
A Partial Instantiation based First Order Theorem Prover

V. Chandru

�

I.I.Sc.

J.N. Hooker

y

C.M.U.

G. Rago

z

U. of Pisa

A. Shrivastava

x

Sanchez C.A.

Abstract

Satis�ability algorithms for propositional logic have improved enormously in recent

years. This increases the attractiveness of satis�ability methods for �rst order logic

that reduce the problem to a series of ground-level satis�ability problems. Partial In-

stantiation for �rst order satis�ability di�ers radically from standard resolution based

methods. Two approaches to partial instantiation based �rst order theorem provers

have been studied by R. Jeroslow [10] and by Plaisted and Zhu [14]. Hooker and Rago

[8, 9] have described improvements of Jeroslow's approach by a) extending it to logic

with functions, b) accelerating it through use of satis�ers, as introduced by Gallo and

Rago [6] and c) simplifying it to obtain further speedup. The correctness of the Partial

Instantiation algorithms described here for full �rst-order logic with functions as well

as termination on unsatis�able formulas are shown in [9]. This paper describes the

implementation of a theorem prover based on the primal algorithm and its application

to solving planning problems. We obtained improved e�ciency by incorporating in-

crementality into the primal algorithm (incremental blockage testing). This extended

abstract describes the Partial Primal Instantiation algorithm, its implementation and

preliminary results on �rst order formulation of planning problems.

1 Algorithm PPI (Primal Partial Instantiation)

Variants: Two formulas are said to be variants of each other when they can be uni�ed

by renaming substitutions.

Satis�er Mapping: A mapping, S, that associates with each clause C in F , a literal

S(C) in C, is called a satis�er mapping for F if, for some truth valuation v, v makes S(C)

true for every clause C. We refer to S(C) as the satis�er of C. It is a true satis�er if S(C)

is an atom, and false otherwise.

Blockage: Given a satis�er mapping S for a quanti�er-free formula F , a pair of satis�ers

P (t); P (t

0

) are blocked if:

1. P (t) is a true satis�er;

2. P (t

0

) is a false satis�er;

�

Professor, Computer Science and Automation, Indian Institute of Science, Bangalore, India 560 012;

chandru@csa.iisc.ernet.in

y

Professor, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA

15213 USA; jh38@andrew.cmu.edu

z

Dip. di Informatica, University of Pisa, Corso, Italia 40, 56100 Pisa, Italy; rago@di.unipi.it

x

Analyst, Sanchez Computer Associates (BDL), 37/2, 4th Main, Malleswaram, Bangalore, India 560

003; anjul@cyberspace.org

106



3. P (t) and P (t

0

) have a most general uni�er (�; �), such that P (t)� = P (t

0

)� .

4. There are clauses C, C

0

in F of which P (t) and P (t

0

) are respectively satis�ers, and

for which either C� or C

0

� generalizes no clause in F .

5. The nesting depth of blockage is the level of the Herbrand universe at which the

blockage is observed.

M-blockage: If P (t) and P (t

0

) are blocked, and the nesting depth of the blockage is

no greater than M, then we say that P (t) and P (t

0

) are M-blocked.

M-satis�ability: If there are no predicates in F that are M-blocked in a particular

satis�er mapping, then F is said to be M-satis�able.

Let F = 8x

1

C

1

^ : : : ^ 8x

m

C

m

be a �rst order formula.

1. Initialization. Set F

0

:= C

1

^ : : : ^ C

m

, k := 0, and M := 0.

2. Ground satis�ability. Try to �nd a satis�er mapping S for F

k

that treats variants of

the same atom as the same atom.

3. Termination check.

(a) If S does not exist, then stop: F is unsatis�able.

(b) Otherwise, if S is unblocked, then stop: F is satis�able.

(c) Otherwise, if S is not M -blocked, then F is M -satis�able. Let M := M + 1

and repeat Step 3(c).

4. Re�nement. (S is M -blocked.) Let C

h

and C

i

be two clauses in F

k

whose satis�ers

are M -blocked, and let (�; �) be a most general uni�er of S(C

h

) and S(C

i

). Set

F

k+1

:= F

k

^ C

h�

^ C

k�

after standardizing apart, set k := k + 1, and go to step 2.

It is possible for there to be more than one satis�er mapping S, yet if the particular

S found in Step 2 is not M-blocked, we can claim that F is M-satis�able. Although

a di�erent S could be M-blocked, that M-blockage would be resolved and ultimately F

would be found to be M-satis�able.

1.1 Unsatis�ability

Let F = C

1

^ 8xC

2

^ 8yC

3

where,

C

1

= P (s(a))

C

2

= :P (x) _Q(s(x))

C

3

= :P (y) _ :Q(s(y))

The satis�er mapping is not 0-blocked, but the 1-blockage between P (s(a)) and P (x)

creates F

1

= F

0

^ C

4

, with

C

4

= :P (s(a)) _Q(s(s(a)))

The satis�er mapping can be extended as shown. The 2-blockage between Q(s(y)) and

Q(s(s(a))) creates F

2

= F

1

^C

5

, with

C

5

= :P (s(a)) _ :Q(s(s(a)))

Because F

2

is unsatis�able as a propositional formula, the algorithm terminates.

107



2 Propositional Satis�ability Algorithms

Propositional satis�ability algorithms are very important in partial instantiation methods

for �rst order theorem proving because in every iteration, we need to solve a propositional

satis�ability problem obtained by treating variants of �rst order predicates as the same

atom. Incremental propositional satis�ability algorithms play an even more important

role, because in every iteration, the propositional satis�ability problem is the same as that

in the previous iteration except for the addition of one or two clauses.

2.1 The DPL algorithm

We use the DPL algorithm [7] because of its generality, and excellent performance when

coupled with the Jeroslow-Wang (JW) heuristic for choosing an atom from the formula.

The JW heuristic tells us to pick the literal that occurs in the greatest number of short

clauses. That is, if :a occurs in 100 clauses of length 3, and does not occur in any shorter

clauses, and :b occurs in 1 clause of length 2, then the JW heuristic tells us to pick

:b. That is, priority is given to the length of the clauses rather than to the number of

occurrences. If the length of the shortest clauses is the same for two literals, then we

consider the number of occurrences. Note that by "picking a literal", we mean choosing

an atom and a "sign". Suppose we pick :a, then we generate two sub formulas by setting

a to false and true. However, since we picked :a, we �rst recursively explore the formula

generated by setting a to false. Had we chosen a instead of :a, we would �rst explore the

formula generated by setting a to true.

2.2 Incremental DPL algorithm

It is often useful, especially with an implementation of PPI, to solve a propositional satis�-

ability problem incrementally. That is, having solved a satis�ability problem for a formula

F , we want to solve it for a formula F ^ C where C is a new clause which may or may

not contain an atom that does not exist in F . Note that if F is unsatis�able, so is F ^C.

Therefore, the non-trivial case is that F was found to be satis�able, which means that

the depth-�rst tree search was partially completed. In Incremental DPL, we avoid "re-

searching" the part of the tree that was already searched while testing F for satis�ability.

While solving F for satis�ability, we save the "state" of the search when we determine

satis�ability, and continue from that point when we are testing F ^C. If C is true under

the satisfying assignment found for F , then all is �ne. If it is falsi�ed, then we backtrack

to the node in the tree where C is falsi�ed (easily done with a little bookkeeping), and

then continue the tree search.

If the truth value of C is undetermined, then we continue the search by choosing a

variable from C and constructing sub-formulas as usual.

The incremental DPL algorithm gives excellent results for most problems in general,

and causes a tremendous speed-up in the PPI algorithm.

3 A description of the algorithm and associated techniques

3.1 Introduction

There are two schools of practice in instantiation based methods, di�ering in the techniques

used to control instance generation. Uncontrolled instance generation as used in early

108



attempts was not very successful because of combinatorial explosion of the number clauses.

One way of controlling instance generation is the use of semantics to guide the search of

theorem provers. Early provers [17], [16], [3], allowed somewhat limited semantics. CLIN

[11] uses a strategy based on clause linking. CLIN-S [3] added semantic support to clause

linking. RRTP [12] generates instances using replacement rules and uses a propositional

decision procedure [18] to detect propositional unsatis�ability. Ordered semantic hyper

linking [13] improves upon CLIN and CLIN-S by allowing any semantics that can be

expressed as a ground decision procedure, and imposes an ordering on all ground literals

that allows OSHL to have a more systematic model generation strategy. It also permits

the use of term rewriting to handle equalities.

The other school of thought is the Jeroslow school that uses blockage testing as a way

of control over generation of instances. This method has recently been extended to full

�rst order logic and a version is described in this section.

3.2 A Description of the Algorithm

The set of clauses that form a �rst order formula in Skolem normal form is a terse rep-

resentation of a (usually in�nite) set of ground clauses that are equivalent to a (usually

in�nite) formula in Propositional Logic. The compactness theorem [2] says that for an

unsatis�able �rst order formula, there is a �nite set of ground clauses which is unsatis�able

as a propositional formula. This �nite set is constructed by substituting variables with all

constants whose depth is less than a particular �nite value (initially unknown).

This leads us to the Instantiation procedure for testing satis�ability wherein we con-

struct a set of ground clauses by substituting variables with constants upto depth 0, test

for satis�ability, construct another set by substituting variables with constants upto depth

1, test, . . . , construct another set by substituting variables with constants upto depth n

and test again. If the formula is unsatis�able, we are guaranteed to �nd that the set is

unsatis�able when we construct it by substituting variables with constants of some �nite

depth.

Unfortunately, the instantiation procedure is impractical because the number of clauses

become astronomically large when we substitute variables with constants upto even a small

depth (say 4-5).

While the compactness theorem says that there exists an unsatis�able set of clauses

generated by "grounding" upto a �nite depth, it does not say that this set is minimal. In

fact, this set is often not minimal, and the minimal set of ground clauses is often much

smaller and is practical to handle. The PPI method tries to generate this minimal set and

thereby determine unsatis�ability without attempting to handle the astronomical number

of clauses.

We can see that atoms with universally quanti�ed variables represent a (usually in�-

nite) set of ground atoms.

At each stage the PPI algorithm solves a propositional satis�ability problem consisting

of the universally qualiti�ed formula without its quanti�ers (but with Skolem functions

generated by existential quanti�ers in the original formula). Some of the atoms are only

partially instantiated, but all atoms are treated equally as atomic propositions. Atoms

that are variants of each other, however, are regarded as identical (two atoms are variants if

they are the same but for renaming of variables). The aim is to assign truth values to some

of the atoms of the formula so that at least one literal in every clause (the satis�er of the

clause) is true. The complete instatiations of a satis�er are assumed to inherit the satis�er's

109



truth value. This provides a satisfying truth assignment for all complete instantiations of

the formula, unless there is blockage; that is, unless satis�ers that are assigned di�erent

truth values have common instantiations, which inherit con
icting truth values. In such

cases the clauses C

1

; C

2

containing the con
icting satis�ers are further instantiated by the

mgu of the satis�ers to generate clauses C

0

1

; C

0

2

, which are added to the formula. When the

propositional satis�ability is re-solved, the con
ict is resolved because the instantiations

that once received con
icting truth values now ingerit their truth value from the atoms in

C

0

1

; C

0

2

.

To ensure �nite termination of the PPI algorithm for unsatis�able formulas, we need

to modify the procedure by resolving, among the several blockages that may exist at the

same point of time, any one of those having the least nesting depth of the mgu. By doing

this, we ensure that we fully explore the set of ground clauses obtained using constants

only upto a certain depth, before proceeding to the next level.

It is important to see here the role of propositional satis�ability algorithms in PPI,

particularly that of the Incremental DPL algorithm. The assignment of non-con
icting

truth values to an atom in each clauses is done by solving a propositional satis�ability

problem wherein the FOF is treated as a propositional formula with variants of atoms

corresponding to the same literal in the propositional formula. Since we solve such prob-

lems many times adding one or two clauses each time, it is imperative that we use an

incremental propositional satis�ability algorithm. An incremental algorithm reuses the

earlier computation and thereby usuallysaves a large amount of time. In our program we

implemented an incremental version of the DPL algorithm as described by [7].

3.3 Incremental Blockage Testing

We see that the PPI procedure involves repeatedly testing for the existence of blockages

after solving propositional satis�ability problems. While the time consumed in repeatedly

solving propositional satis�ability problem solving was drastically reduced by using the

Incremental DPL algorithm, there was still the bottleneck of testing for blockage.

Blockage testing is done by checking whether the satis�ers of any pair of clauses are

uni�able, and if so, whether the substituted clauses are generalized by any clause in the for-

mula. The uni�cation test involves O(n

2

) attempts at uni�cation (for all pairs of clauses),

whereas checking for the existence of a generalizing clause needs O(n) generalization tests

whenever uni�cation is successful. Here n is the number of clauses in the current formula.

We observed that quite often, the satis�er atoms for most clauses are the same as in the

previous iteration (i.e. the last time the propositional satis�ability problem was solved).

This led to the idea of testing blockages also incrementally by re-using the results of the

blockage tests (mgus and generalizations) that were obtained in the previous iteration.

This incremental testing of blockages speeded up the entire procedure considerably by

saving uni�cation attempts, and generalization tests in many cases.

To implement incremental blockage testing, we associate with each clause, a list of

results with a node for each subsequent clause. Each result node stores a pointer to the

satis�ers of both clauses when the tests were last carried out, and the results of the tests

(i.e. whether the mgu was found, if so, what was the mgu, and whether the generalization

test succeeded or not). The very �rst time, all these nodes are empty, but as we perform

blockage tests, we store the results in this list. On subsequent occassions of blockage testing

between a pair of clauses, we look up the appropriate result node and check whether the

satis�ers are still the same. If yes, then we simply lookup the mgu and generalization test

110



BBB
BBB
BBB

"""
"""
"""

"""
"""
"""

"""
"""
"""

"""
"""
"""

"""
"""
"""

"""
"""
"""

BBB
BBB
BBB

"""
"""
"""

===
===
===

888
888
888

888
888
888

888
888
888

888
888
888

888
888
888

888
888
888

888
888
888

(((
(((
(((

888
888
888

888
888
888

5555555
5555555
5555555

BBBBBBB
BBBBBBB
BBBBBBB

BBB
BBB
BBB

"""
"""
"""

===
===
===

mgu failed

generalization failed

blocked

mgu saved

(((
(((
(((

mgu & generalization
saved

888
888
888nothing saved;

tests repeated

Satisfier changed

New Clause
Thick lines show essential (re)computations

How Incremental Blockage Testing helps save computations

next iteration

Figure 1: Incremental Blockage Testing

results. If the satis�ers have changed, we cannot use the results and have to re-do the

computations. However, it very often happens that the satis�ers are the same as the last

time and therefore we can reuse the results.

Note that whenever a clause is added, we have to add an empty result node to each of

the clauses in the formula. Also, the generalization test is technically not entirely saved

because a check is needed whether the newly added clause generalizes the substituted

clauses. However, for all practical purposes, we can assume that the generalization test is

saved because we have just one test where we would have needed n tests.

4 Results

4.1 Performance improvement due to Incremental Techniques

=======================================================

Problem Class A B C D E

=======================================================

Monkey-Banana : 5 25 0.24 0.30 0.32

111



Shortest Plan Example : 13 38 0.27 0.43 0.70

Blocks World (Smaller): 19 118 2.53 5.48 27.95

Blocks World (Larger) : 33 279 16.31 47.05 1904.02

=======================================================

A: Number of Initial Clauses

B: Number of Final Clauses (# Blockages <= B-A)

C: CPU seconds for Incremental SAT and Blockage

D: CPU seconds for only Incremental SAT

E: CPU seconds for no incremental components

=======================================================

4.2 Planning Problems: The Monkey Banana Problem

The following pages show summarized and detailed solutions of the monkey-banana prob-

lem which is a standard and representative planning problem commonly used to study

methods of solution of planning problems. These solutions were obtained by using PPI to

implement the �rst-order theorem proving technique for planning.

The method resolved 20 blockages, making the �nal number of clauses 25. There were

15 literals in the �nal propositional satis�ability problem.

Therefore the method needed to solve a 25 clause, 15 literal propositional satis�ability

problem incrementally (in 20 steps). Also, at each step it had to test for blocked predicates.

This test needs, in the worst case, an O(n

2

) mgu computations, and O(n

3

) generalization

sub-tests (assuming O(n

2

) mgu computations succeed), where n is the number of clauses

in the formula at that point. Since this test is done m times, we have O(m

3

) mgu com-

putations, and O(m

4

) generalization tests. The generalization tests are performed O(n)

times only if an mgu computation is successful, therefore, the O(m

4

) complexity should

be treated with great caution.

Pro�ling results showed 427 mgu computations (both successful and unsuccessful), and

4027 generalization tests (when the mgu test was successful).

It is di�cult to perform a complexity analysis because we cannot estimate how many

blockages will need to be resolved before a particular problem is solved. It may be that

we can come up with an unblocked satis�er assignment right in the beginning, or have to

resolve several blockages before this happens.

4.2.1 Summarized solution

The problem is stated below as a �rst order formula. The �rst four clauses are the rules,

and the last clause is the negation of the query. The PPI method generates the answer by

determining the formula to be unsatis�able.

-P:1(x,y,z,s)+P:2(z,y,z,k(x,z,s))

-P:1(x,y,x,s)+P:3(y,y,y,y(x,y,s))

-P:4(B,B,B,s)+R:5(b(s))

+P:6(A,B,C,S)

-R:7(s)

P (x; y; z; s) means that the monkey is at position x, ladder is at position y, and the

banana is at position z, in state s.

112



R(s) means that the monkey can grasp the banana in state s.

k; y; b are abbreviated names for the functions: walk; carry; climb respectively.

The number to the right of a predicate name is the propositional atom identi�cation

to which it corresponds to. I.e. it is an identi�cation for the equivalence class of variants

to which the predicate belongs.

The following are the additional clauses added upon resolution of various blockages

encountered. After adding 20 clauses, the formula is determined to be unsatis�able.

-P:6(A,B,C,S)+P:8(C,B,C,k(A,C,S))

-P:8(C,B,C,k(A,C,S))+P:9(C,B,C,k(C,C,k(A,C,S)))

-P:8(C,B,C,k(A,C,S))+P:10(B,B,B,y(C,B,k(A,C,S)))

-P:9(C,B,C,k(C,C,k(A,C,S)))+P:11(C,B,C,k(C,C,k(C,C,k(A,C,S))))

-P:10(B,B,B,y(C,B,k(A,C,S)))+P:12(B,B,B,k(B,B,y(C,B,k(A,C,S))))

-P:9(C,B,C,k(C,C,k(A,C,S)))+P:13(B,B,B,y(C,B,k(C,C,k(A,C,S))))

-P:10(B,B,B,y(C,B,k(A,C,S)))+P:14(B,B,B,y(B,B,y(C,B,k(A,C,S))))

-P:10(B,B,B,y(C,B,k(A,C,S)))+R:15(b(y(C,B,k(A,C,S))))

-P:11(C,B,C,k(C,C,k(C,C,k(A,C,S))))+P:16(C,B,C,k(C,C,k(C,C,k(C,C,k(A,C,S)))))

-P:12(B,B,B,k(B,B,y(C,B,k(A,C,S))))+P:17(B,B,B,k(B,B,k(B,B,y(C,B,k(A,C,S)))))

-P:13(B,B,B,y(C,B,k(C,C,k(A,C,S))))+P:18(B,B,B,k(B,B,y(C,B,k(C,C,k(A,C,S)))))

-P:14(B,B,B,y(B,B,y(C,B,k(A,C,S))))+P:19(B,B,B,k(B,B,y(B,B,y(C,B,k(A,C,S)))))

-P:11(C,B,C,k(C,C,k(C,C,k(A,C,S))))+P:20(B,B,B,y(C,B,k(C,C,k(C,C,k(A,C,S)))))

-P:12(B,B,B,k(B,B,y(C,B,k(A,C,S))))+P:21(B,B,B,y(B,B,k(B,B,y(C,B,k(A,C,S)))))

-P:13(B,B,B,y(C,B,k(C,C,k(A,C,S))))+P:22(B,B,B,y(B,B,y(C,B,k(C,C,k(A,C,S)))))

-P:14(B,B,B,y(B,B,y(C,B,k(A,C,S))))+P:23(B,B,B,y(B,B,y(B,B,y(C,B,k(A,C,S)))))

-P:12(B,B,B,k(B,B,y(C,B,k(A,C,S))))+R:24(b(k(B,B,y(C,B,k(A,C,S)))))

-P:13(B,B,B,y(C,B,k(C,C,k(A,C,S))))+R:25(b(y(C,B,k(C,C,k(A,C,S)))))

-P:14(B,B,B,y(B,B,y(C,B,k(A,C,S))))+R:26(b(y(B,B,y(C,B,k(A,C,S)))))

-R:15(b(y(C,B,k(A,C,S))))

UNSATISFIABLE.

Answer: The monkey has the banana after he walks from A to C, carries

the ladder from C to B,

and then climbs the ladder.

4.3 Planning Problems: Shortest Plan Generation Property

We use limited answer generation techniques to solve planning problems. To do this, we

add an answer predicate, ANS, which is treated di�erently from normal predicates by the

PPI implementation. We use the ANS predicate in the query clause to specify the variable

that is generating the answer.

The ANS predicate is ignored during the satis�er assignments. That is, it can never be

a satis�er for a clause. It is also ignored during the generalization tests. That is, we delete

the ANS predicate if it exists in a clause before testing a pair of clauses for generalization.

For all other operations, especially for substitution and addition of substituted clauses to

remove blockage, we treat the ANS predicate normally.

This scheme of answer generation works for a limited subset of �rst order formulas. It

works for Horn formulae, and therefore we use it for answer (plan) generation in planning

problems.

To ensure termination in a �nite number of steps, the PPI explores the Herbrand

Universe level by level (breadth-�rst). This feature causes it to generate the shortest

plans when it is used to solve planning problems.

113



4.4 An Example of Shortest Plan Generation

You can move between positions A through G in single steps or jumps of two. How do

you go from A to F in the shortest number of steps?

+P:1(A,S) #Initially at A

-P:2(A,s)+P:3(B,step(s)) #Rule: Can step from A to B

-P:4(B,s)+P:5(C,step(s)) #Rule: Can step from B to C

-P:6(C,s)+P:7(D,step(s)) #Rule: Can step from C to D

-P:8(D,s)+P:9(E,step(s)) #Rule: Can step from D to E

-P:10(E,s)+P:11(F,step(s)) #Rule: Can step from E to F

-P:12(F,s)+P:13(G,step(s)) #Rule: Can step from F to G

-P:2(A,s)+P:14(C,jump(s)) #Rule: Can step from A to C

-P:4(B,s)+P:15(D,jump(s)) #Rule: Can step from B to D

-P:6(C,s)+P:16(E,jump(s)) #Rule: Can step from C to E

-P:8(D,s)+P:17(F,jump(s)) #Rule: Can step from D to F

-P:10(E,s)+P:18(G,jump(s)) #Rule: Can step from E to G

-P:12(F,s)+ANS:0(s) #Query: Cannot move from A to F

... after several blockage resolutions ...

UNSATISFIABLE

The answer generated: step(jump(jump(S))) is a shortest way to go from A to F. A

longer way is: step(step(step(jump(S)))).

5 Conclusions

Blockage testing is the current bottleneck. As blockages are removed, clauses are added

to the formula and the time taken to test for blockage increases. The time complexity

(of blockage testing) is between O(n

2

) and O(n

3

); the former holds in the case where all

the mgu tests fail, and the latter where they all succeed. Therefore, it is di�cult to solve

complex problems because of this slowdown.

Another problem is that the number of blockages resolved before reaching unsatis�abil-

ity depends upon the order in which they are removed, and upon the way the satis�ers are

assigned. Therefore, there is reason to search for heuristics that help choose such satis�er

mappings, and cause such blockages to be resolved, that unsatis�ability is reached with a

near minimum number of blockages resolved.

References

[1] Anjul Shrivastava, A study of the Partial Instiation Method, Masters thesis, Depart-

ment of Computer Science, IISc, Aug 1998

[2] Chang, C. and Lee, R. C. Symbolic Logic and Mechanical Theorem Proving. Academic

Press, 1973.

[3] Chu, H., and Plaisted, D., Semantically guided �rst-order theorem proving using hyper-

linking Proceedings of the Twelfth International Conference on Automated Deduction,

192-206. Lecture Notes in Arti�cial Intelligence 814.

[4] Davis. M., and H. Putnam, A computing procedure for quanti�cation theory, Journal

of the ACM 7 (1960) 201-215.

114



[5] Gallo, G. and G. Rago, A hypergraph approach to logical inference for datalog infer-

ence, Tech. Rep. 28/90, Dip. Informatica, Universit�a di Pisa (1990).

[6] Gallo, G. and G. Rago, The satis�ability problem for the Sch�oen�nkel-Bernays frag-

ment: partial instantiation and hypergraph algorithms, Tech. Rep. 4/94, Dip. Infor-

matica, Universit�a di Pisa (1994).

[7] Hooker, J. Solving the Incremental Satis�ability Problem. Journal of Logic Program-

ming 15(1993)

[8] Hooker, J., New methods for computing inferences in �rst order logic, Annals of Op-

erations Research 43 (1993) 479-492.

[9] Hooker, J., Rago, Gabriela Partial Instantiation Methods for Inference in First Order

Logic. Working Paper, Graduate School of Industrial Administration, CMU, Dec 1996

[10] Jeroslow, R. G., Computation-oriented reductions of predicate to propositional logic,

Decision Support Systems 4 (1988) 183-197.

[11] Lee, S. J., and Plaisted, D., Eliminating duplication with the hyper-linking strategy

Journal of Automated Reasoning 1:103-114.

[12] Paramasivam, M., and Plaisted, D., A Replacement Rule Theorem Prover Journal of

Automated Reasoning Forthcoming.

[13] Plaisted, D., and Zhu, Y., Ordered Semantic Hyper LinkingProceedings of Fourteenth

National Conference on Arti�cial Intelligence (AAAI-97).

[14] Plaisted D. and Yunshan Zhu FOLPLAN: A Semantically Guided First-Order Plan-

ner, 10th International FLAIRS Conference, Daytona Beach, Florida, May 11-14, 1997

[15] Robinson, J. A. Logic and Logic Programming. Communications of the ACM, July

1992.

[16] Slagle, J. R., Automatic theorem proving with renamable and semantic resolution

Journal of the ACM 14(4):687-697.

[17] Wang, T., and Bledsoe, W., Hierarchical deduction, Journal of Automated Reasoning

3:35-77.

[18] Zhang, H., and Stickel, M. E., Implementing the Davis- Putnam algorithm by tries

Technical report, Department of Computer Science, University of Iowa

115


