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{ Position Statement {

I am currently writing my doctoral thesis on \computational representation of models

of �rst-order formulas". My main motivation for investigating this topic comes from the

�eld of automated model building (see e.g. [1, 2, 4, 5, 10, 12, 13]), a sub�eld of automated

theorem proving that attempts to design algorithms for �nding models of satis�able �rst-

order formulas. Note that a model of a formula :A is nothing else than a counterexample

of A, which may be of substantial help for �nding the reason why A failed to be valid.

Clearly, the ability to represent models of �rst-order formulas in a computationally feasible

way is a necessary prerequisite for building them. However, representation mechanisms

for particular models of �rst-order formulas play an important role in many other �elds

too, e.g. semantic resolution, model checking, deductive databases, etc. This makes it

worthwhile to investigate mechanisms for representing interpretations of �rst-order for-

mulas symbolically by their own, aiming to accompany work in the �eld of automated

model building.

By not restricting ourselves to �nite models, we come to the necessity of coping with

symbolic representations. But even for �nite models a concise symbolic representation

may be a lot easier to deal with than the explicit table-notation of a large �nite model. To

call a symbolic representation of a (Herbrand) model a model representation, we require
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to have (good) algorithms for the ground atom test (i.e. to decide whether a given

ground atom is true in the given model), the equivalence check (i.e. to decide whether

or not two representations represent the same model) and for clause evaluation (i.e. to

decide whether a given clause is true in the given model).

From a theoretical point of view it makes sense to focus on Herbrand models of skolem-

ized formulas (or clause sets), as Herbrand models exist for all satis�able formulas of this

kind. But this is also justi�ed from a practical viewpoint to utilize the intuitive requirement

of understandability, because in Herbrand models the domain and the interpretation

of the function symbols are clear, �xed and intuitive. However a Herbrand model over

a �xed signature is fully speci�ed by a description of its potentially in�nite set of (true)

ground atoms, i.e. a set of terms (or strings, depending on how we want to look at them).

This point of view reveals the (to our opinion) most interesting aspect of our approach:

We are lead to investigating model-theoretic properties in terms of syntactical properties

of the corresponding true-ground-atom set.

Various representation mechanisms, evolving from automated model building or having

been developed independently (e.g. in formal language theory, automata theory, rewriting,

etc.) appear as candidates for model representations. Still algorithms for using those
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These requirements were �rst raised in [4] to characterize the term model representation.
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formalisms as model representations are not so widely investigated.

I am interested particularly in characterizing the models that are representable by

the di�erent mechanisms and in comparing their expressiveness and their computational

feasibility, which includes developing (good) algorithms and analyzing the complexity of

the three basic evaluation problems mentioned before.

In my recent work I concentrated on classical term-set representations, in particular

on tree automata and grammars. They were compared with other well known represen-

tations like atom representations (see [3, 4, 11]), congruences of equational systems, etc.

and algorithms and complexity issues were investigated; see [6{9]. For the future it is

planned to work towards a more accurate analysis of other representations like repetitive

terms, constrained grammars, atoms with equational constraints etc. and to investigate

the incorporation of equality. There is also hope that from a deeper insight into model

representations, it will be possible to develop automated model building procedures for

interesting classes of �rst-order formulas.
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