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1 Introduction

Automated theorem provers for �rst order logic have reached a state where they can give

useful support for interactive theorem proving. However, most real world problems han-

dled in interactive theorem proving are formulated in a typed language. First order provers

have currently rather limited capabilities to handle types. Therefore type information has

to be encoded in an e�cient way. What is most e�cient, depends from the type system

as well as from the �rst order prover at hand.

In this paper we describe a general purpose interpretation of a large fragment of the

typed logic used in the Mizar Mathematical Library ([Rud92], [Try93]into untyped

�rst order logic. This poses also new challenge problems for �rst order automated provers

(see [DahWer97]). A general de�nition of an interpretation based on concepts from ab-

stract model theory sets the theoretical framework.

2 Semantic Foundations

Libraries of theorems are basically collections of sentences that are assumed to be true in

a given class of models. In this abstract setting, automated theorem provers provide a

potential library - the library of all formulas they can prove. The correctness proof for the

calculus underlying a speci�c prover provides evidence that all formulas in this potential

library are true in the class of all their models.

Actual libraries are dynamic. Over time, new formulas are proved and added to the

library, other formulas may be removed because they are subsumed by new theorems. Also

the language is changed by introducing new concepts.

However, the semantics of the formulas is �xed. Hence it can serve as a basis for the

consistent combination combination of knowledge from various sources. Abstract model

theory has provided a theoretical framework to study semantic interrelations between

several deductive systems. Therefore, we give slight generalizations of its most basic

de�nitions from [Ba74].

Abstract model theory has abstracted from the syntax of a particular language. The

only essential property of a logic in this setting is, to determine whether a particular

formula is valid in a particular model. At this stage we do not care about how the logic

determines validity in detail. We only want to be a little more speci�c on formulas and
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models. These are connected by the concept of a signature. Again, there is currently no

need to de�ne what a signature is. We simply note that each logic L accepts a speci�c set

�

L

of signatures. For example, some logics may require all signatures to include special

symbols like = or 2. For each signature � 2 �

L

the logic �xes a class of models Mod

L

�

, a

set of formulas �

L

�

and a relation j=

L

�

which determines, whether a formula H 2 �

L

�

holds

in a model M 2Mod

L

�

(M j=

L

�

H).

Then, an L-theory of signature � is simply a subset of �

L

�

. This is su�cient to de�ne

the concepts of models and semantic consequence for each such abstract logic L.

De�nition 1 For each L-theory T of signature � the class of all L-models of T is the

class Mod

L

�

(T ) of all M in Mod

L

�

, such that M j=

L

�

H for all H 2 T .

This induces the consequence relation, denoted also by j=

L

�

:

De�nition 2 A formula A 2 �

L

�

is a consequence of a theory T � �

L

�

(T j=

L

�

A) if and

only if M j=

L

�

A for each model M from Mod

L

�

(T ).

We are well aware that so far the consequence relation depends on the logic as well

as on the signature. Therefore, abstract model theory introduces additional conditions

on the persistence of the validity relation under signature extensions. However, for our

purposes, we shall not need these conditions.

3 Interpretations

In order to use theorems proved by one system (the source system) to enhance the knowl-

edge of another system (the target system), the logic of the second system must be inter-

preted in the logic of the �rst system. From the point of view of system architecture this

is a mediation service [WiGe97].

For our intended application we think of the source system as an automated prover

with logic S, while the target system is a library of formulas from a logic T . However,

the same considerations can be applied in order to combine the libraries of two interactive

theorem provers as well.

We have to interpret proof problems from T as proof problems in S that can be solved

by the source system. Our interpretation has to ensure, that the consequences proved by

the source system pull back to valid consequences in the target logic. In order to be useful,

it is not necessary that the source is able to handle all knowledge that the target system

can handle - some interesting subset su�ces and there can be required some translation

procedure � between the formulas of the source logic and that of the target logic. Also,

the models of the two logics can be quite di�erent (for example think of an interpretation

of a geometric model like a plane as an arithmetic model consisting of pairs of Cartesian

coordinates). This interpretation � of the models requires some translation � of between

their signatures.

The following de�nition provides the concept of interpretation with an exact meaning.

De�nition 3 An interpretation I of a logic T in a logic S consists of a set �

I

� �

T

of

signatures, for each � 2 �

I

an S-theory �

I;�

and three mappings:

� � maps a set of signatures �

I

into �

S

,
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� � maps Mod

T

�

into Mod

S

�(�)

(�

I;�

) for each � 2 �

I

,

� � maps for each � 2 �

I

a subset of �

T

�

into �

S

�(�)

such that for all � 2 �

I

, for each sentence H in the domain of � and for each model

M from Mod

T

�

M j=

T

�

H if and only if � (M) j=

S

�(�)

� (H) .

The second of these conditions requires, that the models in the range of � satisfy some

set of conditions �

I;�

which can be stated in the source logic.

Example 1 Let the source logic S be equational logic and let the target logic T be full �rst

order logic. We obtain an interpretation I by taking �

I

as the set of signatures containing

equality, � as the operation, that deletes all predicates except equality, � as the giving the

reduct of a model to its equational part, �

I;�

as the empty theory and � as the identity on

equational �rst order sentences.

Example 2 Take 2-sorted �rst order logic as source logic S, full monadic second order

logic as target logic T and �

I

= �

T

as the set of all signatures. � extends each �rst order

signature by a second sort set, � extends each �rst order model by adding the powerset of

its universe as a second sort and the set theoretic 2 as a new relation between elements of

the universe and elements of sort set, i. e. subsets of the universe. These 2-sorted models

will satisfy a number of 2-sorted �rst order conditions that can be put into the theory �

I;�

,

for example the axiom of extensionality or the collection schema

9X : set 8y (y 2 X $ H (y)) .

In this example, not all S-models of �

I;�

will be in the range of �, for example by the

L�owenheim-Skolem theorem there are models of this theory where there are countably many

objects of sort set, hence the sort of sets cannot be a full powerset in these models. Models

of �

I;�

are called weak models in the theoretical foundations of higher order theorem

provers.

Example 3 Let S be a �rst order logic with a designated binary symbol �. T is now

ordinary �rst order logic, not using � in any of its signatures. For M a T -model of

signature �, let � (M) be an expansion of M to � [ f�g by interpreting � as a well-

ordering of the universe. It is a well-known consequence of the axiom of choice that this

is always possible. Then, the schema of trans�nite induction

8x (8y (y � x! H (y))! H (x))! 8z (H (z))

can be included in the theory �

I;�

for each formula H of signature � [ f�g and can be

used by theorem provers for the source logic S. Again, there will be weak models, i. e.

models of �

I;�

, where the ordering � is not a well-founded.

The following theorem states that the existence of an interpretation of a target logic

T in source logic S justi�es the use of translations of theorems from S in T .

Theorem 1 Let I be an interpretation of the logic T in the logic S. Let � 2 �

I

, � � �

T

�

,

A 2 �

T

�

. Then � (�) [ �

I;�

j=

S

�(�)

� (A) implies that � j=

T

�

A, where � (�) denotes the

image of � under �.
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Proof. IfM is a T -model of �, then � (M) must be an S-model of � (�)[�

I;�

. Hence,

� (M) is also a model of � (A) and therefore M must be a model of � (A

0

) :qed

We mention that the converse of the theorem holds under the additional assumption

that there are no weak models, i.e. Mod

S

�(�)

(�

I;�

) is the image of Mod

T

�

under �.

Having an interpretation of a logic T in a logic S does not mean that there is a

procedure to translate proofs from a calculus for S into proofs in a calculus for T . Thus, in

the third example above, proofs in a calculus for S can make use of trans�nite induction,

which cannot be translated directly in ordinary �rst order logic. If a calculus for T is

complete, then it can merely be said that there must be a proof of the sentence A from �

in this calculus.

4 Basic Properties of the Mizar Mathematical Library

The Mizar Mathematical Library is a collection of mathematical papers (articles),

written in the Mizar language. This library has evolved over more than 10 years and

consists of more than 20.000 theorems.

All theorems in the Mizar Mathematical Library are proved from the axioms of

Tarski-Grothendieck set theory. This is a set theoretic system, stronger than the more

familiar system of Zermelo and Fraenkel with the axiom of choice. Especially, there is

an unbounded class of strongly inaccessible cardinals. Tarski-Grothendieck set theory

is formulated in �rst order logic using variables for objects of a single type - set. Basic

symbols are only the equality symbol = and the membership symbol 2. Mizar treats

also the real numbers, the natural numbers and the arithmetic operations as primitive.

However, from a theoretical point of view, these could be introduced as derived concepts.

There are some tools to introduce new types - called modes - in Mizar. All these

types are subtypes of set, i.e. ultimately, every object occurring in formulas in the Mizar

Mathematical Library is a set. Since = and 2 take arbitrary arguments of type set,

there can occur also arguments of all other types on both sides of these symbols.

Given types can be restricted by additional properties, called attributes. When a type

S

1

is introduced by restricting a type S (the mother mode of S

1

in Mizar terminology)

by attributes A

1

,...,A

n

, this means that S

1

is exactly the type of all objects of type S

that satisfy the additional conditions A

1

,...,A

n

. This can also be paraphrased by saying

that A

1

,...,A

n

are the conditions that permit to consider an object of type S as having

also the subtype S

1

. The meaning of the attributes must have been de�ned before. The

characteristic property

8 (X : S) (A

1

(X) ^ : : : ^A

n

(X)$ 9 (Y : S) (Y = X)) (1)

can be used only when it has been proved that there is an object of type S that satis�es

A

1

,...,A

n

.

Whenever a denotes a set, it is possible to introduce the type element of (a). E.g. the

type of real numbers is constructed in this way from the set of real numbers. Whenever

element of (a) is introduced by the user, Mizar generates the obligation to prove that a

is nonempty. The characteristic property

8 (X : set) (X 2 a$ 9 (Y : element of (a)) (Y = X)) (2)

can be used only when this proof obligation has been satis�ed.
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a used in the example above, can be a term with parameters. E.g. a can be } (X)

where } denotes the power set functor and X is a variable for sets. Then it is possible to

prove a sentence like

8X (8 (Y : element of (} (X))) Y � X) .

In this way, type constructors can have object parameters. All variables must be bound

by quanti�ers. This applies especially to variables which occur as parameters in terms that

denote types (modes). For the following, it is important to note that terms denoting types

can have only object variables - there are no type variables in Mizar. Nevertheless, type

constructors known from type systems of other logics, can be modelled even in a restricted

subsystem of Mizar.

From a set theoretic point of view, types in Mizar denote classes. Some of these

classes are so small that they can be represented as sets. We may call a type S small if

9 (X : set)8 (Y : S) (Y 2 X)

can be proved. Then, by the collection schema, it can be proved that there is some a such

that objects of type S are exactly the objects of type element of (a).

Thus when S

1

; S

2

are small types represented as

element of (a

1

) ; element of (a

2

) ,

it can be proved that the class of all functions taking arguments of type S

1

and having

values of type S

2

is small, i.e. there is a set function (a

1

; a

2

) which describes exactly the

set all function from a

1

into a

2

. Hence this type can be introduced as

element of (function (a

1

; a

2

)) .

5 Interpretations of Mizar Formulas in First Order Logic

Currently, the most advanced automated theorem provers take formulas in untyped �rst

order logic as input. In order to apply them to extend a library of formulas, the logic of

the library must be interpreted in untyped �rst order logic. We propose some way to do

this for the Mizar Mathematical Library.

There is a naive interpretation of the Mizar logic in �rst order logic by expanding all

de�nitions. For example, 8X : element of (a) H (X) translates into

8X : set (X 2 a! H (X)) .

Given a type S

1

as the restriction of the type S by the attributes A

1

; : : : ; A

n

as in the last

section, then a Mizar formula 8X : S

1

H (X) could be translated into

8Y : S (A

1

(Y ) ^ : : : ^A

n

(Y )! H (Y )) .

This process could be continued until there remain only variables of type set. When the

resulting formulas are handed over to a �rst order theorem prover, the prover has to solve

many proof obligations to ensure the type correctness conditions. For example, to prove

H (a) for an object a of type S

1

from the assumption 8X : S

1

H (X), the assumptions

A

1

(a) ; : : : ; A

n

(a) have to be con�rmed. This creates heavy deductive overload, especially

for provers working with depth bound strategies.
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However, type checking can be done algorithmically in the Mizar type system. More

precisely, each term t must be declared in Mizar with a unique minimal type � . Of course,

t will also have all types of which � is a restriction. It is also possible, that t can be proved

to be equal to an object of a di�erent type. For example, it can be proved that empty lists

of elements of di�erent types are equal. This way of reconsidering an object as an object

of a di�erent type must be justi�ed by a proof also in Mizar.

The following interpretation intends to carry over algorithmic typechecking fromMizar

to automated theorem provers by encoding type information into terms in order to pre-

vent the generation of additional proof problems due to type checking obligations. The

interpretation will work on a large class of formulas from the Mizar logic (not only on

clauses). Running a resolution prover on an interpreted Mizar theory will yield a uni�-

cation failure when the prover tries to bind a term to a variable which does not have an

appropriate type. Restrictions of this method are discussed in the last Section. In the

following, the Mizar logic takes the role of the target logic T and �rst order logic is the

source logic S.

Models of the logic of the Mizar Mathematical Library are models of Grothen-

dieck-Tarski set theory. Subsequently we assume that such models exist, i. e. that the

Mizar logic is consistent. These models are augmented by types for objects of Mizar

modes. From a semantic point of view, these types are predicates with a designated

argument for the objects of the given type and potentially other arguments as parameters.

set is the top type of the Mizar type system. Consequently, the universe of models of

the Mizar logic consists of all objects of type set. Functions are special sets. Hence the

semantics of the type of all functions is given by a predicate which selects all objects of

type set that satisfy a certain property (being function� like). If a and b are objects of

type set, it is possible to de�ne the type function(a; b) of all functions from a into b by a

predicate that selects those functions with domain in a and range being a subset of b.

Mizar requires the user to prove for each type constructor that for each instance of

the parameter arguments with objects of appropriate types in any model of Grothen-

dieck-Tarski set theory, there is some object satisfying this predicate in this model, i.

e. types de�ned by Mizar modes will be always non-empty.

Let M be a model of Tarki-Grothendieck set theory and let

S (x; u

1

; : : : ; u

n

)

be a Mizar mode, seen as a predicate with argument x and parameters u

1

; : : : ; u

n

. For

all a

1

; : : : ; a

n

2 jM j, where jM j denotes the universe of M .

fx 2 jM j : M j=

T

�

S (x; a

1

; : : : ; a

n

)g 6= ;:

Hence, there is an n+ 1-ary function f

S

on jM j such that

M j=

T

�

S (f

S

(a; a

1

; : : : a

n

) ; a

1

; : : : ; a

n

)

for all a; a

1

; : : : ; a

n

2 jM j and f

S

(a; a

1

; : : : ; a

n

) = a if M j= S (a; a

1

; : : : ; a

n

). This means

that f

S

(x; a

1

; : : : ; a

n

) maps jM j into the interpretation of S (x; a

1

; : : : ; a

n

) in M and is

the identity on the set of elements that satisfy this relation. The following Lemma is an

immediate consequence of this de�nition of f

S

.

Lemma 1 Let U = fx 2 jM j : M j=

T

�

S (x; a

1

; : : : ; a

n

)g and let f

S

also denote the unary

function de�ned by f

S

(x; a

1

; : : : ; a

n

). Then
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� U is the range of f

S

,

� f

S

is idempotent on U ,

� the following condirions are equivalent for all x 2 jM j:

1. x 2 U ,

2. f

S

(x) = x.

3. x is an object of type S with parameters a

1

; : : : ; a

n

.

A Mizar signature � consists - beside the mode of all sets and the relation symbols

= and 2 - of a �nite set of user de�ned Mizar modes, relations and functors. Our

interpretation does not need a restriction on the admissible signatures, i. e. �

I

= �

T

.

For each Mizar signature � let � (�) be the �rst order signature which contains beside =

and 2 these symbols and new n+ 1-ary functors f

S

for each Mizar mode S from � with

n parameters.

If M is a model of such a signature �, then let � (M) be the �rst order model of

signature � (�) with the same universe as M , 2 as in M , and the remaining relations and

functors de�ned as follows.

Relations are de�ned as in M for arguments in their speci�c domains. If one of the

arguments in � (M) is outside this domain, we �x a truth value for this relation in an

arbitrary way.

Similarly, functors are interpreted in � (M) on their domains in M as in M and in an

arbitrary but �xed way for the remaining arguments.

The new functors f

S

are interpreted as described above. This completes the description

of the mappings � and �. We complete our de�nition of an interpretation of the Mizar

logic into �rst order logic by giving the description of the mapping � which translates

Mizar formulas into �rst order formulas and the description of �

I;�

.

In fact, we shall extend � to work on arbitrary terms in the Mizar logic. When X is

a variable of a type S with parameters u

1

; : : : ; u

n

let

� (X) = f

S

(X; � (u

1

) ; : : : ; � (u

n

)) :

Whenever f is a functor of � taking arguments of type S

1

; : : : ; S

n

and declared as giving

values of type S, t

1

; : : : ; t

n

are terms of type S

1

; : : : ; S

n

respectively, we de�ne

� (f (t

1

; : : : ; t

n

)) = f

S

(f (� (t

1

) ; : : : ; v (t

n

))) .

Especially, if f is a constant, then � (f) = f

S

(f). Note that by the de�nition of f

S

above

� (M) j=

S

�

f

S

(f) = f .

If r is a predicate, then let

� (r (t

1

; : : : ; t

n

)) = r (� (t

1

) ; : : : ; � (t

n

)) .

i.e. relation symbols are not changed. This is of special importance for the equality

predicate, since it gives provers a chance to utilize their special treatments of equality.

� distributes over quanti�ers and propositional operators. Especially, variables following

122



a quanti�er remain unchanged. The theory �

I;�

contains beside the axioms of Tarski-

Grothendieck set theory additional informations on the declarations in use. When f is

a functor as above, we add to �

I;�

the universal closure of

f

S

(f (v (X

1

) ; : : : ; � (X

n

))) = f (� (X

1

) ; : : : ; � (X

n

)) (3)

where X

1

; : : : ;X

n

are variables of type S

1

; : : : ; S

n

respectively. Moreover we add

8X f

set

(X) = X

and

8X f

S

(f

S

(X)) = f

S

(X)

When the type S

1

is de�ned by restricting the type S by the attributes A

1

,...,A

n

, we add

8X (A

1

(f

S

(X)) ^ : : : ^A

n

(f

S

(X))$ f

S

1

(f

S

(X)) = f

S

(X)) (4)

8X (f

S

(f

S

1

(X)) = f

S

1

(X))

When S is de�ned as element of (a),

8X (X 2 � (a)$ f

S

(X) = X)

is added to T

0

I;�

.

Theorem 2 I as de�ned above by the mappings �; �; � and the �rst order theories �

I;�

is

an interpretation of the Mizar logic into untyped �rst order logic.

Proof. The �rst thing to show is, that �rst order models in the range of � satisfy

�

I;�

. Since 2 and = are not changed by �, a model � (M) must be a model of Tarski-

Grothendieck set theory, since the Mizar model M is.

If f is a functor symbol that is declared to take arguments of type S

1

; : : : ; S

n

and to

yield a value of type S, 3 expands into

f

S

(f (f

S

1

(X

1

) ; : : : ; f

S

n

(X

n

))) = f (f

S

1

(X

1

) ; : : : ; f

S

n

(X

n

))

(we discard parameters of the argument types to simplify the notation). Now let a

1

; : : : ; a

n

be arbitrary elements of j� (M)j = jM j. Then for i = 1 : : : n we have S

i

(f

S

i

(a

i

)) by

the de�nition of f

S

i

. Hence f

S

1

(a

1

) ; : : : ; f

S

n

(a

n

) are in the domain of f and hence

S (f (f

S

1

(a

1

) ; : : : ; f

S

n

(a

n

))). Therefore, since f

S

is de�ned to be the identity on S,

f

S

(f (f

S

1

(a

1

) ; : : : ; f

S

n

(a

n

))) = f (f

S

1

(a

1

) ; : : : ; f

S

n

(a

n

)) .

Since the hole universe of M consists of elements of type set and this must be the range of

f

set

. The functions f

S

are the identity on their respective ranges, hence f

set

is the identity.

Now suppose S

1

is de�ned by restricting the type S by the attributes A

1

,...,A

n

. Let

a 2 jM j be arbitrary and let b = f

S

(a). Hence

M j=

T

�

(A

1

(b) ^ : : : ^A

n

(b)$ 9X : S

1

b = x)

by (1). The right hand side of this equivalence means that S

1

(b) holds and is by Lemma

1 also equivalent with f

S

1

(b) = b. Now, replacing b by f

S

(A), we con�rm (4). b is also
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a member of the set of all objects of type S, on which f

S

is idempotent. Hence, also

f

S

(f

S

1

(a)) = f

S

1

(a). The last sentence of �

I;�

re
ects similarly (2).

The remaining third condition of the de�nition of an interpretation states, that the

translation � does not change the truth value of Mizar sentences. First we show by

induction on the form of t that for each legal Mizar term t and for each instantiation

of its variables the value of t in M equals the value of � (t) in � (M). More precisely, a

nested induction is required, where the outer induction goes over the number of parameters

occurring in the involved types.

If t is a variable of sort S, then the value of t satis�es the predicate characterizing

S, hence t = f

S

(t) = � (t). If t is a compound term f (t

1

; : : : ; t

n

) where f is declared as

above, then by induction hypothesis

� (t) = f

S

(f (� (t

1

) ; : : : ; v (t

n

))) = f

S

(f (t

1

; : : : ; t

n

)) = f (t

1

; : : : ; t

n

) = t

by Lemma 1.

The truth value of atomic formulas has not been changed for arguments of the sorts

admitted according to theMizar declarations. Only such arguments occur in translations

of legal Mizar formulas by �. The induction over propositional connectives is trivial.

Now, consider a Mizar formula 9X : S H (X).

� (9X : S H (X)) = 9X � (H (X)) :

If M j=

T

�

9X : S H (X), say M j=

T

�

H[a=X] for some a such that S (a), then � (M) j=

S

�(�)

� (H) [a=X], Hence � (M) j=

S

�(�)

9X � (H (X)). Conversely, assume that � (M) j=

S

�(�)

9X � (H (X)), say � (M) j=

S

�(�)

� (H (a)). a need not be of sort S, but we can observe, that

X occurs inside H always inside f

S

. Moreover by Lemma 1 f

S

(f

S

(a)) = f

S

(a) Therefore,

the element b = f

S

(a) = f

S

(b) is of sort S and we have that also � (M) j=

S

�(�)

� (H (b)),

hence M j=

T

�

H (b). This yields M j=

T

�

9X : S H (X). The universal quanti�er can be

treated similarly.qed

6 Modi�cations

Consider the following sentence which states that each relation can be extended.

8A : set8B : set8C : set(A � B ! 8F : relation(A;C)9G : relation(B;C)F � G).

Let f

s

:f

r

denote the function symbols introduced for the type constructors set and relation.

Then this sentence is translated by the method described in the last section into

8A8B8C(f

s

(A) � f

s

(B)! 8F9Gf

r

(F; f

s

(A); f

s

(C)) � f

r

(G; f

s

(B); f

s

(C))).

Note that this translation is performed prior to generating clauses for a prover. Since

f

s

is the identity function, it can be omitted. The resulting formula yields the clause

A � B ! f

r

(F;A;C) � f

r

(s(A;B;C; F ); B;C),

where s is a new Skolem function.

Suppose we want to infer that each functions can be extended in a similar way to a

relation, where functions are de�ned as special relations. f

f

denotes the function symbol

introduced for the function type constructor. The negated goal gives the clauses

a � b
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:f

f

(h(a; b; c); a; b) � f

r

(G; b; c)

for new Skolem symbols a; b; c; h. Since relations are functions, the theory describing the

interpretation yields

f

r

(f

f

(X;A;B); A;B) = f

f

(X;A;B).

Hence, f

f

can be replaced already in the non-clause form by a term starting with f

r

.

Then a simple resolution step completes the proof.

On the other hand, as expected, it cannot be proved from the above formula that each

function can be extended similarly to a function with an extended domain.

7 Discussion

The interpretation we have given encodes type information into �rst order terms. It is

a general purpose interpretation working for any target �rst order prover. It has been

especially useful in experiments with provers that communicate at runtime within the

ILF system [DGHW97]. In order to save time during the communication it was necessary

to use the same type encoding for all provers. When working with a single prover, better

results may be achieved by taking speci�c properties of the prover or the actual proof

problem into account. The ideal solution might be an automated prover having uni�cation

implemented in an exchangeable module, so that various type checking algorithms can be

used.

For example the Spass prover treats unary predicates as types (see [GaMeWe97]) and

tries to detect type clashes early. Hence, for this particular prover, the naive interpretation

which translates quanti�cation of typed variables into quanti�cation relativized by type

predicates, is most e�cient { at least for the monomorphic case. For Spass, the theory

�

I;�

contains axioms describing the declaration of functor symbols and for each type an

axiom saying that it is not empty.

[Mel88] proposes a method for encoding monomorphic types that translates also check-

ing the subtype relation into uni�cation problems. This method introduces new variables

into the terms. These auxiliary variables in the �rst order clauses can lead to a larger

search space, unless they are treated in a special way by the automated provers.

The input language of some provers (e. g. 3TaP and ProTeIn) supports the encoding

of monomorphic tree-like type systems in clauses. When our method is applied in this

situation and the modi�cations described in the last section are applied, the result will be

similar.

In the interpretation given above we have made some simpli�cations compared with

the full Mizar language. We have not considered the set constructor, which, given a set

object a and a formula H, constructs an object representing the set of all x 2 a such

that H (x). This leads to the phenomenon that terms can contain formulas. Handling

this situation requires an additional induction over a countable hierarchy of formulas such

that terms of level n+ 1 can contain formulas of level n.

We also did not consider types that are de�ned as classes of structures. This is not

a severe restriction since the Mizar constructors and selectors of structure classes can

be translated into ordinary functors. Overloading of functors poses a serious limitation

to the interpretation given here. In Mizar it occurs in the form of rede�nitions of value

types. They redeclare the value type of a term depending on the types of the arguments.

These redeclarations cannot be encoded into the term structure such that type checking
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is performed during uni�cation in �rst order theorem provers. The reason is, that uni-

�cation works without backtracking from terms to their arguments. It cannot correct a

uni�cation clash when it discovers that arguments carry encodings of a more speci�c type.

Nevertheless, it is possible to express overloading by �rst order formulas so that it can be

handled by deductive means.

Recently, Christoph Wernhard has extracted 47 new proof problems for �rst order

provers from an article in the Mizar library with the ILF system. Unlike earlier test

suites, these problems make use of a polymorphic type constructor. The proof problems

can be downloaded from the following URL:

www-irm.mathematik.hu-berlin.de/

~

ilf/miz2atp/download.html

These problems use the naive translation mentioned above. They are formulated such,

that the involved type information can be easily recovered. Authors of theorem provers are

encouraged to modify their provers in order to make e�cient use of the type information

contained in the problems. The interpretation given above intends to be just one step into

this direction.
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