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Abstract

The provability logic Grz is characterized by a class of modal frames that is not

�rst-order de�nable. We present a simple embedding of Grz into decidable fragments of

classical �rst-order logic such as FO

2

and the guarded fragment. The embedding is an

O((n:log n)

3

)-time transformation that neither involves �rst principles about Turing

machines (and therefore is easy to implement), nor the semantical characterization of

Grz (and therefore does not use any second-order machinery). Instead, we use the

syntactic relationships between cut-free sequent-style calculi for Grz, S4 and T. We

�rst translate Grz into T, and then we use the relational translation from T into FO

2

.

1 Introduction

Propositional modal logics have proved useful in many areas of computer science because

they capture interesting properties of binary relations (Kripke frames) whilst retaining

decidability (see e.g. [28]). By far the most popular method for automating deduction in

these logics has been the method of analytic tableaux (see e.g. [6]), particularly because

of the close connection between tableaux calculi and known cut-free Gentzen systems for

these logics (see e.g. [11]).

An alternative approach is to translate propositional modal logics into classical �rst-

order logic since this allows us to use the wealth of knowledge in �rst-order theorem proving

to mechanize modal deduction (see e.g. [17, 20, 12, 5]). Let FO

n

be the fragment of clas-

sical �rst-order logic using at most n individual variables and no function symbols. Any

modal logic characterized by a �rst-order de�nable class of modal frames can be translated

into FO

n

where n > 2 is the number of variables in the �rst-order formula characterizing

the class of frames. The decidable modal logic K4, for example, is characterised by transi-

tive frames, de�nable using the �rst-order formula (8x; y; z)(R(x; y) ^ R(y; z) ) R(x; z))

containing 3 variables. Since FO

3

is undecidable and FO

2

is decidable, translating K4 into

�rst-order logic does not automatically retain decidability. Of course, the exact fragment

�
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delineated by the translation is decidable, but there is no known �rst-order decision proce-

dure for that particular fragment except the one that mimicks the rules for K4. Therefore,

blind translation is not useful if this means giving up decidability.

Moreover, it is well-known that many decidable propositional modal logics are char-

acterised by classes of Kripke frames which are not �rst-order de�nable, and that the

\standard" relational translation (see e.g. [17, 27]) is unable to deal with such logics.

The class of such \second order" modal logics includes logics like G and Grz which have

been shown to have \arithmetical" interpretations as well as logics like S4.3.1 which have

interpretations as logics of linear time (without a next-time operator) [9].

Somewhat surprisingly, faithful translations into classical logic (usually augmented

with theories) have been found for some propositional modal logics even when these logics

are characterized by classes of frames that are not �rst-order de�nable. For instance, the

modal logic K augmented with the McKinsey axiom is captured by the framework pre-

sented in [21]. Similarly, the provability logic G

1

that admits arithmetical interpretations

[25] is treated within the set-theoretical framework de�ned in [5]. Both techniques in

[21, 5] use a version of classical logic augmented with a theory. Alternatively, G can also

be translated into classical logic by �rst using the translation into K4 de�ned in [2] and

then a translation from K4 into classical logic (see e.g. [27]).

The fact that G can be translated into a decidable fragment of classical logic follows

from a purely complexity theory viewpoint, as shown next. Take a modal logic L that is

in the complexity class C and let C

0

be another complexity class. Here a logic is to be

understood as a set of formulae and therefore a logic is exactly a problem in the usual sense

in complexity theory. That is, as a language viewed as a set of strings built upon a given

alphabet. By de�nition (see e.g. [23]), for any fragment of classical logic that is C-hard

with respect to C

0

many-one reductions

2

, there is a mapping f in C

0

such that any modal

formula � 2 L i� f(�) is valid in such a �rst-order fragment. From the facts that G is in

PSPACE (see e.g. [2, 15]), validity in FO

2

is NEXPTIME-hard [8] and PSPACE �

NEXPTIME, it is easy to conclude that there exists a polynomial-time transformation

from G into validity in FO

2

.

As is well-known, this illustrates the di�erence between the fact that a propositional

modal logic K + � is characterised by a class of frames which is not �rst-order de�nable,

and the existence of a translation from K + � into �rst-order logic. The weak point with

this theoretical result is that the de�nition of f might require the use of �rst principles

about Turing machines. If this is so, then realising the map f requires cumbersome

machinery since we must �rst completely de�ne a Turing machine that solves the problem.

This is why the translations in [21, 2, 5] are much more re�ned and practical (apart from

the fact that they allow to mechanise the modal logics under study).

Another well-known modal logic that is characterized by a class of modal frames that

is not �rst-order de�nable is the provability logic Grz (for Grzegorczyk). The main con-

tribution of this paper is the de�nition of an O(n:log n)-time transformation from Grz

into S4, using cut-free sequent-style calculi for these respective logics. Renaming tech-

niques from [16] are used in order to get the O(n:log n)-time bound. Then, we present a

cubic-time transformation from S4 into T, again using the cut-free sequent-style calculi for

these respective logics. Both reductions proceed via an analysis of the proofs in cut-free

sequent calculi from the literature. The second reduction is a slight variant of the one

presented in [4] (see also [7]). The reduction announced in the title can be obtained by

1

Also called GL (for G�odel and L�ob), KW, K4W, PrL.

2

Also called \transformation", see e.g. [23].
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translating T into FO

2

, which is known to be decidable (see e.g. [18]). Furthermore, the

formula obtained by reduction belongs to the decidable guarded fragment of classical logic

for which a resolution decision procedure has been de�ned in [19].

In [3, Chapter 12], a (non polynomial-time) transformation from Grz into G is de�ned.

By using renamings of subformulae, there also exists an O(n:log n)-time transformation

from Grz into G [3, Chapter 12]. There exists an O(n)-time transformation from G into

K4 [2]. There exists an O(n

4

:log n)-time transformation from K4 into K [4] (which uses

renamings of subformulae). Finally, there exists an O(n)-time transformation from K into

FO

2

[27]. Combining these results gives an O(n

4

:(log n)

5

)-time transformation from Grz

into FO

2

, a decidable fragment of �rst-order logic.

The translation proposed in this paper is therefore a more re�ned alternative since

it requires only time in O((n:log n)

3

). As a side-e�ect, we obtain an O(n:log n)-time

transformation from Grz into S4 and an O((n:log n)

3

)-time transformation from Grz into

T. Using the space upper bound for S4-validity from [13], we obtain that Grz requires only

space in O(n

2

:(log n)

3

). We are not aware of any tighter bound for Grz in the literature.

Furthermore, our purely proof-theoretical analyses of the cut-free sequent-style calculi,

and sometimes of the Hilbert-style proof systems, gives a simple framework to unify the

transformations involved in [3, 2, 4]. As we intend to report in a longer paper, it is also

possible to generalise our method to handle other \second order" propositional modal

logics like S4.3.1 using the calculi from [9].

2 Basic Notions

In the present paper, we assume that the modal formulae are built from a countably

in�nite set For

0

def

= fp

i;j

: i; j 2 !g of atomic propositions using the usual connectives 2,

:, ), ^. Other standard abbreviations include _;,;3. The set of modal formulae is

denoted For. We write mwn(�) (resp. mwp(�)) to denote the number of positive

3

(resp.

negative) occurrences of 2 in �.

We recall that the standard Hilbert system K is composed of the following axiom

schemata: the tautologies of the Propositional Calculus (PC) and 2p ) (2(p ) q) )

2q). The inference rules of K are modus ponens ( from p and p ) (p ) q) infer q) and

necessitation (from p infer 2p). By abusing our notation, we may identify the system

K with its set of theorems, allowing us to write � 2 K to denote that � is a theorem

of K. Analogous notation is used for the following well-known conservative extensions of

K: T

def

= K + 2p ) p, K4

def

= K + 2p ) 22p, S4

def

= K4 + 2p ) p and Grz

def

= S4 +

2(2(p) 2p)) p)) 2p. Clearly, � 2 S4 implies � 2 Grz.

We call GT, GS4 and GGrz the cut-free versions of the Gentzen-style calculi de�ned

in [22, 1] where the sequents are built from multisets of formulas. Moreover, we assume

that the contraction and the weakening rules are absorbed in the introduction rules and

axioms (see e.g. [26, Section 3.4 and Section 9.1]. For instance, the initial sequents of all

the Gentzen-style calculi used in the paper are of the form �; � ` �; � where \," denotes

multiset union. The introduction rules for 2 are the following:

� ` �

�;2� ` 2�;�

(` 2)

T

2� ` �

�;2� ` 2�;�

(` 2)

S4

3

We use the standard notions of positive and negative occurrences. For instance 2p

0;0

(resp. 2p

0;1

) has

a positive (resp. negative) occurrence in (22p

0;1

)) (p

0;1

^ 2p

0;0

).
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2�;2(�) 2�) ` �

�;2� ` 2�;�

(` 2)

Grz

�;2�; � ` �

�;2� ` �

(2 `)

where 2�

def

= f2 :  2 �g. The rule (2 `) belongs to the three systems GT, GS4 and

GGrz and each rule (` 2)

T

, (` 2)

S4

and (` 2)

Grz

belongs respectively to GT, GS4 and

GGrz. For each L 2 fT; S4; Grzg, we know that � 2 L i� the sequent ` � is derivable in

GL (see e.g. [22, 1]). Further details can be found in [11].

3 A transformation from Grz into S4

Let f : For� f0; 1g ! For be the following map:

� for any p 2 For

0

, f(p; 0)

def

= f(p; 1)

def

= p

� f(:�; i)

def

= :f(�; 1� i) for i 2 f0; 1g

� f(�

1

^ �

2

; i)

def

= f(�

1

; i) ^ f(�

2

; i) for i 2 f0; 1g

� f(�

1

) �

2

; 1)

def

= f(�

1

; 0)) f(�

2

; 1) f(�

1

) �

2

; 0)

def

= f(�

1

; 1)) f(�

2

; 0)

� f(2�; 1)

def

= 2(2(f(�; 1)) 2f(�; 0))) f(�; 1)) f(2�; 0)

def

= 2f(�; 0).

In f(�; i), the index i should be seen as information about the polarity of � in the

translation process as is done in [2] for the translation from G into K4. Since the rule of

replacement of equivalents is admissible in Grz, one can show by induction on the length

of � that for any � 2 For and for any i 2 f0; 1g, �, f(�; i) 2 Grz. Moreover,

Lemma 3.1. For any � 2 For, �) f(�; 1) 2 S4 and f(�; 0)) � 2 S4.

Most of the proofs in this extended abstract are just sketched because of lack of space.

The proof of Lemma 3.1 is therefore an exception.

Proof: The proof is by simultaneous induction on the length of �. The base case when �

is an atomic proposition is immediate. By way of example, let us treat the cases below in

the induction step:

(1) �

1

^ �

2

) f(�

1

^ �

2

; 1) 2 S4 (2) 2�

1

) f(2�

1

; 1) 2 S4

(3) f(:�

1

; 0)) :�

1

2 S4 (4) f(2�

1

; 0)) 2�

1

2 S4.

(1) By the induction hypothesis, �

1

) f(�

1

; 1) 2 S4 and �

2

) f(�

2

; 1) 2 S4. By easy

manipulation at the propositional level, �

1

^ �

2

) f(�

1

; 1) ^ f(�

2

; 1) 2 S4. By de�nition

of f , �

1

^ �

2

) f(�

1

^ �

2

; 1) 2 S4.

(2) By the induction hypothesis, �

1

) f(�

1

; 1) 2 S4. By easy manipulation at the

propositional level, �

1

) (2(f(�; 1) ) 2f(�; 0)) ) f(�

1

; 1)) 2 S4. It is known that

the regular rule (from  

1

)  

2

infer 2 

1

) 2 

2

) is admissible in S4. So, 2�

1

)

2(2(f(�; 1)) 2f(�; 0))) f(�

1

; 1)) 2 S4. By the de�nition of f , 2�

1

) f(2�

1

; 1) 2 S4.

(3) By the induction hypothesis, �

1

) f(�

1

; 1) 2 S4. By easy manipulation at the

propositional level, :f(�

1

; 1)) :�

1

2 S4. By de�nition of f , f(:�

1

; 0)) :�

1

2 S4.

(4) By the induction hypothesis, f(�

1

; 0) ) �

1

2 S4. Since the regular rule is admissible

in S4, 2f(�

1

; 0)) 2�

1

2 S4. By the de�nition of f , f(2�

1

; 0)) 2�

1

2 S4. Q.E.D.

It is worth observing that Lemma 3.1 still holds true if in its statement we replace

S4 by K. The property of f stated in Lemma 3.1 can be put in parallel with the maps

transforming structures into formulas in Display Logic (see e.g. [14, 10]).
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Theorem 3.2. A formula � 2 Grz i� f(�; 1) 2 S4.

Proof: (sketch) If f(�; 1) 2 S4, then a fortiori f(�; 1) 2 Grz, and since � , f(�; 1) 2

Grz, we then obtain � 2 Grz. Now assume � 2 Grz, hence the sequent ` � has a cut-free

proof in GGrz. We can show that in the given cut-free proof of ` �, for every sequent

� ` � with cut-free proof �

0

, the sequent f(�; 0) ` f(�; 1) admits a cut-free proof, say

f(�

0

), in GS4. Here, f is extended to multisets of formulae in the natural way. So, we

shall conclude that ` f(�; 1) is derivable in GS4 and therefore f(�; 1) 2 S4. The proof is

by induction on the length of the derivations. Q.E.D.

A close examination of f shows that f is not computable in O(n:log n)-time. Indeed,

the right-hand side in the de�nition of f(2�; 1) requires several recursive calls to f and

the computation of f is therefore exponential-time. However, we can use a slight variant

of f that uses renamings as done in [16]. Speci�cally, we have,

(Renaming) a formula � 2 S4 i� 2(p

new

,  )) �

0

2 S4

where �

0

is obtained from � by replacing every occurrence of  in � by the atomic propo-

sition p

new

not occurring in �.

Let � be a modal formula we wish to translate from Grz into S4. Let �

1

; : : : ; �

m

be an arbitrary enumeration (without repetition) of all the subformulae of �. For any

subformula  of �, we write [ ] to denote the unique natural number in f1; : : : ;mg such

that �

[ ]

=  . We shall build a formula g(�) using fp

i;j

: 1 � i � m; j 2 f0; 1gg such

that g(�) 2 S4 i� f(�; 1) 2 S4. Moreover, g(�) can be computed in time O(j�j:log j�j).

For each subformula  of � we associate a formula �

 

as shown in Figure 1 and let

g(�)

def

=

m

^

i=1

�

�

i

) p

[�];1

Form of  �

 

p 2(p

[ ];0

, p

[ ];1

)

: 

1

2(p

[ ];1

, :p

[ 

1

];0

) ^2(p

[ ];0

, :p

[ 

1

];1

)

 

1

^  

2

2(p

[ ];1

, (p

[ 

1

];1

^ p

[ 

2

];1

)) ^2(p

[ ];0

, (p

[ 

2

];0

^ p

[ 

2

];0

))

 

1

)  

2

2(p

[ ];1

, (p

[ 

1

];0

) p

[ 

2

];1

)) ^2(p

[ ];0

, (p

[ 

1

];1

) p

[ 

2

];0

))

2 

1

2(p

[ ];1

, 2(2(p

[ 

1

];1

) 2p

 

1

;0

))) p

 

1

;1

)) ^2(p

[ ];0

, 2p

[ 

1

];0

)

Figure 1: De�nition of �

 

Lemma 3.3.

(1) f(�; 1) 2 S4 i� g(�) 2 S4 (2) computing g(�) requires time in O(j�j:log j�j)

(3) jg(�)j is in O(j�j:log j�j) (4) mwp(g(�)) +mwn(g(�)) is in O(j�j).

The proof of Lemma 3.3:(2)-(4) is by simple inspection of the de�nition of g(�). The

idea of the proof of Lemma 3.3(1) is to e�ectively build g(�) from f(�; 1) by successively

applying transformations based on (Renaming). Such a process requires exponential-time

in � (since jf(�; 1)j can be exponential in j�j). However, we can build g(�) in a tractable

way (see Lemma 3.3(2)-(4)) since g translates and renames simultaneously.
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Theorem 3.4. Grz requires space in O(n

2

:(log n)

3

).

An equivalent statement is that there exists a deterministic Turing machine in

SPACE(O(n

2

:(log n)

3

))

that solves the Grz-provability problem. This follows from the facts that S4 requires

space in O(n

2

:log n) [13], computing g(�) requires space in O(j�j:log j�j), and jg(�)j is in

O(j�j:log j�j). Putting these together gives that checking whether g(�) is an S4-theorem

requires space in O((j�j:log j�j)

2

:log(j�j:log j�j)), that is space in O(j�j

2

:(log j�j)

3

).

4 A transformation from S4 into T

Let h : For� !

+

� f0; 1g ! For be the following map (n 2 !

+

):

� for any p 2 For

0

, h(p; n; 0)

def

= h(p; n; 1)

def

= p

� h(:�; n; i)

def

= :h(�; n; 1 � i) for i 2 f0; 1g

� h(�

1

^ �

2

; n; i)

def

= h(�

1

; n; i) ^ h(�

2

; n; i) for i 2 f0; 1g

� h(�

1

) �

2

; n; 1)

def

= h(�

1

; n; 0)) f(�

2

; n; 1)

� h(�

1

) �

2

; n; 0)

def

= h(�

1

; n; 1)) h(�

2

; n; 0)

� h(2�; n; 1)

def

= 2h(�; n; 1) h(2�; n; 0)

def

= 2

n

h(�; n; 0).

Lemma 4.1. For any formula � 2 For and for any 1 � m � n,

1. �, h(�; n; 0) 2 S4 and �, h(�; n; 1) 2 S4

2. h(�; n; 0) ) h(�;m; 0) 2 T and h(�;m; 1) ) h(�; n; 1) 2 T .

The proof of Lemma 4.1(1) uses the facts that the rule of replacement of equivalents

is admissible in S4 and 2

n

 , 2 2 S4 for any n � 1 and for any  2 For. The

proof of Lemma 4.1(2) is by simultaneous induction on the size of the formula. By way

of example, let us show in the induction step that h(2�; n; 0) ) h(2�;m; 0) 2 T . By

induction hypothesis, h(�; n; 0) ) h(�;m; 0) 2 T . It is known that the regular rule is

admissible for T. So, by applying this rule n times on h(�; n; 0)) h(�;m; 0), we get that

2

n

h(�; n; 0) ) 2

n

h(�;m; 0) 2 T . Since 2

n

h(�;m; 0) ) 2

m

h(�;m; 0) 2 T (remember

m � n and 2 )  2 T ), then 2

n

h(�; n; 0)) 2

m

h(�;m; 0) 2 T .

Theorem 4.2. A formula � 2 S4 i� h(�; (mwn(�) + 1):mwp(�); 1) 2 T .

The map h is a slight variant of the map M

S4;T

de�ned in [4]. The main di�erence is

that we do not assume that the formulae are in negative normal form (that is why a third

argument dealing with polarity is introduced here). Furthermore, since we are dealing

here with validity instead of inconsistency, the treatment of the modal operators is dual.

The proof of Theorem 4.2 uses the sequent calculi GS4 and GT whereas in [4] the proofs

manipulate Fitting's non pre�xed calculi for S4 and T [6]. Actually, in order to prove

Theorem 4.2, we can show the following two properties:
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1. Let � ` � be a sequent that has a (cut-free) proof in GS4 such that the maximum

number of (` 2)

S4

-rule inferences in any branch is n. Then, h(�; n; 0) ` h(�; n; 1)

has a (cut-free) proof in GT. This is an extension of Lemma 2.2 in [4].

2. Let � ` � be a sequent such that the number of negative occurrences of 2 in

4

V

�2�

� )

W

 2�

 is n. If � ` � has a (cut-free) proof in GS4, then � ` � has a

(cut-free) proof in GS4 such that the (` 2)

S4

-rule is applied at most n+ 1 times to

the same formula in every branch. This is also an extension of Lemma 2.4 in [4].

By close examination of the de�nition of h(�; (mwn(�) + 1):mwp(�); 1),

1. computing h(�; (mwn(�) + 1):mwp(�); 1) requires time in O(j�j

3

);

2. jh(�; (mwn(�) + 1):mwp(�); 1)j is in O(j�j

3

).

So a formula � 2 Grz i� h(g(�); (mwn(g(�)) + 1):mwp(g(�)); 1) 2 T .

1. Computing h(g(�); (mwn(g(�))+1):mwp(g(�)); 1) requires time in O((j�j:log j�j)

3

);

2. jh(g(�); (mwn(g(�)) + 1):mwp(g(�)); 1)j is in O((j�j:log j�j)

3

).

The relational translation from T into FO

2

(see e.g. [27]) with a smart recycling of the

variables requires only linear-time and the size of the translated formula is also linear in

the size of the initial formula. We warn the reader that in various places in the literature

it is stated that the relational translation exponentially increases the size of formulae; this

is erroneous. Using this \smart" relational transformation, the composition of various

transformations in the paper provides an O((n:log n)

3

)-time transformation from Grz

into the decidable fragment FO

2

of classical logic. It is easy to see that the resulting

formula is in the guarded fragment of classical logic, for which a proof procedure based on

resolution is proposed in [19]. Alternatively, after translating Grz into T, the techniques

from [24] could also be used to translate T into classical logic. These are possibilities to

obtain a decision procedure for Grz using theorem provers for classical logic.

We are currently investigating whether this translation can be extended to �rst-order

Grz (FOGrz) where increasing, decreasing, and cumulative domain conditions complicate

matters. But since full �rst-order logic is a subset of FOGrz, we clearly will not be able

to ensure that the translation remains within FO

2

.
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