] = [P (x; y) _ Q(x; y) : (9z)y = f(z)], which corresponds to the standard clause

P (x; f(z)) _Q(x; f(z)).

On the other hand, c-dissubsumption w.r.t. [P (x; x) : >] allows us to restrict the

original c-clause [P (x; y)_Q(x; y) : >] to [P (x; y)_Q(x; y) : x 6= y]. But neither may the

original clause P (x; y)_Q(x; y) be deleted completely (without destroying the completeness)

nor can the resulting c-clause be represented by a �nite set of standard clauses.

Hence, the c-dissubsumption rule given in de�nition 2.1 is naturally more powerful than an

analogous subsumption rule de�ned on standard clauses. But even if the application of c-

dissubsumption is restricted to cases where it leads to the actual deletion of the subsumed

clause, the resulting rule is still more powerful than the usual subsumption rule in standard

clause logic. The subsumption concept obtained from restricting c-dissubsumption to

actual clause deletion in standard clause logic is the so-called H-subsumption (a term

coined in [FL 96] in order to emphasize, that this subsumption concept is parameterized

by a speci�c Herbrand universe H), i.e.: Let C be a set of clauses over the Herbrand

universe H and D be a clause over H. Then H-subsumption is de�ned as follows: C �

H

ss

D

, "C H-subsumes D", there exists a �nite subset C

0

of C s.t. for all ground substitutions

� based on H, there is a clause C 2 C

0

s.t. C �

ss

D� .

Analogously to the combination of resolution re�nements with the usual subsumption

rule, resolution re�nements can be combined with H-subsumption. However, the usual

proof found in the literature for the completeness of A-ordering resolution and semantic

clash resolution together with ordinary subsumption cannot be simply extended to H-

subsumption. This is due to the fact that the following lemma, which plays a crucial role

in the usual completeness proof, no longer works, if H-subsumption is used.

Lemma 4.2 Let Res

x

denote the set of clauses derivable either by A-ordering resolution

or by semantic clash resolution. Furthermore let C

0

�

ss

C and D 2 Res

x

(C). Then

C

0

[Res

x

(C

0

) �

ss

D, i.e.: either C

0

�

ss

D or there is an R

x

-resolvent D

0

2 Res

x

(C

0

) s.t.

D

0

�

ss

D.

Proof: cf. [Lei 97], theorem 4.2.1 and lemma 4.2.3

The following counter-example shows, that the above lemma does not hold for H-subsump-

tion, i.e.: Even though C

0

�

H

ss

C and D 2 Res

x

(C), then D is not necessarily H-subsumed

by C

0

[Res

x

(C

0

).

Example 4.3 Let C

0

= fC

1

; C

2

; C

3

; C

4

; C

5

g and C = fC

6

; C

7

g be clause sets over the

Herbrand universe H(�) with � = fa

0

; f

1

; P

1

; Q

1

; R

1

g, and let the C

i

's be de�ned as

follows:

C

1

= P (f(x)) C

4

= R(a) C

6

= P (x) _Q(x)

C

2

= Q(a) C

5

= R(f

2

(x)) C

7

= :Q(x) _R(y)

C

3

= :Q(x) _R(f(a))

200

Let <

d

be the well-known A-ordering de�ned on the term depth and the maximal depth of

variable occurrences (cf. [Lei 97], example 3.3.1) and let the interpretation M be given

through the atom representation M := fP (x); Q(x); R(f(a))g.

Then C

8

= P (x) _ R(y) is an R

<

d

-resolvent and an R

M

-resolvent of C

6

and C

7

, but

C

8

is neither H-subsumed by C

0

[Res

<

d

(C

0

) nor by C

0

[Res

M

(C

0

). Note that this is due to

the fact that the (unre�ned) resolvent R(f(a)) 2 Res(C

2

; C

3

) is neither an R

<

d

-resolvent

nor an R

M

-resolvent.

Nevertheless, with theorem 3.5 at our disposal, the completeness of A-ordering resolution

and semantic clash resolution with H-subsumption is a simple corollary.

5 Ordering-based Redundancy Criteria

Bachmair and Ganzinger introduced a general framework for proving the completeness of

an inference system (cf. [BG 94]). Within this framework, they also provide an abstract

redundancy criterion, which allows the deletion of clauses while preserving the refutational

completeness of the calculus. Their ideas were further developed by Nieuwenhuis and

Rubio (cf. [NR 95]). In particular, they modi�ed the redundancy criterion to allow for

slightly more powerful deletion rules and to provide a general pattern for completeness

proofs.

Both the criteria of Bachmair/Ganzinger and of Nieuwenhuis/Rubio aim at the deletion

of the whole clause, rather than just the redundant parts. Hence, as example 4.1 in chapter

4 already illustrated, the power of deletion rules based on these criteria naturally cannot

compare with the power of the deletion rules given in de�nition 2.1.

However, the question arises as to whether the deletion rules from section 2.1 are

still more powerful, if we restrict their application to those cases where they lead to the

actual deletion of the whole clause. In particular, the cDsub-rule then collapses to the

H-subsumption discussed in chapter 4. We shall show in this chapter, that the redun-

dancy criterion from [BG 94] is incomparable with H-subsumption. A comparison of the

redundancy criterion from [NR 95] with H-subsumption can be found in [Pic 98b].

In [BG 94], the following concrete redundancy criterion (based on an abstract criterion

not discussed here) is de�ned: A ground clause C is redundant w.r.t. a clause set C, if

there exist ground instances C

1

; : : : ; C

n

of clauses in C s.t.: C

1

; : : : ; C

n

j= C and C

i

< C for

all i. A non-ground clause C is redundant w.r.t. a clause set C, if all its ground instances

are redundant.

In order to deal with subsumption, ground instances of clauses are considered as pairs

consisting of the original clause and the instantiating substitution. An ordering on clauses

covering subsumption can then be de�ned as follows:

(C; �) < (D; �) :, 1. C� < D� or

2. C� = D� and C properly subsumes D.

The following two propositions show, that the redundancy criterion of Bachmair/Ganzin-

ger is incomparable with H-subsumption:

Proposition 5.1 (H-subsumed clause) There is a clause set C and a clause C 2 C,

s.t. C may be deleted by H-subsumption but C is not redundant by the criterion of Bach-

mair/Ganzinger.

201

Proof (sketch): Consider the clause set C = fC

1

; C

2

; C

3

; C

4

g over the Herbrand universe

H(�) with � = fa

0

; f

1

; P

2

g, where the C

i

's are de�ned as follows:

C

1

= P (x; f(y)) C

3

= P (a; f(x))

C

2

= P (f(x); y) C

4

= P (f(x); a)

Then both relations fC

1

; C

4

g �

H

ss

C

2

and fC

2

; C

3

g �

H

ss

C

1

hold.

Note that C

1

and C

2

have the common ground instance P (f(a); f(a)), i.e.: C

1

�

1

=

C

2

�

2

, where �

1

= fx f(a); y ag and �

2

= fx a; y f(a)g. By the transitivity and

irre
exivity of <, it is impossible that both inequalities (C

1

; �

1

) < (C

2

; �

2

) and (C

2

; �

2

) <

(C

1

; �

1

) are true. Hence, either C

1

or C

2

is not redundant in the sense of [BG 94], although

this clause may be deleted by H-subsumption. 3

Proposition 5.2 (redundant clause) There is a clause set C and a clause C 2 C,

s.t. C is redundant by the criterion of Bachmair/Ganzinger but C may not be deleted by

H-subsumption.

Proof (sketch): Consider the clause set C = fC

1

; C

2

; C

3

g over the Herbrand universe

H(�) with � = fa

0

; f

1

; P

1

; Q

1

; R

1

; S

1

g, where the C

i

's are de�ned as follows:

C

1

= P (a) _Q(f(a)) C

3

= Q(f(a)) _R(f(a)) _ S(f(a))

C

2

= :P (a) _R(f(a))

Then C

3

is clearly implied by C

1

and C

2

, since Q(f(a)) _ R(f(a)) j= C

3

and Q(f(a)) _

R(f(a)) is an unre�ned resolvent of C

1

and C

2

. Hence, C

3

is redundant by the criterion

of Bachmair/Ganzinger. On the other hand, C

3

is not H-subsumed by fC

1

; C

2

g. 3

6 Concluding Remarks and Future Work

First, the completeness of the calculus of Caferra et al. (including the redundancy elimi-

nation rules of c-dissubsumption and c-distautology) has been proven. This completeness

result has then been carried over to H-subsumption in standard clause logic. The compar-

ison with other redundancy concepts has basically shown that H-subsumption is a very

strong redundancy criterion. In particular, the example from proposition 5.2 of a clause

that is not H-subsumed but redundant in the sense of Bachmair/Ganzinger and Nieuwen-

huis/Rubio should not be overestimated: Actually, the "concrete" redundancy criterion

of clause implication given in [BG 94] and [NR 95] is not really concrete, since it is not

decidable on the non-ground level. Hence, even in cases where the criteria of [BG 94] and

[NR 95] are stronger than H-subsumption, the latter criterion still seems to be about the

strongest genuine concretisation of the abstract redundancy criteria that we can possibly

expect. Future work should, therefore, concentrate on a thorough complexity analysis

and on the design of an e�cient algorithm for H-subsumption (and/or c-dissubsumption)

rather than on the search for stronger concrete redundancy criteria.

The completeness proof in chapter 3 was only carried out for c-clauses without equality.

Likewise, the completeness of H-subsumption was only concluded for standard clauses

without equality. In [HR 91], the semantic tree method is extended to trans�nite semantic

trees so as to cover clauses with equality. Furthermore, some new de�nitions and a new

proof strategy (namely, trans�nite induction) are introduced to prove the completeness of

several calculi using paramodulation and some re�nements thereof via trans�nite semantic

trees. For details, [HR 91] has to be referred to. However, analogously to theorem 3.2,

202

it can be shown that the "maximum consistent tree" does not grow when one of the

non-refutational rules from Caferra et al. is applied. But then an extension of theorem

3.4 to an analogous completeness result for an inference system based on a c-resolution

re�nement and a c-paramodulation re�nement should not be too di�cult.

From a theoretical point of view, this extension to clauses with equality is necessary to

arrive at a �nal judgement in the comparison between the power of H-subsumption and the

redundancy concepts of [BG 94] and [NR 95]. A more practical motivation for this kind

of extension is the search for an appropriate de�nition of a "fair" rule application strategy

also in case of clauses with equality. In chapter 3, a natural de�nition of fairness of a

rule application strategy came as a by-product of the completeness proof. Note that the

concept of "fair" theorem proving derivations from [BG 94] and [NR 95] is rather abstract.

In particular, the set C

1

of persisting clauses is not available during the deduction process

itself. Again, our de�nition of fairness from de�nition 3.3 can be seen as some kind of

concretisation of the corresponding concepts from [BG 94] and [NR 95].

References

[BCP 94] Ch. Bourely, R.Caferra, N.Peltier: A Method for Building Models automatically. Experiments

with an Extension of Otter. Proceedings of CADE-12, LNAI 814, pp. 72-86 Springer (1994).

[BG 94] L.Bachmair, H.Ganzinger: Rewrite-based Equational Theorem Proving with Selection and

Simpli�cation, Journal of Logic and Computation, Vol 4 No 3, pp. 217-247 (1994).

[CL 89] H. Comon, P. Lescanne: Equational Problems and Disuni�cation, Journal of Symbolic Com-

putation, Vol 7, pp. 371-425 (1989).

[CP 95] R.Caferra, N.Peltier: Extending semantic Resolution via automated Model Building: appli-

cations, Proceedings of IJCAI'95, Morgan Kaufmann (1995)

[CP 96] R.Caferra, N.Peltier: Decision Procedures using Model Building Techniques, Proceedings of

CSL'95, LNCS 1092, pp.130-144, Springer (1996).

[CZ 91] R.Caferra, N.Zabel: Extending Resolution for Model Construction, Proceedings of Logics in

AI - JELIA '90, LNAI 478, pp. 153-169, Springer (1991).

[FL 96] C.Ferm�uller, A.Leitsch: Hyperresolution and Automated Model Building, Journal of Logic

and Computation, Vol 6 No 2, pp.173-230 (1996).

[HR 91] J.Hsiang, M. Rusinowitch: Proving Refutational Completeness of Theorem-Proving Strategies:

The Trans�nite Semantic Tree Method, Journal of the ACM, Vol 38 No 3, pp. 559 - 587 (1991).

[KH 69] R.Kowalski, P.J.Hayes: Semantic Trees in Automated Theorem Proving, Machine Intelligence

4, pp. 87-101, Edinburgh University Press (1969).

[Lei 97] A.Leitsch: The Resolution Calculus, Texts in Theoretical Computer Science, Springer (1997).

[NR 95] R.Nieuwenhuis, A.Rubio: Theorem Proving with ordering and equality constrained clauses,

Journal of Symbolic Computation, Vol 11, pp. 1-32 (1995).

[Pic 98a] R.Pichler: Extending Decidable Clause Classes via Constraints, in Proceedings of FTP'98

(International Workshop, First-Order Theorem Proving), Vienna (1998).

[Pic 98b] R.Pichler: Completeness and Redundancy in Constrained Clause Logic (full version), technical

report TR-CS-RP-98-3 of the Technical University of Vienna, available as ftp://ftp.logic.

at/pub/reini/redu.ps (1998).

203

