
A new fast tableau-based decision procedure for an

unquanti�ed fragment of set theory

�

Domenico Cantone

y

Universit�a di Catania, Dipartimento di Matematica

Calogero G. Zarba

z

Stanford University, Computer Science Department

Abstract

In this paper we present a new fast tableau-based decision procedure for the ground

set-theoretic fragment Multi-Level Syllogistic with Singleton (in short MLSS) which

avoids the interleaving of model checking steps.

The underlying tableau calculus is based upon the system KE.

1 Introduction

In the last few years many fragments of set theory have been proved decidable [6, 5].

However, the problem of �nding e�cient decision procedures for these fragments still

remains largely unexplored.

In this paper we present a new fast tableau-based decision procedure for the ground

set-theoretic fragment Multi-Level Syllogistic with Singleton (in short MLSS).

Tableaux have the appealing feature that it is easy to extract a counter-example from

an open and saturated branch, but on the other hand they can be highly ine�cient if the

splitting rules are not designed properly, at least for certain classes of formulae. We address

this anomaly by presenting a tableau calculus based on the system KE introduced in [7]

which forces tableau branches to be mutually exclusive. This results in an exponential

speed-up with respect to Smullyan tableau-based calculi.

1

In addition, in the procedure we are going to describe useful cuts are recognized in

constant time, without the interleaving model-checking steps approach used in [1, 4, 9].

Moreover, useless cuts that might be executed by an exhaustive search strategy are totally

avoided. This will have the overall e�ect to considerably speed up the saturation process

with respect to the previous approaches.

Our decision procedure has been implemented as part of the Stanford Temporal Prover,

STeP [2], a system that supports the computer-aided veri�cation of reactive, real time and

hybrid systems based on temporal speci�cation. The integration of our decision procedure

with STeP First-Order Reasoning and STeP's other decision procedures is done using the

method described in [3].

�

Work partially supported by the C.N.R. of Italy, coordinated project SETA, by M.U.R.S.T. Project

\Tecniche speciali per la speci�ca, l'analisi, la veri�ca, la sintesi e la trasformazione di programmi", and

by project \Deduction in Set Theory: A Tool for Software Veri�cation" under the 1998 Vigoni Program.

y

Viale A. Doria 6, I-95125 Catania, Italy, e-mail: cantone@cs.unict.it

z

Gates Building, Stanford CA 94305, USA, e-mail: zarba@theory.stanford.edu

1

See [7] for further details about the cited speed-up.

97

2 Preliminaries

In this section we introduce the syntax and semantics of MLSS, as well as the concept of

realization.

2.1 Syntax

The unquanti�ed set-theoretic fragment MLSS contains a denumerable in�nity of vari-

ables, the constant ; (empty set), the operator symbols t (union), u (intersection), � (set

di�erence) and [�] (singleton), the predicate symbols @� (membership) and � (equality),

and the logical connectives :, ^ and _.

2

Plainly, the predicate v and the �nite enumeration operator [�; �; : : : ; �] can be ex-

pressed in MLSS by noticing that s v t is equivalent to s t t � t and that [t

1

; t

2

; :::; t

k

]

can be expressed by [t

1

] t : : : t [t

k

].

We denote by T

'

the collection of all terms occurring in the formula ', and we use the

abbreviations s 6@� t and s 6� t to denote :(s @� t) and :(s � t), respectively .

2.2 Semantics

The semantics of MLSS is based upon the von Neumann standard cumulative hierarchy

V of sets de�ned by:

V

0

= ;

V

�+1

= P(V

�

) ; for each ordinal �

V

�

=

S

�<�

V

�

; for each limit ordinal �

V =

S

�2On

V

�

;

where P(S) is the power set of S and On denotes the class of all ordinals. It can easily be

seen that there can be no membership cycle in V, namely sets in V are well-founded with

respect to membership.

An assignmentM over a collection V of variables is any functionM : V ! V. Given

an assignment M over the variables of a formula ', we denote with M' the truth-value

obtained by interpreting each variable v in ' with the set Mv and the set symbols and

logical connectives according to their standard meaning (thus, for instance, t, u, �, [�],

@�, and � are interpreted as the set operators [, \, n, f�g and as the set predicates 2 and

=, respectively.

A set model for a formula ' is an assignment M over the collection of variables

occurring in ' such that M' evaluates to true.

A formula ' is satisfiable if it has a set model.

2.3 Realizations

Let G = (N;

b

@�) be a directed acyclic graph, and let (P; T) be a bipartition of N . Also,

let fu

x

: x 2 Pg be a family of sets.

De�nition 1 The realization of G = (N;

b

@�) relative to fu

x

: x 2 Pg and to (P; T) is

the assignment R over N recursively de�ned by:

Rx = fu

x

g for x in P

Rt = fRs : s

b

@� tg for t in T

2

2

In our treatment, ::p is considered to be a syntactic variation of p.

98

Observe that R is well-de�ned since G is acyclic.

Next we de�ne the function h : N ! N (called the height), by putting:

h(t) =

(

0 if t 2 P or s

b

6@� t, for all s 2 N

maxfh(s) : s

b

@� tg+ 1 otherwise.

The following lemma states the main properties of realizations.

Lemma 1 Let G = (P [T;

b

@�) be a directed acyclic graph, with P \ T = ;. Also, let

fu

x

: x 2 Pg and R be respectively a family of sets and the realization of G relative to

fu

x

: x 2 Pg and (P; T). Assume that:

(a) u

x

6= u

y

for all distinct x; y in P ;

(b) u

x

6= Rt, for all x in P and t in P [T .

Then the following properties hold:

(i) if s

b

@� t then h(s) < h(t), for all s in P [T and t in T ;

(ii) if Rt

1

= Rt

2

then h(t

1

) = h(t

2

), for all t

1

; t

2

in P [T ;

(iii) if Rs 2 Rt then h(s) < h(t), for all s; t in P [T .

2

Notice that in the above lemma, conditions (a) and (b) can always be satis�ed by letting

the u

x

's be pairwise distinct sets of cardinality no less than jP [T j, since jRtj < jP [T j.

3 The Tableau Calculus

In this section we describe a tableau calculus forMLSS. See [8] for a complete introduction

to semantic tableaux.

We extend the notion of closed tableau as follows:

De�nition 2 A branch � of a tableau T is closed if it contains:

� two complementary formulae , : , or

� a membership cycle of the form t

0

@� t

1

@� : : : @� t

0

, or

� a literal of the form t 6� t, or

� a literal of the form s @� ;.

A tableau is closed if all its branches are closed.

2

3.1 Saturation Rules

Our calculus has two kinds of rules: saturation and ful�lling rules. Moreover, we impose

the restriction that no new term will be created by any application of a saturation rule.

Thus, for instance, the rule

s @� t

1

=) s @� t

1

t t

2

can be applied to a branch � of a tableau for ' only if the term t

1

t t

2

is already in

T

'

. Under this fundamental restriction, the full collection of saturation rules is shown in

99

propositional rules rules for t

p ^ q =) p; q

:(p _ q) =) :p;:q

p _ q;:p =) q

p _ q;:q =) p

:(p ^ q); p =) :q

:(p ^ q); q =) :p

s 6@� t

1

t t

2

=) s 6@� t

1

; s 6@� t

2

s @� t

1

=) s @� t

1

t t

2

s @� t

2

=) s @� t

1

t t

2

s @� t

1

t t

2

; s 6@� t

1

=) s @� t

2

s @� t

1

t t

2

; s 6@� t

2

=) s @� t

1

s 6@� t

1

; s 6@� t

2

=) s 6@� t

1

t t

2

rules for u rules for �

s @� t

1

u t

2

=) s @� t

1

; s @� t

2

s 6@� t

1

=) s 6@� t

1

u t

2

s 6@� t

2

=) s 6@� t

1

u t

2

s 6@� t

1

u t

2

; s @� t

1

=) s 6@� t

2

s 6@� t

1

u t

2

; s @� t

2

=) s 6@� t

1

s @� t

1

; s @� t

2

=) s @� t

1

u t

2

s @� t

1

� t

2

=) s @� t

1

; s 6@� t

2

s 6@� t

1

=) s 6@� t

1

� t

2

s @� t

2

=) s 6@� t

1

� t

2

s 6@� t

1

� t

2

; s @� t

1

=) s @� t

2

s 6@� t

1

� t

2

; s 6@� t

2

=) s 6@� t

1

s @� t

1

; s 6@� t

2

=) s @� t

1

� t

2

rules for [�] rules for equality

=) t

1

@� [t

1

]

s @� [t

1

] =) s � t

1

s 6@� [t

1

] =) s 6� t

1

t

1

� t

2

; ` =) `ft

2

=t

1

g

t

1

� t

2

; ` =) `ft

1

=t

2

g

s @� t; s

0

6@� t =) s 6� s

0

Table 1: Saturation rules.

Table 1. Notice also that in the �rst two rules for equality, ` stands for a literal, and the

substituted term is restricted to be a top-level term occurring in `. This will prevent the

search space from exploding.

A branch is said to be linearly saturated if no saturation rule produces new for-

mulae.

3.2 Ful�lling Rules

A ful�lling rule can be applied to an open linearly saturated branch, provided that its

associated precondition and subsumption requirement are, respectively, true and false.

Table 2 summarizes the ful�lling rules and their associated preconditions and subsumption

requirements. Notice that even ful�lling rules (that, incidentally, in our calculus are exactly

the splitting rules) are not allowed to introduce new terms, with the exception of the last

one, which introduces fresh parameters x not occurring in the branch to which it is applied.

Remark 1 Notice that literals of type s 6@� t

1

u t

2

and s 6@� t

1

� t

2

do not trigger any split

rule, as would happen in an exhaustive search strategy.

Notice also the asymmetry in the precondition for u: no split needs to occur if for

some term t

1

u t

2

in T

'

a literal s @� t

2

occurs in a branch.

In early versions of this work all sorts of cut rules were allowed, whereas a careful

analysis of the correctness proof has pointed out that most of them can be avoided.

2

Remark 2 Observe that if the literals s

1

� s

2

, t

1

� t

2

, s

1

6� t

1

, s

1

6� t

2

, s

2

6� t

1

, s

2

6� t

2

occur in a branch, an exhaustive search strategy would apply a splitting rule to each

inequality, thereby generating 2

4

branches, whereas in our calculus at most 2 branches

will eventually be created.

2

100

ful�lling rule precondition subsumption requirement

p :p

p _ q is in � p is in � or :p is in �

:p p

:(p ^ q) is in � :p is in � or p is in �

s @� t

1

s 6@� t

1

t

1

t t

2

2 T

'

s @� t

1

t t

2

is in �

s @� t

1

is in � or s 6@� t

1

is in �

s @� t

2

s 6@� t

2

t

1

u t

2

2 T

'

s @� t

1

is in �

s @� t

2

is in � or s 6@� t

2

is in �

s @� t

2

s 6@� t

2

t

1

� t

2

2 T

'

s @� t

1

is in �

s @� t

2

is in � or s 6@� t

2

is in �

x @� t

1

x 6@� t

1

x 6@� t

2

x @� t

2

t

1

; t

2

2 T

'

t

1

6� t

2

is in �

9x : (x @� t

1

is in � and x 6@� t

2

is in �)

or

9x : (x 6@� t

1

is in � and x @� t

2

is in �)

Table 2: Ful�lling rules.

Remark 3 It is possible to further strengthen the subsumption requirement associated

to the last ful�lling rule by noticing that if a literal t 6� ; occurs in a branch �, then it is

enough to require that x @� t occurs in � for some x, thus obtaining the linear ful�lling

rule

t 6� ; =) x @� t (x new parameter)

This improvement will be used in Example 1.

More generally, one can maintain a transitivity graph [3] whose nodes are labeled with

terms in P

�

[T

'

and edges are labeled with v, 6� or 6@. Then, if a literal t

1

6� t

2

occurs

in a branch �, we may check whether there exists a path from t

1

to t

2

(or from t

2

to t

1

)

with edges labeled with v, and the ful�lling rule would then be:

t

1

6� t

2

; t

1

v t

2

=) x @� t

2

; x 6@� t

1

(x new parameter) :

We should also notice that if the literals t

1

6� t

2

, t

1

@� : : : @� t

2

occur in a branch �, we

do not need to apply any ful�lling rule at all. Soundness of such optimizations is an easy

matter.

2

Example 1 Table 3 contains a closed tableau with 3 branches for proving the validity

of the formula :(x � [y] ^ x � y t z) _ (y � ; ^ x � z). Notice that to prove the same

formula, the approach described in [4] produced a tableau with 8 branches.

4 The Decision Procedure

In this section, after introducing some de�nition and terminology, we state our decision

procedure and outline the proof of its correctness.

De�nition 3 To any branch � of a tableau T for a formula ' we associate the following

objects:

101

:(:(x � [y] ^ x � y t z) _ (y � ; ^ x � z))

x � [y] ^ x � y t z

:(y � ; ^ x � z)

x � [y]

x � y t z

y � ; y 6� ;

x 6� z w @� y

w @� x w 6@� x w @� y t z

w 6@� z w @� z w @� x

w @� y t z w @� y t z w @� [y]

w @� y w @� x w � y

w @� ; ? y @� y

? ?

2

Table 3: A closed tableau for :(:(x � [y] ^ x � y t z) _ (y � ; ^ x � z))

P

�

: the collection of parameters added to �;

V

�

: the collection of variables and parameters occurring in �;

P

0

�

: the collection of parameters fx 2 P

�

: there is no t in T

'

such that x � t occurs in �g;

T

0

�

: the set T

'

[(P

�

n P

0

�

);

G

�

: the oriented graph (P

0

�

[T

0

�

;

b

@�), where s

b

@� t if and only if the literal s @� t occurs in

�;

R

�

: a realization of G

�

relative to the partition (P

0

�

; T

0

�

) and to pairwise distinct sets u

x

,

for x 2 P

0

�

, each having cardinality no less than jP

0

�

[T

0

�

j;

M

�

: the assignment over V

�

de�ned by M

�

v = R

�

v, for each v in V

�

.

2

De�nition 4 An open branch � is saturated if it is linearly saturated and all its sub-

sumption requirements are ful�lled.

2

De�nition 5 A branch � is said to be coherent if R

�

t =M

�

t, for all t in P

�

[T

'

.

2

Procedure 1 (MLSS-satis�ability test)

Input: an MLSS-formula '.

1. Let T be the tableau consisting of a single node labeled with ';

2. linearly saturate T by strictly applying to it all possible saturation rules until either

T is closed or no new formula can be produced;

3. if T is closed, announce that ' is unsatis�able;

4. otherwise, if there exists an open and saturated branch � in T , announce that ' is

satis�ed by the model M

�

;

5. otherwise, let � be a non-saturated open branch; apply to � any ful�lling rule whose

subsumption requirement is false and go to step 2.

2

102

4.1 Proof of termination

Let ' be the root formula of the tableau T constructed by Procedure 1. Since steps 3

and 4 cause the procedure to terminate, and steps 2 and 5 always add new formulae to

T , to show termination it is enough to prove that only a �nite number of formulae can be

added to T . Propositional rules can only add a �nite number of formulae, since they add

subformulae of ' or their negation. Moreover, all other rules add only literals to T . Next

notice that, because of the restrictions imposed to the application of the rules: (a) only

a �nite number of parameters can be added to T and (b) literals occurring in a generic

branch � can be paired only with terms in T

'

[P

�

in the preconditions of ful�lling rules.

It follows that rules other than propositional ones can only add a �nite number of literals,

and hence the termination of the procedure follows.

4.2 Partial correctness

Let again ' be the root formula of the tableau T constructed by Procedure 1. Since all

rules are plainly sound, if T is closed then ' is unsatis�able. Otherwise the tableau T

must contain an open and saturated branch �. Thus, in order to establish the correctness

of Procedure 1, it is enough to prove that the assignment M

�

(cf. De�nition 3) satis�es

the branch � and, therefore, the formula '.

The following lemma is easily proved by induction on the number of applications of

the inferences rules.

Lemma 2 In any branch � if x 2 P

0

�

then:

(a) there can be no term t in T

'

[P

�

di�erent from x such that x � t occurs in �;

(b) there can be no term s in T

'

[P

�

such that s @� x occurs in �.

2

In order to show that the assignment M

�

models correctly all formulae occurring in an

open and saturated branch �, we �rst show in the following lemma that the realization R

�

models correctly all literals in an open and saturated branch �, provided that terms are

just considered as \complex names" for variables (namely operators are not interpreted).

Lemma 3 Let � be an open and saturated branch. Then:

(i) if s @� t occurs in �, then R

�

s 2 R

�

t;

(ii) if t

1

� t

2

occurs in �, then R

�

t

1

= R

�

t

2

;

(iii) if t

1

6� t

2

occurs in �, then R

�

t

1

6= R

�

t

2

;

(iv) if s 6@� t occurs in �, then R

�

s =2 R

�

t.

2

Proof (i) Let s @� t be in �. By Lemma 2, t =2 P

0

�

, and by construction of R

�

it trivially

follows that R

�

s 2 R

�

t.

(ii) Let t

1

� t

2

be in �. If either t

1

2 P

0

�

or t

2

2 P

0

�

then by Lemma 2 it must be t

1

= t

2

and therefore R

�

t

1

= R

�

t

2

. If t

1

; t

2

2 T

0

�

but R

�

t

1

6= R

�

t

2

, suppose w.l.o.g. that

there is some a such that a 2 R

�

t

1

and a =2 R

�

t

2

. Then there exists s such that

R

�

s = a and s @� t

1

occurs in �. Since � is saturated, s @� t

2

must also occur in �,

and by (i) a = R

�

s 2 R

�

t

2

, a contradiction.

103

(iii) Let t

1

6� t

2

be in � but R

�

t

1

= R

�

t

2

. W.l.o.g. we can assume that t

1

; t

2

2 T

'

(otherwise either at least one among t

1

; t

2

is in P

0

�

, and the claim easily follows from

Lemma 2, or � would contain a literal t

0

1

6� t

0

2

with t

0

1

; t

0

2

2 T

'

and such that t

1

� t

0

1

and t

2

� t

0

2

are in �; then t

0

1

6� t

0

2

could play the role of t

1

6� t

2

in the following

discussion). By Lemma 1 we have h(t

1

) = h(t

2

). We proceed by induction on h(t

1

).

In the base case (h(t

1

) = 0) we reach a contradiction, since by saturation there is

some x such that either x @� t

1

and x 6@� t

2

occur in �, or x 6@� t

1

and x @� t

2

occur in

�, and we would have h(t

1

) > 0 in either cases. For the inductive step, w.l.o.g. let

x @� t

1

and x 6@� t

2

be in � (their occurrence is due to saturation), for some x. Then

R

�

x 2 R

�

t

1

that implies R

�

x 2 R

�

t

2

, so that there exists x

0

such that R

�

x = R

�

x

0

and x

0

@� t

2

occurs in �. Notice that x

0

6= x (otherwise � would be closed). Since by

Lemma 1 we have h(x) = h(x

0

) < h(t

1

), we can apply the inductive hypothesis and

obtain the contradiction R

�

x 6= R

�

x

0

.

(iv) Let s 6@� t be in � but R

�

s 2 R

�

t. Then there exists s

0

di�erent from s such that

R

�

s = R

�

s

0

and s

0

@� t occurs in �. By saturation s 6� s

0

is in �, and by (iii)

R

�

s 6= R

�

s

0

, a contradiction.

�

Next we show that even operators are correctly modeled by R

�

(and therefore by M

�

),

for an open and saturated branch �.

Lemma 4 If a branch � is open and saturated, then it is coherent.

2

Proof Let � be an open and saturated branch. We prove that R

�

t = M

�

t, for each t in

P

�

[T

'

, by structural induction on t. The base case is trivial for variables. Concerning

;, notice that trivially M

�

; = ; and that R

�

; = ; since � is open. For the inductive

step we prove only that R

�

(t

1

u t

2

) =M

�

(t

1

u t

2

) (other cases are similar). Suppose that

a 2 R

�

(t

1

u t

2

). Then there exists s such that R

�

s = a and s @� t

1

u t

2

occurs in �, and

since � is saturated both s @� t

1

and s @� t

2

occur in �. By Lemma 3 R

�

s 2 R

�

t

1

and

R

�

s 2 R

�

t

2

, and by inductive hypothesis a 2 M

�

t

1

\M

�

t

2

= M

�

(t

1

u t

2

). Conversely, if

a 2M

�

(t

1

u t

2

) then a 2M

�

t

1

\M

�

t

2

, and by inductive hypothesis a 2 R

�

t

1

\R

�

t

2

. After

noticing that, because of the restrictions imposed to the application of the rules, it must

be the case that t

1

; t

2

2 T

'

, it follows that there exist s

0

; s

00

such that Rs

0

= Rs

00

= a and

both s

0

@� t

1

and s

00

@� t

2

occur in �. By saturation, either s

0

@� t

2

or s

0

6@� t

2

occurs in �.

In the former case s

0

@� t

1

u t

2

occurs in �, and therefore a 2 R

�

(t

1

u t

2

). In the latter case

s

0

6� s

00

occurs in �, and therefore R

�

s

0

6= R

�

s

00

, a contradiction.

�

The following theorem is an immediate consequence of Lemmas 3 and 4 and of the

fact that the collection of formulae occurring in any open and saturated branch form a

propositional Hintikka set.

Theorem 1 If � is an open and saturated branch, then it is satis�able, and indeed it is

satis�ed by M

�

.

2

5 Some experimental results

On a 200Mhz ULTRA-Spark Sun workstation, the formulae :(x � [y] ^ x � y t z)_ (y �

; ^ x � z) (cf. Example 1) and a t (b t c) � (a t b) t c are proved valid in 0:03 seconds

and 0:02 seconds, respectively, whereas the formula :(x @� y ^ x 6@� z

1

^ z

1

t z

2

@� [y]) is

recognized not to be valid in 0:04 seconds.

104

6 Future plans

We plan to further investigate heuristics which allow to strengthen subsumption require-

ments, as hinted in Remark 3.

Also, we intend to study thoroughly the cases in which cuts are really needed, in order

to further optimize our calculus.

Finally, we plan to generalize our tableau calculus and relative saturation strategy to

extensions of MLSS (cf. [6, 5]).

Acknowledgments

The authors wish to thank B. Beckert, N. Bjorner, and T. Uribe for helpful comments. The

second author wishes to thank Prof. Zohar Manna for having given him the opportunity

to visit his REACT group.

References

[1] Bernhard Beckert and Ulrike Hartmer. A tableau calculus for quanti�er-free set theoretic

formulae. In Proceedings, International Conference on Theorem Proving with Analytic Tableaux

and Related Methods, Oisterwijk, The Netherlands, LNCS 1397, pages 93{107. Springer, 1998.

[2] Nikolaj S. Bj�rner, Anca Browne, Eddie S. Chang, Michael Col�on, Arjun Kapur, Zohar Manna,

Henny B. Sipma, and Tom�as E. Uribe. STeP: Deductive-algorithmic veri�cation of reactive

and real-time systems. In Proc. 8

th

Intl. Conference on Computer Aided Veri�cation, volume

1102 of LNCS, pages 415{418. Springer-Verlag, July 1996.

[3] Nikolaj S. Bj�rner, Mark E. Stickel, and Tom�as E. Uribe. A practical integration of �rst-

order reasoning and decision procedures. In Proc. of the 14

th

Intl. Conference on Automated

Deduction, volume 1249 of LNCS, pages 101{115. Springer-Verlag, July 1997.

[4] Domenico Cantone. A fast saturation strategy for set-theoretic Tableaux. In Didier Galmiche,

editor, Proceedings of the International Conference on Automated Reasoning with Analytic

Tableaux and Related Methods, volume 1227 of LNAI, pages 122{137, Berlin, May13{16 1997.

Springer.

[5] Domenico Cantone and Alfredo Ferro. Techniques of computable set theory with applications

to proof veri�cation. Comm. Pure Appl. Math., XLVIII:1{45, 1995.

[6] Domenico Cantone, Alfredo Ferro, and Eugenio Omodeo. Computable set theory, volume

no.6 Oxford Science Publications of International Series of Monographs on Computer Science.

Clarendon Press, 1989.

[7] Marcello D'Agostino and Marco Mondadori. The taming of the cut. Classical refutations with

analytic cut. Journal of Logic and Computation, 4(3):285{319, June 1994.

[8] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Graduate Texts in

Computer Science. Springer-Verlag, Berlin, 2nd edition, 1996. 1st ed., 1990.

[9] Calogero G. Zarba. Dimostrazione automatica di formule inisiemistiche con tagli analitici. Tesi

di Laurea, Universit�a di Catania (in Italian), July 1998.

105

