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Abstract

We prove an upper bound on the heights of terms occurring in a most general

uni�er of a system of pairs of terms in case when unknowns are divided to two types.

An unknown belongs to the �rst type if all occurrences of this unknown have the same

depth, we call such unknown an unknown of the cut type. Unknowns of the second

type (unknowns of not the cut type) are unknowns that have arbitrary occurrences.

We bound from above the heights of terms occurring in a most general uni�er in terms

of the number of unknowns of not the cut type and the height of the system. This

bound yields an upper bound on the sizes of proofs in the Gentzen sequent calculus

LK. Namely, we show that one can transform a proof D in LK by substituting some

free terms in places of variables in such a way that the heights of terms occurring

in the proof may be bounded from above by ar [D]

h

c

� q

�

[D] � h

0

, where ar [D] is the

maximal arity of function symbols occurring in D, h

c

is the maximal depth of object

variables occurring free in applications of the cut rule, h

0

is the maximal height of

terms occurring in S and in side formulas of applications of the cut rule, q

�

is the

number of analysis of applications of the rules ! 9 , 8 ! in D.

There are two basic ways of measuring the complexity of proofs: to count the number

of proof lines and to count the total size of the proof. This study is related to the second

approach. Our goal is to estimate the sizes of terms occurring in proofs in the Gentzen-

style calculi. For cut-free proofs such bounds were studied by Kraj���cek and Pudl�ak [3].

They proposed to bound the sizes of terms occurring in arbitrary proof applying the cut-

elimination theorem. Since Statman [12] and Orevkov [4] independently showed that the

height of deduction obtained by eliminating all cuts cannot be bounded from above by a

Kalmar elementary function of the length of the original deduction, this approach does

not provide any achievements. Related problem has been considered in [8]. A technique

of transforming proofs in the Gentzen-style calculus that was described there does it in

such a way that the heights of free terms occurring in applications of the cut rule and

applications of the rules ! 9 and 8 ! were bounded from above in terms of the scheme

of the proof and its last sequent. However, there was a restriction that the depths of closed

variables occurring in formulas of the cut rule applications had to be zeros. In this paper

we surmount this restriction.

Our results are based on a reduction to the uni�cation problem. Reductions to the

uni�cation problem are widely used in investigations of proof structure in predicate calculi

�
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and of bounds for such proofs. The reduction to the uni�cation problem is implicit in

Parikh's paper [9], it was later developed by Farmer [1, 2], by Kraj���cek and Pudl�ak [3],

and by Orevkov [6, 5].

The uni�cation problem for a system � of pairs of terms f(T

i

;�

i

)g is a problem to �nd

a substitution of terms for the free variables such that �(T

i

) = �(�

i

) (we write application

of a substitution on the left). Such a substitution is called a uni�er for a system �. A most

general uni�er (mgu) for � is a uni�er � such that any uni�er �

0

for � can be decomposed

into �

0

= � � � for some substitution �. Robinson [11] showed that if a system � can be

uni�ed there is a most general uni�er for it.

Since the uni�cation problem arises in this paper in connection with predicate calculus,

we distinguish (object) variables and unknowns (metavariables for terms). Henceforth we

use the term unknown when referring to the uni�cation problem.

1 Upper bound on the heights of terms in a most general

uni�er

We use the representation of terms by directed acyclic graphs (DAG) developed by Pater-

son and Wegman [10]. In such representation equal subterms are represented by a single

subgraph. Given a uni�er of a system of pairs of terms one can construct an equivalence

relation on the vertices of DAG declaring two vertices to be equivalent if and only if the

uni�er maps the corresponding subterms into equal terms. In [10] a valid equivalence

relation has been introduced. Given a valid equivalence relation on vertices of DAG, one

can construct a uni�er and to a minimal valid equivalence relation on vertices corresponds

a most general uni�er of the system ([10], Lemma 2). We use this correspondence between

uni�ers and valid equivalences in the rest of the paper.

Suppose a system of pairs of terms � = f(T

i

;�

i

)g has a most general uni�er �. Consider

a graph G(�) representing terms of � and a minimal valid equivalence relation � on the

vertices of G(�). We de�ne a graph G

0

(�) whose vertices are the equivalence classes of

vertices of the graph G. An edge leads from a vertex C

1

to a vertex C

2

if and only if

the class C

1

contains a vertex x

1

, the class C

2

contains a vertex x

2

and there is an edge

x

1

! x

2

in the graph G(�). Clearly the graph G

0

(�) represents all the terms from the

result of application of � to the terms T

i

, �

i

. If a vertex of G

0

(�) (i.e., an equivalence

class) contains an unknown t we say that the vertex is labeled by t. One vertex may be

labeled by a variety of unknowns.

Let u be an occurrence of a subterm t

0

in a term t. We denote the depth of the

occurrence u in the term t by h

u

[t]. The maximum of depths of all occurrences of unknowns

and function constants to the term t is the height h[t] of the term. The height of a most

general uni�er of a system of terms � = f(T

i

;�

i

)g is the maximum of the heights of �(T

i

),

�(�

i

). We call an unknown x an unknown of the cut type if depths of all occurrences of

x in terms of � are equal, and an unknown of not the cut type otherwise.

Lemma 1 Let � = f(T

i

;�

i

)g be a system of pairs of terms. If � has a uni�er, then

there is such a system �

�

= f(T

�

i

;�

�

i

)g that h[�

�

] = h[�], unknowns of the system �

�

are

unknowns of �, most general uni�ers of both systems map common unknowns into equal

terms and for all unknowns of the cut type of a system �

�

holds the follows. If a vertex u

is labeled by an unknown x there is such a vertex v labeled by an unknown of not the cut

type that there is a path in G

0

(�

�

) from u to v whose length is not greater than h

x

[�

�

]
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Proof. We introduce a notion of a trace to an occurrence of a subterm in a term. Let

T be a term, and t its subterm. A trace in the term T to an occurrence u of the term t is

a sequence of pairs f(f

i

1

; n

1

); (f

i

2

; n

2

); : : : ; (f

i

l

; n

l

)g where f

i

k

is a N

k

-ary function symbol

and n

k

is the number of an argument of f that leads to the occurrence u of t. The length

of a trace is the length of such sequence. Let T be a term and P be a sequence of pairs

of function symbols and integers. We say that P determines a subterm t of T and its

occurrence if a trace in T to this occurrence of t is equal to P.

To construct the system �

�

we consider a sequence of systems �

(k)

and integers N

(k)

.

We say that the condition (�) holds for a system � and a number N if

(�) For any unknown x of the cut type whose depth is less then N , if a vertex u of the

graph G

0

[�] is labeled by x then there is such a vertex v labeled by an unknown of

not the cut type that there is a path in G

0

[�] beginning from v and ending in u of

the length at most h

x

[�]

We begin our construction from the system �

(0)

= � and we de�ne N

(0)

as the minimum

of the depths of all occurrences of unknowns of the cut type. Then the condition (�) holds

for the system �

(0)

and the number N

(0)

since the depths of all unknowns of the cut type

are greater than or equal to N

(0)

.

Suppose we constructed such a system �

(k)

and a number N

(k)

that the condition (�)

holds for �

(k)

and N

(k)

. Then one of following possibilities holds.

1. The condition (�) holds for the system �

(k)

and the number N

(k)

+ 1. If the depths

of all occurrences of unknowns of the cut type are less then N + 1, we �nish our

construction and we take �

(k)

as �

�

. If there is an unknown of the depth greater

than N , then the condition (�) holds for the system �

(k)

and the number

N

(k+1)

= min

(

h

u

[�

(k)

]

�

�

�

�

�

u is an occurrence of a variable of the cut type

to the system �

(k)

, such that h

u

[�

(k)

] > N

(k)

)

:

Then we take �

(k)

as �

(k+1)

.

2. Let x be an unknown of the cut type of the depth N

(k)

. Let u denote an occurrence

of x in one of the terms T

(k)

i

;�

(k)

i

, say in T

(k)

l

. Consider the pair (T

(k)

l

;�

(k)

l

) and a

trace P to the occurrence u in the term T

(k)

l

. As the system �

(k)

has a uni�er there

is such a subterm of the term �

(k)

l

that either the trace to this subterm is pre�x of

P or P is pre�x of this trace. One of the follows holds.

(a) The trace in the term �

(k)

l

is shorter than P and it terminates by an unknown

z of not the cut type.

(b) The trace in the term �

(k)

l

is shorter than P and it terminates by an unknown

w of the cut type.

(c) The length of the trace in the term �

(k)

l

is greater than or equal to the length

of P. Then P determines a subterm t

u

ant its occurrence in �

(k)

l

.

In the �rst case there is a path in the graph G

0

[�

(k)

] ending in x whose length is not

greater than h

x

[�

(k)

] and that begins from a vertex labeled by an unknown of not

the cut type.
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In the second case, since the depth of the unknown w is less than the depth of x and

the condition (�) holds for �

(k)

and N

(k)

, there is an unknown of not the cut type z

and a path in G

0

[�

(k)

] of the length at most h

w

[�

(k)

] from a vertex labeled by z to a

vertex labeled by w. Hence, there is a path in the graph G

0

[�

(k)

] from z to x of the

length at most h

w

[�

(k)

] plus the di�erence of depths of w and x that is h

x

[�

(k)

].

Note that if for all unknowns of the cut type of the depth N

(k)

possibilities (a) or

(b) hold and there is no unknown of the cut type such that the possibility (c) holds,

then the condition (�) holds for the system �

(k)

and for the number N

(k)

+ 1.

If the third case holds for all occurrences of x in �

(k)

we replace all occurrences of

the unknown x by the term t

u

and denote the resulting system by �

(k+1)

. Since for

all occurrences u of x in �

(k)

, terms t

u

belongs to one equivalence class, a uni�er of

�

(k)

uni�ers the system �

(k+1)

as well. It follows, most general uni�ers map common

unknowns of systems �

(k)

and �

(k+1)

to equal terms. As the depths of all occurrences

of x are equal, h[�

(k+1)

] = h[�

(k)

].

For system �

�

and the number N

(k)

+1 the condition (�) holds. The depths of unknowns

of the cut type do not exceed N

(k)

, thus, the system �

�

satis�es the conditions of lemma.

2

Lemma 2 Suppose that a system of pairs of terms � = f(T

i

;�

i

)g contains n unknowns

of not the cut type. Let h

0

= h[�] and h

1

be the maximal depth of unknowns of the cut

type. Then the height of a most general uni�er for � is at most (ar [�]

h

1

+1) �n � h

0

where

ar [�] is the maximal arity of function symbols of �.

Proof. We use a bound on height of a most general uni�er proposed by Orevkov [8] and

independently by Kraj���cek and Pudl�ak [3]:

h[�] � N � h

0

;

where N is the total number of unknowns of the system �. We construct a system �

�

using Lemma 1 and estimate the total number of unknowns of the system �

�

. Consider a

graph G

0

[�

�

] . By Lemma 1 for any unknown of the cut type there is such a vertex u of

G

0

[�

�

] labeled by an unknown of not the cut type that the length of the path from u to x

is not greater than h[�

�

]. Thus we can estimate the number of unknowns of the cut type

of �

�

by counting the number of vertices of G

0

[�

�

] that are at the distance of at most h

1

from a vertex labeled by an unknown of not the cut type. There can be at most ar [�]

h

1

such unknowns. Hence the total number of unknowns of �

�

does not exceed ar [�]

h

0

�n+n.

It follows the bound from the conditions of the lemma. 2

The next lemma shows that this bound is quite precise.

Lemma 3 For any integers l � 2 and k � 1 there exists such a system of pairs of terms

� that it contains n = 2k � 1 unknowns of not the cut type, the height of the system

h

0

= 2l + 1 and

h[�] � 1=2(n� 1) � ar[�]

h

0

=2�1

:

Proof. We construct a system that satis�es the conditions of Lemma in a straightforward

way, though the construction is not very simple. Let consider following shortening

G

(1)

(x

1

; x

2

)

*

)

g(x

1

; x

2

);
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G

(i)

(x

1

; x

2

; : : : ; x

2

i

)

*

)

g(G

(i�1)

(x

1

; : : : ; x

2

i�1

); G

(i�1)

(x

2

i�1

+1

; : : : ; x

2

i

)); for i � 2

e

G

(i)

(x

1

; x

2

; : : : ; x

2

i

; x

2

i

+1

; x

2

i

+2

; x

2

i

+3

) = g

�

G

(i)

(x

1

; x

2

; x

3

; c; : : : ; c); G

(i)

(x

4

; : : : ; x

2

i

;

x

2

i

+1

; x

2

i

+2

; x

2

i

+3

)) ; for i � 2

C

i

(x)

*

)

f(f(: : : (f

| {z }

i

(x) : : :)));

where g is a two-place function symbol, c is a function constant. We useG

(i)

,

e

G

(i)

and C

i

(x)

as ordinary function symbols. Note that two terms G

(i)

(t

1

; : : : ; t

2

i
) and G

(i)

(�

1

; : : : ; �

2

i
)

have a uni�er if and only if the system of pair terms f(t

1

; �

1

); : : : (t

2

i
; �

2

i
)g has a uni�er.

Similar statement holds for

e

G

(i)

and for C

i

.

Consider a system � = f(T

i

;�

i

)g, where

T

i

=

e

G

(l)

�

C

l+1

(z

(i�1)

0

); C

l+1

(y

(i)

2

l

); : : : ; C

l+1

(y

(i)

1

); f

�

G

(l)

�

y

(i)

1

; : : : ; y

(i)

2

l

��

;

G

(l)

�

z

(i)

1

; : : : ; z

(i)

2

l

��

;

�

i

=

e

G

(l)

�

C

l

(z

(i)

2

l

); C

l

(z

(i)

2

l

�1

); : : : ; C

l

(z

(i)

0

); f

�

u

(i)

�

; u

(i)

�

:

The representations of terms T

i

and �

i

by planar rooted trees is shown at �gures 1 and

2, respectively. It is not hard to see that the system � satis�es the conditions of Lemma.

...... .....

......

fff f

g g

g

g

z

(i)

1

z

(i)

2

n

�1

z

(i)

2

z

(i)

2

n

y

(i)

1

z

(i�1)

0

y

(i)

2

n

y

(i)

1

y

(i)

2

n

�1

y

(i)

2

y

(i)

2

n

ff f

ff f

e

G

(n)

0

gg

2n

2n+ 1

2n+ 2

n+ 1

Figure 1: Representation of term T

i

.

2
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......

ff f

u

(i)

u

(i)

f f

e

G

(n)

0

2n

2n+ 1

n+ 1

z

(i)

2

n

z

(i)

2

n

�1

f f

f

f

z

(i)

0

f

Figure 2: Representation of term �

i

.

2 Upper bounds on the height of terms in proofs

We transform proofs using its scheme, by which we mean a sequence of analysis of ap-

plications of rules and axioms. In an analysis of a logical axiom we indicate the index

numbers of the occurrences of the principal formula of the axiom in the succedent and

the antecedent, in an analysis of the application of a rule we indicate the index number

of the rule, the index numbers of the premises and the index numbers of the occurrences

of all the formulas that play an active role in the application of the rule. Orevkov [7]

and Kraj���cek and Pudl�ak [3] showed that in general case the problem of �nding a proof

of a sequent given its scheme is unsolvable. In [8] a notion of deduction scheme with �xed

cut types were introduced. To any analysis of an application of the cut rule a formula is

added in such a way that the added formulas have no free variables in common. We call

the added formula a type of the analysis of the cut rule. Let S be a sequent, t

1

; : : : ; t

n

a

list of pairwise distinct object variables, U a deduction scheme with �xed cut types, D a

proof. We say that D is a (t

1

; : : : ; t

n

)-deduction of S in accordance with U , if the following

conditions hold.

1. D is a deduction in accordance with the scheme obtained from U by deleting all

formulas.

2. The type of the analysis of any application of the cut rule in D is transformable into

its side formula by substituting terms in place of free variables.

3. There are terms T

1

; : : : ; T

n

such that T

i

is free for t

i

in S for all i, and the last

sequent of D is [S]

t

1

;:::;t

n

T

1

;:::;T

n

.

A deduction scheme is correct if there exists a deduction in accordance with this scheme.

A proof is called a universal (t

1

; : : : ; t

n

)-deduction of a sequent S in accordance with

a scheme U if D is a (t

1

; : : : ; t

n

)-deduction of S in accordance with U and any (t

1

; : : : ; t

n

)-
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deduction of S in accordance with U can be obtained by substituting terms for free oc-

currences of variables.

Let D be a (t

1

; : : : ; t

n

)-deduction of a sequent S in accordance with a scheme U , L

an application of the cut rule in D. The terms involved in the substitution transforming

the type of the analysis of L into the side formula of L is called the proper terms of L.

The terms involved in the substitution transforming S into last sequent of D is called the

proper terms of D.

Consider the uni�cation problem for a system of pairs of terms with constraints (CT-

systems for short). Terms of such system are constructed from unknowns (metavariables

for terms) t

1

; : : : ; t

n

, function symbols f

1

; : : : ; f

m

and object variables x

1

; : : : ; x

p

. The

system � itself consists of two parts � = �[�, the �rst is an ordinary uni�cation problem

� = f(T

i

;�

i

)g

N

i=1

;

and the second is a set of constraints of the following type

� = fx

i

62 R

i

g

M

i=1

;

where T

i

,�

i

,R

i

are terms and x

i

are object variables. We call a mapping � a solution of a

system f�;�g if its uni�ers � and �(R

i

) do not contain x

i

for all i: 1 � i �M . We have

following trivial lemma.

Lemma 4 If there exists a uni�er for � which satis�es a set of conditions �, then any

most general uni�er for � satis�es the conditions too.

We construct a CT-system �fU ;S; t

1

; : : : ; t

n

g given a (t

1

; : : : ; t

t

)-proof of a sequent S

by induction on h(U) similarly to the construction of such a system in [8]. In fact we

only change the original construction for axioms. Let �fS; t

1

; : : : ; t

n

g denote the list of

all expressions x 62 t

j

; 1 � j � n, where x is an object variable occurring in a quanti�er

complex governing some free occurrence of t

i

in S.

If h(U) = 0, the proof consists of a single axiom, the only sequent in the proof is

�

1

; A;�

2

;! �

3

; A;�

4

for a principal formula A. The analysis of an axiom contains

indices of two principal occurrences of A in the axiom, say n

1

and n

2

. Let A

1

denote a

formula whose occurrence in S has index n

1

and A

2

the formula whose occurrence in S

has index n

2

. It is not hard to see that A

1

and A

2

can be transformed by replacing certain

free unknowns with terms into A.

We construct a set � of pairs of terms � by induction on the construction of the formula

A as follows. If A is atomic,

A

1

= P (T

1

; : : : ; T

s

); A

2

= P (�

1

; : : : ;�

s

);

where P is a s-ary predicate symbol, we consider a set of pairs of terms � = f(T

i

;�

i

)g

s

i=1

.

If A = A

0

�A

00

where � is one of &, _, �, we construct two sets �

0

for A

0

1

; A

0

2

and �

00

for

A

00

1

; A

00

2

inductively and let � = �

0

[ �

00

. If A = Qx A

0

where Q is one of the quanti�ers or

A = :A

0

we construct a set of pairs of terms �

0

for A

0

and let � = �

0

. Finally we de�ne

�fU ;S; t

1

; : : : ; t

n

g = f�;�fS; t

1

; : : : ; t

n

gg.

For h(U) > 0 the proof ends with the application of an l-premise rule L (1 � l � 2).

Let U

i

denote the deduction scheme occurring in U above the i-th premise of the last

analysis.

Suppose that L introduces a propositional connective. Let S

1

; : : : S

l

be the sequents

from which S is obtained by L. We de�ne CT-system �fU ;S; t

1

; : : : ; t

n

g to be the union
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of CT-systems �fU

1

;S

1

; t

1

; : : : ; t

n

g; : : : ; �fU

l

;S

l

; t

1

; : : : ; t

n

g and list �fS; t

1

; : : : ; t

n

g, �rst

renaming the unknowns for terms in these CT-systems so that they will have no common

unknowns other than t

1

; : : : ; t

n

.

Suppose that L is the cut rule. Then it has two premises. Let A be the type of the last

analysis in U and V a list of all free variables of A. Let S

1

and S

2

be sequents from which S

follows by the cut rule with A as a side formula. We de�ne CT-system �fU ;S; t

1

; : : : ; t

n

g

to be the union of �fU

1

;S

1

; t

1

; : : : ; t

n

; V g and �fU

2

;S

2

; t

1

; : : : ; t

n

; V g, with variables for

terms renamed so that they have no common unknowns in the list t

1

; : : : ; t

n

; V .

Suppose that L is the rule ! 8 or 9 !. Then l = 1. Let b be a variable not occurring

in S and distinct from t

1

; : : : ; t

n

. Let S

1

be a sequent from which S follows by L with b

as proper variable. As �fU ;S; t

1

; : : : ; t

n

g we take the CT-system

8

>

<

>

:

�fU

1

;S

1

; t

1

; : : : ; t

n

g

�fS; t

1

; : : : ; t

n

g

b 62 t

i

1

; : : : ; b 62 t

i

r

:

where t

i

1

; : : : t

i

r

is the list of all variables t

1

; : : : ; t

n

that occur free in S.

Suppose that L is the rule 8 ! or ! 9. Then l = 1. Let t be a variable not occurring

in S and distinct from t

1

; : : : ; t

n

. Let S

1

be a sequent from which S follows by L with t

as proper variable. As �fU ;S; t

1

; : : : ; t

n

g we take the union of �fU

1

;S

1

; t

1

; : : : ; t

n

; tg and

the list of constraints �fS; t

1

; : : : ; t

n

g.

Lemma 5 For any correct deduction scheme U in LK with �xed cut types, any sequent

S, if there exists a (t

1

; : : : ; t

n

)-deduction D of S in accordance with U , then there exists a

universal (t

1

; : : : ; t

n

)-deduction D

�

of S in accordance with U , such that for any term T

that is a proper term of D

�

, ! 9 , 8 ! , cut, the following inequality holds:

h[T ] � (ar[D]

h

1

) � (q

�

+ n) � h

0

;

where ar[D] is the maximal arity of function symbols occurring in S and in the analysis

of the cut rules, h

1

is the maximal depth of object variables occurring free in analysis of

the cut rules, h

0

is the maximal height of terms occurring in S and in side formulas of

applications of the cut rule, and q

�

is the number of analysis of applications of the rules

! 9 , 8 ! in the scheme U .

Proof. It is not hard to see by induction on h[U ] that a proof D in LK is a (t

1

; : : : ; t

n

)-

deduction of a sequent S in accordance with a scheme U if and only if the list of proper

terms of D and of proper terms of applications of the cut rule, ! 9, 8 !, is a solution of

�fU ;S; t

1

; : : : ; t

n

g and a universal solution generates a universal (t

1

; : : : ; t

n

)-deduction of

S in accordance with U .

While we construct a system � we enlarge the set of n unknowns t

1

; : : : ; t

n

when we

consider the cut rule and the rules 8 ! and ! 9. The di�erences of depths of unknowns,

added when we consider applications of the cut rule, are zeros. The total number of

unknowns of not the cut type is n+q

�

. Thus we can apply Lemma 2 to bound the heights

of a universal solution of the system �. 2

Theorem 1 Let D be a proof of a sequent S in LK. Then, by replacing certain free terms

by variables, we can transform D into a proof D

�

of S in LK, such that the height of the
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proper terms of applications of the rules ! 9 and 8 ! in D

�

and the height of the

terms occurring free in the side formulas of applications of the cut rule in D

�

is at most

ar[D]

h

c

� q

�

[D] � h

0

;

where ar[D] is the maximal arity of function symbols occurring in S and in the analysis of

the cut rules, h

c

is the maximal depth of object variables that have bound occurrences in

side formulas of applications of the cut rule, h

0

is the maximal height of terms occurring

in S and in side formulas of applications of the cut rule, q

�

is the number of analysis of

applications of the rules ! 9 , 8 ! in the scheme U .

Proof. The proof follows [8]. Let D be a proof in LK and U a deduction scheme of D.

For any formula A consider a formula A

�

such that A

�

does not contain 0-place function

symbols, any object variable has at most one free occurrence in A

�

, if a term t occurs free

in A

�

, then t is a variable and A

�

can be transformed into A by replacing free variables

by terms. If A is a side formula of the cut rule application L, we add a formula A

�

to the

analysis of L, renaming, if necessary, free variables in the types of the analysis. Denote the

resulting deduction scheme with �xed cut types by U

�

. It is clear that D is a ()-deduction

of S in accordance with U

�

.

Consequently, we de�ne D

�

to be the ()-deduction of S in accordance with U

�

con-

structed by lemma 5. 2
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