
Implicational Completeness of Signed Resolution

Christian G. Ferm�uller

�

Technische Universit�at Wien

1 Implicational completeness - a neglected topic

Every serious computer scientist and logician knows that resolution is complete for �rst-

order clause logic. By this, of course, one means that the empty clause (representing

contradiction) is derivable by resolution from every unsatis�able set of clauses S. However,

there is another { less well known { concept of completeness for clause logic, that is often

referred to as \Lee's Theorem" (see, e.g., [8]): Char-tung Lee's dissertation [7] focused on

an interesting observation that (in a corrected version and more adequate terminology)

can be stated as follows:

Theorem 1.1 (Lee) Let S be a set of clauses. For every non-tautological clause C that

is logically implied by S there is clause D, derivable by resolution from S, such that D

subsumes C.

Observe that this theorem amounts to a strengthening of refutational completeness

of resolution: If S is unsatis�able then it implies every clause; but the only clause that

subsumes every clause (including the empty clause) is the empty clause, which therefore

must be derivable by resolution from S according to the theorem.

At least from a logical point of view, Lee's \positive" completeness result is as inter-

esting as refutational completeness. Nevertheless this classic result { which we prefer to

call implicational completeness of resolution { is not even mentioned in most textbooks

and survey articles on automated deduction. The main reason for this is probably the

conception that implicational completeness, in contrast to refutational completeness, is of

no practical signi�cance. Moreover, it fails for all important re�nements of Robinson's

original resolution calculus. In addition, Lee's proof [7] is presented in an unsatisfactory

manner (to say the least). A fourth reason for the widespread neglect of implicational

completeness might be the fact that Lee (and others at that time) did not distinguish be-

tween implication and subsumption of clauses. However, nowadays, it is well known that

the �rst relation between clauses is undecidable [10], whereas sophisticated and e�cient

algorithms for testing the latter one are at the core of virtually all successful resolution

theorem provers (see, e.g., [4]). With hindsight, this is decisive for the signi�cance of Lee's

Theorem.

We will provide a new and independent proof of implicational completeness in a much

more general setting, namely signed resolution. An additional motivation is that this

result is needed for an interesting application: computing optimal rules for the handling of

�

Institut f�ur Computersprachen 185.2, Resselgass 3/3, A-1040 Vienna, email: ChrisF@logic.at

135



quanti�ers in many-valued logics (see [9]). In fact, we provide a self-contained presentation

of signed resolution (compare [5, 2]).

Readers mainly interested in classical logic are reminded that classical clause logic is

just the simplest case of signed resolution. Even for this special case our proof is new and

independent from the (rather intricate) ones presented in [7] and [8].

2 Signed clause logic

Atomic formulae { or: atoms { are build up from predicate, function and variable symbols

as usual. (Constants are considered as function symbols of arity 0.) By the Herbrand base

(corresponding to some signature) we mean the set of all ground atoms; i.e., atoms that do

not contain variable symbols. We consider the reader to be familiar with other standard

notions, like substitution, most general uni�er (mgu) etc.

Let W be a �xed �nite set; here always considered as the set of truth values. A literal

(over W ) is an expression S:P , where P is an atom and S � W . A (signed) clause is a

�nite set of literals.

1

An assignment associates truth values (i.e., elements of W ) with atoms. A complete

assignment to a set of atoms K is de�ned as a set of literals ff (P )g:P j P 2 Kg, where

 is a total function from K toW . An (Herbrand-)interpretation is a complete assignment

of the Herbrand base.

For any set of atoms K the corresponding literal set �(K) is the set fV :A j A 2

K;V �W;V 6= ;g.

To assist concise statements about the relation between arbitrary sets of literals we

use the following notation:

For a set of literals C let

b

C be the equivalent set that consists of singleton-as-sign

literals only. More exactly,

b

C = ffvg:A j S:A 2 C; v 2 Sg. We say that C is contained in

another set of literals D if

b

C �

b

D.

An interpretation I satis�es a clause set S i� for all ground instances C

0

of each C 2 S:

c

C

0

\ I 6= ;. I is called an H-model of S. S is (H-)unsatis�able if it has no H-model. Since

an analogue of Herbrand's theorem holds for signed clause logic (see, e.g., [1, 2]) we can

restrict our attention to H-models.

The signi�cance of this notions lies in the fact that formulae of any �rst-order �nite-

valued logic can e�ectively be translated to �nite sets of signed clauses in such a way that

the clause set is unsatis�able i� the original formula is valid in the source logic. (See, e.g.,

[6, 2] for a detailed presentation of this fact.)

3 Signed resolution

The conclusion of the following inference rule:

fS:P g [ C

1

fR:Qg [C

2

(fS \R:Pg [C

1

[ C

2

)�

binary resolution

is called a binary resolvent of the variable disjoint parent clauses fS:P g[C

1

and fR:Qg[

C

2

, if S 6= R and � is an mgu of the atoms P and Q.

1

In classical clause logic we have W = ftrue; falseg. Literals true:P and false:P are traditionally

denoted as simply as P and :P , respectively.

136



Like in the classical case we need a factorization rule to obtain a refutationally complete

calculus:

C

C�

factorization

where � is an mgu of a subset of C. C� is called a factor of C.

The combination of factorization and binary resolution does not yet guarantee that

the empty clause can be derived from all unsatis�able sets of clauses. We also have to

remove literals with empty signs by the following simpli�cation rule:

2

C [ f;:P g

C

simpli�cation

C is called a simpli�cation of C

0

if it results from C

0

by removing all literals with empty

sign. (I.e., by applying the simpli�cation rule to C

0

as often as possible.)

The merging rule unites literals that share the same atom. It is not needed for com-

pleteness but helps to reduce the search space and to simplify the completeness proof.

3

fS

1

:Pg [ : : : [ fS

n

:Pg [ C

fS

1

[ : : : [ S

n

:Pg [ C

merging

C is called a normal form or normalized version of C

0

if it results from C

0

by applying

the simpli�cation rules and the merging rule to C

0

as often as possible. I.e., all literals

with empty signs are removed and all di�erent literals in C have di�erent atoms.

One can combine factoring, simpli�cation, merging, and binary resolution into a single

resolution rule. This corresponds to a particular strategy for the application of these rules.

The following alternative version of signed resolution can be considered as a combi-

nation of a series of binary resolution and simpli�cation steps into one \macro inference

step", called hyperresolution in [5].

fS

1

:P

1

g [ C

1

: : : fS

n

:P

n

g [ C

n

(C

1

[ : : : [C

n

)�

hyperresolution

where S

1

\ : : : \ S

n

= ; and � is the mgu of the atoms P

i

(1 � i � n). The conclusion is

called a hyperresolvent.

It is useful to consider resolution as a set operator (mapping sets of clauses into sets

of clauses).

For a set of clauses S let R

b

(S) be the set of all binary resolvents of (variable renamed)

normalized factors of clauses in S. The transitive and reexive closure of the set operator

R

b

is denoted by R

�

b

.

Similarly, we de�ne R

m

(S) as the set of all hyperresolvents of (variable renamed)

normalized factors of clauses in S. R

�

m

denotes the transitive and reexive closure of R

m

.

A resolution operatorR is refutationally complete if, for all clause sets S, S unsatis�able

implies fg 2 R

�

(S).

A resolution operator R is called implicationally complete if, for all clause sets S and

clauses C, either C is a tautology or C is subsumed by some C

0

2 R

�

(S) whenever S

implies C.

2

Alternatively, one can dispose with the simpli�cation rule by de�ning a clause to be empty if all literals

have empty sets as signs.

3

The merging rule is needed for completeness if clauses are not treated modulo idempotency of disjunc-

tion (e.g., as multisets as opposed to sets).

137



Observe that hyperresolution does not enjoy implicational completeness: Consider,

e.g., the propositional clauses

ffu; vg:Ag and ffu;wg:Ag;

where u; v; w are pairwise di�erent truth values. The hyperresolution rule is not applicable.

The (non-tautological) clause ffug:Ag is implied by fffu; vg:Ag; ffu;wg:Agg, without

being subsumed by one of its members.

4 Implication and subsumption

For a clause C = fS

1

:P

1

; : : : S

N

:P

n

g let

[:C] = ffW � S

1

:P

1

g; : : : fW � S

n

:P

n

gg;

where  is a substitution that replaces each variable in C by a new constant. (W is the

set of all truth values.)

Proposition 4.1 For every clause C and interpretation I

4

: I is a model of [:C] i� I

does not satisfy C.

Proof. Follows from the de�nition of [:C].

A clause C subsumes a clause D if some instance of C is contained in D; more formally:

if

c

C� �

b

D, for some substitution �. A set of clauses S implies a clause C if all models of

S satisfy C. We state some simple facts about implication of clauses and subsumption.

Proposition 4.2 Let C and D be clauses. If C subsumes D then fCg implies D.

Proof. Follows from the de�nitions of subsumption and implication, respectively.

Observe that the converse of Proposition 4.2 does not hold. E.g., ffug:P (x); fvg:P (f(x)g

implies but does not subsume ffug:P (x); fvg:P (f(f(x))g if u 6= v. Whereas the problem

to decide whether a clause C subsumes a clause D is NP-complete (see [3], it is undecidable

whether fCg implies D, in general as proved in [10].

Proposition 4.3 Let S be a clause set and C be a non-tautological clause. S implies C

i� S [ [:C] is unsatis�able.

Proof. Follows from Proposition 4.1 and the de�nition of implication.

Lemma 4.1 Let C and D be non-tautological clauses. C subsumes D i� there exists a

ground substitution � s.t. fC�g [ [:D] is unsatis�able.

Proof. ): Suppose

d

C� �

b

D. Then also

d

C� �

d

D, where  is the substitution

replacing every variable by a new constant in [:D]. This implies that for each literal

V :A 2

d

C�, there is a clause of form fV

0

:Ag 2 [:D] such that V \ V

0

= ;. This means

that fC�g [ [:D] is unsatis�able.

(: Suppose fC�g [ [:D] is unsatis�able, where C� is ground. Since D is non-

tautological, [:D] is satis�able. Therefore, for each literal fvg:A 2

c

C� there has to exist

a clause fS:Ag 2 [:D] s.t. v 62 S. This implies

c

C� �

b

D. In other words: C subsumes D.

4

Of course, the Herbrand universe has to include also the new constants occurring in [:C].

138



5 Semantic trees for signed clause logic

Our completeness proof is based on the concept of semantic trees. It di�ers from the

proofs in [1] and [6]; but generalizes the completeness proof in [2] for singletons-as-signs

resolution to (unrestricted) signed resolution.

As usual in automated deduction, we consider a tree as growing downwards; i.e. the

root is the top node of a tree. A node or edge � is above a node or edge � if � is part of

the path (considered as alternating sequence of nodes and edges) connecting � with the

root. A branch of T is a path that starts with the root and either is in�nite or else ends

in a leaf node of T .

LetW be a �nite set of truth values and K be a set of ground atoms. For any subset �

of the literal set �(K) of K we say that � omits the assignment A

K

to K if �\A

K

= ;.

A �nitely branching tree T is a semantic tree for K if �nite, non-empty subsets of �(K)

label the edges of T in the following way:

(1) The set of the sets of literals labeling all edges leaving one node is an H-unsatis�able

set of clauses.

(2) For each branch of T the union of the sets of literals labeling the edges of the branch

omits exactly one complete assignment A

K

to K. For short, we say that the branch

omits A

K

as well as any interpretation containing A

K

.

(3) For each complete assignment A

K

to K there is a branch of T s.t. this branch omits

A

K

.

The union of all sets of literals labeling the edges of the path from the root down to some

node � of T forms the refutation set of �.

For a set of clauses S any semantic tree T for A(S) represents an exhaustive survey of

all possible H-interpretations. Each branch omits exactly one H-interpretation and each

H-interpretation is omitted by at least one branch.

A clause C fails at a node � of a semantic tree T if some ground instance of C is

contained in the refutation set of that node. A node � is a failure node for a clause set S

if some clause of S fails at � but no clause in S fails at a node above �. A node is called

an inference node if all of its successor nodes are failure nodes. T is closed for S if there

is a failure node for S on every branch of T .

Theorem 5.1 A set of clauses S is unsatis�able i� there is a �nite subset K � A(S) s.t.

every semantic tree for K is closed for S.

Proof. ): Let T be a semantic tree for A(S), the Herbrand base of S. By de�nition of

a semantic tree, any branch B of T omits exactly one complete assignment to A(S), which

extends to an H-interpretation M of S. If S is unsatis�able then M does not satisfy all

clauses in S. This means that there is some ground instance C

0

of a clause C in S s.t.

c

C

0

\ M = ;. But since B omits only the literals of �(A(S)) that are true in M this

implies that the union of labels of the edges of B contains C

0

; i.e., C

0

is contained in the

refutation set of some node of B. We have thus proved that every branch of T contains a

failure node for some clause of S. In other words, T is closed for S. Moreover, by K�onig's

Lemma, the number of nodes in T that are situated above a failure node is �nite. But

this implies that for each unsatis�able set of clauses S there is a �nite unsatis�able set S

0

of ground instances of clauses of S. Since any semantic tree that is closed for S

0

is also

139



closed for S it is su�cient to base the tree on a �nite subset of A(S): the set K of ground

atoms occurring in S

0

. Observe that we have not imposed any restriction on the form of

the tree. Thus every semantic tree for K is closed for S.

(: Let T be a closed semantic tree for a �nite K � A(S). SupposeM is an H-model

of S; i.e. for all ground instances C

0

of C 2 S we have M\

c

C

0

6= ;. By de�nition of a

semantic tree,M is omitted by some branch B of T . Since T is closed, some clause C 2 S

fails at a node � of B. That means that some ground instance C

0

of C is contained in the

refutation set of �. Therefore M\

c

C

0

6= ; implies that M contains some literal that also

occurs in some refuation set of a node on B. But this contradicts the assumption that B

omits M. Therefore S is unsatis�able.

Theorem 5.1 is the basis for refutional completeness proofs for many di�erent versions

and re�nements of signed resolution (see [2]). Our task here is to show that it can be used

to prove implicational completeness as well.

6 Implicational completeness

Theorem 6.1 R

b

is implicationally complete. More precisely, if C is a non-tautological

clause that is implied by a set of clause S then there exists a D 2 R

�

b

(S) s.t. D subsumes C.

Proof. By Propositon 4.3 S [ [:C] is unsatis�able. Hence, by Theorem 5.1 there is

�nite subset K of A(S [ [:C]) s.t. every semantic tree for K is closed for S [ [:C].

Let [:C] = ffV

1

:A

1

g; : : : ; fV

n

:A

n

gg and W be the set of all truth values. Since C is

non-tautological W � V

i

is not empty. Without loss of generality we may assume C to be

normalized; i.e., A

i

6= A

j

if i 6= j. We choose a semantic tree T for K that starts with the

following subtree:

s

�

�

�

fW � V

1

:A

1

g

@

@

@

fV

1

:A

1

g

�

�

�

@

@

@

fW � V

2

:A

2

g fV

2

:A

2

g

s

�

1

s

s

�

2

s

s

�

�

�

@

@

@

fW � V

n

:A

n

g fV

n

:A

n

g

s

�

n+1

s

�

n

The subtrees of T rooted in the nodes �

1

; : : : ; �

n

, respectively, are arbitrary (since

these nodes obviously are failure nodes).

For the construction of the subtree T

n+1

of T rooted in �

n+1

we have to take care

that it does not contain a failure node for any clause in [:C]. This can be achieved as

follows. Let V

1

1

; : : : ; V

k

1

be the subsets of V

1

that contain all but one element of V

1

. (If

V

1

is a singleton simply skip this part of the construction of T .) Attach k successor nodes

�

1

; : : : ; �

k

to �

n+1

, the edges to which are labeled by fV

1

1

:A

1

g, : : :, fV

k

1

:A

1

g, respectively.

Clearly, the refutation set of �

i

(1 � i � k) omits exactly one assignment to the atom A

1

.

By proceeding in the same way for A

2

; : : : A

n

we arrive at a partial semantic tree T

C

, each

branch of which omits exactly one assignment to the atoms occurring in [:C]. Thus no

literals signing atoms of [:C] will have to occur below T

C

. Therefore we can assume that

140



the only failure nodes in T of clauses in [:C] are �

1

; : : : ; �

n

. In other words: all failure

nodes in T

n+1

are failure nodes for clauses in S.

The only restriction (in addition to the requirement that T is a semantic tree for K)

that we pose on the structure of T below T

C

is that the literals labeling edges directly

connected to a common node all contain the same atom. This way the following statement

is easily seen to follow from condition (1) of the de�nition of a semantic tree.

(R) Let � be an inference node in T . Let C

1

; : : : C

n

be the clauses failing at its successor

nodes �

1

; : : : �

n

, respectively. Then some resolvent D 2 R

�

b

(fC

1

; : : : C

n

g) fails at �.

Since T is closed for S [ [:C] it must contain at least one inference node. Therefore,

by iteratively adding resolvents to S [ [:C] and applying (R), we must eventually derive

a clause D that fails at the node �

n+1

. Since T

n+1

contains no failure nodes for clauses

in [:C] we conclude that D 2 R

�

b

(S). By Theorem 5.1 it follows thatfD�g [ [:C] is

unsatis�able, where � is a ground substitution such that D� is contained in the refutation

set of node �

n+1

. By Lemma 4.1 it follows that D subsumes C.

References

[1] M. Baaz. Automatisches Beweisen f�ur endlichwertige Logiken. In Jahrbuch 1989 der

Kurt G�odel-Gesellschaft, pages 105{107. Kurt G�odel Society, 1989.

[2] M. Baaz and C. G. Ferm�uller. Resolution-based theorem proving for many-valued

logics. J. Symbolic Computation, 19:353{391, 1995.

[3] M.S. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco, 1979.

[4] G. Gottlob and A. Leitsch. On the e�ciency of subsumbtion algorithms. Journal of

the ACM, 32(2):280{295, 1985.

[5] R. H�ahnle. Automated Deduction in Multiple-valued Logics. Clarendon Press, Oxford,

1993.

[6] R. H�ahnle. Short conjunctive normal forms in �nitely-valued logics. Journal of Logic

and Computation, 4(6):905{927, 1994.

[7] R.C.T. Lee. A completeness theorem and a computer program for �nding theorems

derivable from given axioms. Ph.D. Thesis, University of California, Berkely, 1967.

[8] A. Leitsch. The Resolution Calculus. Springer, Berlin, Heidelberg, New York, 1997.

[9] G. Salzer. Optimal axiomatizations for multiple-valued operators and quanti�ers

based on semi-lattices. In 13th Int. Conf. on Automated Deduction (CADE'96), LNCS

(LNAI). Springer, 1996.

[10] M. Schmidt-Schauss. Implication of clauses is undecidable. Theoretical Computer

Science, 59:287{296, 1988.

141


