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Abstract

In this paper, we present a further liberalization of the �-rule in free variable seman-

tic tableaux. It is e�ective in that (1) it is both a natural and intuitive liberalization,

and (2) can reduce the proof size exponentially as compared to previous versions of

the �-rule.

1 Introduction

Proof procedures for �rst order predicate logic such as semantic tableaux need means to

deal with existential quanti�ers. In general there are two di�erent ways to do this. One

way is to Skolemize the formula to be proven in a preprocessing step, obtaining a purely

universal formula at the expense of a richer signature. The other approach is not to use a

preliminary Skolemization but to add a tableau expansion rule for treating the essentially

existential formulae, so that Skolemization is performed during the proof construction

when existential formulae are encountered on tableau branches. In substance, there is no

di�erence in applying either of the two methods, but we believe that adding a rule for

the existential formulae to the tableau expansion rules and eliminating the preliminary

Skolemization phase makes the proof procedure more compact and is generally preferable.

In this paper we follow the second approach, presenting an expansion rule for existen-

tial formulae based on the global Skolemization technique described in [4] and [3]. The

central idea of our method is to perform { during the proof { a \delayed" global Skolem-

ization of the formula to be proved. This approach di�ers from the widespread \local"

Skolemization in that the (in�nitely many) Skolem function symbols for eliminating all

existential quanti�ers are introduced in a single shot.

1

We will de�ne a �-rule going beyond existing �-rules in the literature in that sense,

which is able to re
ect structural similarities in a natural way. This reduces the number

of Skolem functors and of variables dependencies in the proofs.
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In [4] and [3] the possibility is contemplated to get rid of the universal quanti�ers as well, returning a

formula devoided of quanti�ers.
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2 Preliminaries

2.1 Uniform Notation

Before going into details, we have to introduce some notation. For the sake of simplicity we

use Smullyan's uniform notation, which has the advantage of being compact, cutting down

on the number of cases that must be considered. Smullyan divides the logical operators

and consequently the formulae of the language into four categories: conjunctive formulae

called �-formulae, disjunctive formulae called �-formulae, universally quanti�ed formulae

called 
-formulae, and existentially quanti�ed formulae called �-formulae. According to

this notation, our interest is clearly devoted to the �-formulae.

2.2 Baaz and Ferm�uller's Rule

We assume the reader to be familiar with the standard expansion rules of semantic tableaux

(the previous versions of the �-rule are described in [7], [5], [6], [2]). Here, we only give

the formulation of the �-rule developed by Baaz and Ferm�uller [1]; their rule, called �

�

-

rule, can be seen as the starting point for developing the rule we present in this paper.

Schematically, the �

�

-rule can be described as follows:

�

�

0

(f

[�]

(x

1

; : : : ; x

n

))

where x

1

: : : ; x

n

are the relevant variables (in the sense de�ned in [1]) occurring in �, and

f

[�]

is the function symbol assigned to �. This function symbol has not necessarily to be

new, but it is allowed to use the same function symbol more than once when the �-rule

is applied to existential formulae that are identical up to variable renaming (including

renaming of the bound variables in the formula).

Hence, along with the initial signature �, a new enriched signature �

�

is introduced,

containing all the Skolem function symbols that may occur during the construction of a

tableau for a formula over �. Let L

�

�

be the set of well-formed formulae over �

�

(for a

detailed explanation see [1] or [2]); and let � be the set of all �-formulae in L

�

�

. Further,

let the equivalence relation R

�

over � be de�ned as follows: �

1

R

�

�

2

i� �

1

is identical to

�

2

up to variable renaming (for all �

1

; �

2

2 �). Clearly, the set of all the �-formulae of

the language is divided into equivalence class. Each of these classes is assigned a Skolem

function symbol.

Our further liberalization of the �-rule allows a di�erent construction of the extended

signature �

�

�

, minimizing the number of redundant Skolem symbols. We use an equiva-

lence relation R

�

�

over set � such that two �-formulae �

1

and �

2

are equivalent i� they

can be (uniquely) related to the same relevant extracted key formula as de�ned in the

following section.

2.3 Key formulae

In this section, we introduce the notion of key formulae, which is of great importance to

the technique of global Skolemization because it characterizes the formulae in the lan-

guage that are assigned their own Skolem function symbol. Each formula of the language

corresponds to a unique key formula, of which it inherits the related Skolem function

symbol.
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In the following, we adapt the notion of key formulae to the context of semantic

tableaux. Before giving a formal de�nition, we intuitively clarify the concept with some

examples.

EXAMPLE 2.1 Suppose we have a �

�

-tableau proof in which, at a certain point, we

have to apply the �

�

-rule to the �-formula (9x)r(x; y). Clearly, the expansion results in

the formula r(g(y); y).

Now let us suppose that later in the proof, we have to expand the formula (9w)r(w; z).

It is identical with the former formula up to variable renaming, so we can use the same

Skolem function symbol g and the expansion results in the formula r(g(z); z).

However, if we encounter the �-formula (9x)r(x; k(z)), we must introduce a new Skolem

function symbol f obtaining the result r(f(z); k(z)). On the other hand, if we employ

our new �

�

�

-rule and come across (9x)r(x; k(z)), we can use the same Skolem function

symbol g obtaining r(g(k(z)); k(z)). Applying �

�

�

yields this result, because the three �-

formulae mentioned above match with the same key formula r(x

1

; x

2

).

EXAMPLE 2.2 Let us suppose that the following formulae occur in a tableau proof:

(9x)p(x; y)

(9w)p(w; f(f(z))

(9x)p(x; h(h(h(z)))

If we apply any of the previous versions of the �-rule (see [5], [6], [2] and [1]), then we

have to assign a di�erent Skolem function symbol to each of them. On the other hand,

applying the �

�

�

-rule, it is possible to relate all these formulae to the key formula p(x

1

; x

2

)

and, thus, to assign them the same function symbol.

We now proceed to formally de�ne the notion of key formulae. This de�nition is

slightly di�erent from the one given in [4] and [3], because it is adapted to the tableaux,

allowing key formulae to contain quanti�ers.

Let us assume that we have in�nitely many variables : : : ; x

�2

; x

�1

; x

0

; x

1

; x

2

; : : :. In

particular we can single out the sequences:

1. x

�1

; x

�2

; : : :

2. x

1

; x

2

; : : :

and the special variable x

0

.

DEFINITION 2.1 A formula ' is called canonical with respect to the variable x

0

if:

� There is a k � 0 such that the bound variables of ' are fx

�1

; : : : ; x

�k

g, appearing

in ' in the order x

�1

; : : : ; x

�k

from left to right, and each of these variables is

quanti�ed only once (but may occur multiply).

� There is an n � 0 such that Free(') n fx

0

g = fx

1

; : : : ; x

n

g (where Free(') is the set

of free variables in '), these variables appear in ' in the order x

1

; : : : ; x

n

from left

to right, and each of them appears only once in '.

Every formula of the language has a corresponding canonical formula with respect to

a variable (in general the existentially quanti�ed one).

88



EXAMPLE 2.3 The canonical formula '

1

corresponding to the formula

' = (9y)(9z)(R(x; f(y); z; h(w;w)) ^Q(u; v))

with respect to x is

'

1

= (9x

�1

)(9x

�2

)(R(x

0

; f(x

�1

); x

�2

; h(x

1

; x

2

)) ^Q(x

3

; x

4

)) :

We de�ne key formulae to be canonical formulae that are most general with respect

to substitution.

DEFINITION 2.2 A formula ' is called a key formula if

� it is canonical with respect to x

0

,

� for all  that are canonical with respect to x

0

, if there is a substitution � that is free

for (9x

0

) such that ' =  �, then  = '.

EXAMPLE 2.4 We continue from Example 2.3. The key formula with respect to x

corresponding to

' = (9y)(9z)(R(x; f(y); z; h(w;w)) ^Q(u; v))

is

'

2

= (9x

�1

)(9x

�2

)(R(x

0

; f(x

�1

); x

�2

; x

1

) ^Q(x

2

; x

3

)) :

Only key formulae deserve their own Skolem function symbol, so the following bi-unique

correspondence exists:

'! h

'

;

where ' is a key formula according to De�nition 2.2 and h

'

is the corresponding Skolem

function symbol.

Any �-formula of the language (uniquely) corresponds to a key formula as the following

theorem states:

THEOREM 2.1 Let  be a �-formula not containing occurrences of any of the variables

x

�1

, x

�2

; : : :, and let x

i

be a variable (i � 0). Then there is a unique key formula ' and

a free substitution � such that:

�  and '� are identical up to renaming of the bounded variables.

� x

0

� = x

i

and x

i

does not occur in x� for any x 6= x

0

.

Proof. We give an e�ective algorithm to construct the key formula ' from the formula  :

1. In  , rename all the bound variables (from left to right) by x

�1

; x

�2

; : : : calling the

obtained formula  

1

.

2. Locate in  

1

the leftmost term t

1

not containing x

i

or any bound variable and

continue the process until a t

n

is found such that there is no term not containing x

i

or any of the bound variables occurring after it. In that way, the tuple [t

1

; : : : ; t

n

] is

obtained.
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Now, let ' be the formula obtained by the simultaneous substitution of [x; t

1

; : : : ; t

n

] by

[x

0

; x

1

; : : : ; x

n

].

Then, ' is a key formula because

� it is canonical with respect to x

0

;

� for all � canonical with respect to x

0

, if there is a � that is free for (9x

0

)� and

' = ��, then � = '.

By construction, ' is canonical with respect to x

0

, so the �rst point is trivially proved.

We proceed to prove the second point. Let � be a formula which is canonical with

respect to x

0

. We have to show that, if there is a � that is a free substitution for (9x

0

) 

such that ' = ��, then � = '.

Let us suppose that � = fx

1

=t

1

; : : : ; x

n

=t

n

g is a substitution such that ' = ��. As �

is free for (9x

0

)� and does not instantiate x

0

, the terms t

1

; : : : ; t

n

do not contain x

0

, but

(by construction) these terms are the variables x

1

; : : : ; x

n

and so � = � and ' = �, which

concludes the proof. 2

We go on to show how the notions we have introduced will be used to optimize the

tableau calculus. For that purpose, we make use of the fact that the length of proofs

in �rst-order tableaux is closely related to the number of applications of the 
-rule. In

substance the problem of shortening the length of tableau proofs is reduced to the one of

�nding a way to close all the tableau branches as soon as possible. Reasons why it may

not be possible to close a tableau are:

Variable Dependencies. To close the tableau requires to unify a term with a variable

occurring in it.

Ground Terms. There are too many ground terms and not enough free variables (and

since all the free variables in the tableau come from 
-rule applications, obviously

the more free variables are needed the more 
-rule applications are required).

3 The �

�

�

-Rule

The �

�

�

-rule addresses both problems mentioned at the end of the previous section, leading

to a potentially exponential speedup over the �

�

-rule.

Baaz and Ferm�uller's de�nition of the �

�

-rule reduces the number of variable depen-

dencies; in this way a non-elementary speedup is obtained, compared to the �

+

+

-rule of

Beckert, H�ahnle, and Schmitt described in [2]. For that purpose, Baaz and Ferm�uller

introduce the notion of relevant variables of a formula ' with respect to a free variable x.

One can go further by using a recursive de�nition of relevant variables. Instead, how-

ever, we de�ne the notion of relevant extracted formulae, that not only allows to reduce

the number of variable dependencies (and thus the number of arguments in the Skolem

terms) but also to use the same Skolem symbols for existentially quanti�ed formulae that

di�er only in irrelevant subformulae such as, for example, the formulae (9x)p(x) ^ q and

(9x)r ^ p(x). In the de�nition of the �

�

�

-rule, this idea will be combined with the concept

of key formulae explained in the previous section.
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DEFINITION 3.1 Let ' be a formula, and let S be a set of variables. We de�ne the

relevant extracted formula for ' w.r.t. S, denoted by RelF ('; S), as follows, where we

indicate with � the \empty formula":

2

1. If Free(') \ S = ;, then RelF ('; S) = �,

2. otherwise:

(a) RelF ('; S) = ' if ' is atomic,

(b) RelF ('; S) = :RelF ( ; S) if ' = : ,

(c) RelF ('; S) = RelF ( ; S) � RelF (�; S) if ' =  � �, where � is a binary con-

nective,

(d) RelF ('; S) = (Qy)RelF ( ; S [ fyg) if ' = (Qy) , where Q is a quanti�er.

The above de�nition of relevant extracted formulae subsumes the de�nition of relevant

variables Rel('; x) as given in [1] in the sense that

Free(RelF ('; fxg)) n fxg � Rel('; x) :

Now we have everything at hand to give the formal de�nition of our �

�

�

-rule:

DEFINITION 3.2 Let � = (9x)', and let '

1

be the corresponding key formula w.r.t. x,

such that '

1

� � '. Further let '

2

= RelF ('

1

(x

0

); fx

0

g) be the relevant extracted key

formula, let S = Free('

2

)nfx

0

g, and let h

'

2

2 F

(jSj)

be the corresponding Skolem function

symbol.

The �

�

�

-rule can be schematically described as follows:

�

�

0

(h

'

2

(

~

S)�)

if '

2

6= �.

�

�

0

(x)

if '

2

= �.

where

~

S are the terms substituted for the free variables of the relevant extracted key formula

'

2

in the substitution � de�ned above.

4 The Extended Signature �

�

As we have already pointed out, in case the formula to be proved is not yet Skolemized,

the initial signature is enriched. In previous versions of the �-rule, namely the �

+

+

-rule

and the �

�

-rule, the signature structure is of interest, because sometimes it is possible to

use the same symbol more than once.

Now, analogously, we can analyze how the augmented signature for the �

�

�

-rule is

constructed starting from an initial signature �. For that purpose we de�ne the operator

sk that, given a signature, computes an extended signature enriched by new function

symbols produced by the Skolemization of the �-formulae over �. It is de�ned as follows:

(�)

sk

= fP

�

; F

�

[ ff j f is a Skolem function symbol corresponding to a relevant

extracted key formula ' 2 L

�

gg

2

Note, that � does not have any semantics, and that :� syntactically reduces to �, � �  to  (� is

any propositional connective),  � � to  and (Qy)� to �.
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The extended signature �

�

�

is recursively de�ned as follows:

�

0

= �

�

n+1

= (�

n

)

sk

for n � 0

�

�

�

=

[

n�0

�

n

Finally, we de�ne the notion of the rank of a Skolem function symbol.

DEFINITION 4.1 The rank of a Skolem functional symbol f is the smallest n � 0 such

that f 2 �

n

.

When we prove a formula in which the maximal nesting degree of existential quanti�-

cations is n, then no Skolem function symbols of a rank greater than n can occur in a

tableau proof. Consequently, the number of recursive steps needed to construct a signature

for such a tableau proof starting from the initial signature is exactly n.

5 Exponential Speedup

In this section, we show that using the �

�

�

-rule instead of the �

�

-rule can shorten proofs

exponentially.

THEOREM 5.1 There is a class of formulae (�

n

)

(n�1)

such that, if b

�

(n) (resp. b

�

�

(n))

is the number of branches of the shortest closed tableau for �

n

using the �

�

-rule (resp.

�

�

�

-rule), then the shortest closed tableau for �

n

using the �

�

-rule has

b

�

(n) = O(2

b

�

�

(n)

)

branches.

Proof. We recursively de�ne the following class of formulae:

�

1

= false

�

n

= (8x)(8y)(�

n�1

_ [p

n

(x; y) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))])

for n � 2

The theorem is then proven by showing that

1. the number b

�

�

(n) of branches of the smallest closed �

�

�

-tableau for �

n

is linear in n,

2. the number b

�

(n) of branches of the smallest closed �

�

-tableau for �

n

is exponential

in n.

Intuitively, the reason for the di�erent behavior of the �

�

�

- and the �

�

-rule on the above

formula class is that the �

�

�

-rule uses the same Skolem function symbol h to Skolemize

the two existential formulae in the second part of �

n

; therefore, a single copy of the literal

p

n

(x

1

; y

1

) is su�cient to close the two branches that contain these existential formulae,

and the closed tableau T

�

�

n

for �

n

contains only one copy of T

�

�

n�1

. The �

�

-rule, on the

other hand, introduces two di�erent Skolem function symbols h and g. As a result, two
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Substitution to be applied:

� = fx

1

=h(f(f(w

1

))); y

1

=f(f(w

1

)); v

1

=f(w

1

)g

�

n

�

n�1

_ [p

n

(x

1

; y

1

) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))]

�

n�1

T

�

�

n�1

p

n

(x

1

; y

1

) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))

p

n

(x

1

; y

1

)

(8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w))))

(8v)(9z)(:p

n

(z; f(v)))

(9z)(:p

n

(z; f(v

1

)))

:p

n

(h(f(v

1

)); f(v

1

)))

(8w)(9z)(:p

n

(z; f(f(w))))

(9z)(:p

n

(z; f(f(w

1

))))

:p

n

(h(f(f(w

1

))); f(f(w

1

))))

Figure 1: A minimal �

�

�

-tableau for �

n

that is closed after application of the substitution

� shown at the top.

instances p

n

(x

1

; y

1

) and p

n

(x

2

; y

2

) have to be generated; this, however, means that the

closed tableau T

�

n

for �

n

must contain two copies of T

�

n�1

.

b

�

�

(n) is linear in n. It is easy to see that the tableau T

�

�

n

shown in Figure 1 is a smallest

closed �

�

�

-tableau for �

n

, The number b

�

�

(n) of branches of T

�

�

(n) is

b

�

�

(n) = b

�

�

(n� 1) + 2

for n � 1, which implies that b

�

�

(n) is linear in n.

b

�

(n) is exponential in n. Similar to the previous case, it is easy to see that the tableau T

�

n

shown in Figure 2 is a smallest closed �

�

-tableau for �

n

, The number b

�

(n) of branches

of T

�

(n) is

b

�

(n) = 2b

�

(n� 1) + 2

for n � 2, which implies that b

�

�

(n) is exponential in n.

Note that the above proof uses only one of the two main features of the �

�

�

-rule, namely

the fact that it uses the concept of key formulae for assigning Skolem function symbols

to �-formulae. The same result can be proved solely based on the second main feature,

which is to ignore non-relevant sub-formulae.

REMARK 5.1 Notice that it is possible to adapt to our case Baaz and Ferm�uller proof

given in [1], thus proving a non-elementary speedup of the �

�

�

-rule over the �

�

-rule. With-

out going into details, it is su�cient to �nd a suitable \justifying formula" in the sense of

[1] to obtain the desired result. 2
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Substitution to be applied:

� = fx

1

=h(v

1

); y

1

=f(v

1

); x

2

=g(w

1

); y

2

=f(f(w

1

))g

�

n

�

n�1

_ [p

n

(x

1

; y

1

) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))]

�

n�1

T

�

n�1

p

n

(x

1

; y

1

) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))

p

n

(x

1

; y

1

)

(8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w))))

(8v)(9z)(:p

n

(z; f(v)))

(9z)(:p

n

(z; f(v

1

)))

:p

n

(h(v

1

); f(v

1

)))

(8w)(9z)(:p

n

(z; f(f(w))))

(9z)(:p

n

(z; f(f(w

1

))))

:p

n

(g(w

1

); f(f(w

1

))))

�

n�1

_ [p

n

(x

2

; y

2

) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))]

�

n�1

T

�

n�1

p

n

(x

2

; y

2

) ^

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))

p

n

(x

2

; y

2

)

((8v)(9z)(:p

n

(z; f(v))) _ (8w)(9z)(:p

n

(z; f(f(w)))))

Figure 2: A minimal �

�

-tableau for �

n

that is closed after application of the substitution

� shown at the top.
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6 Proving Soundness of �

�

�

The fact that the �

�

�

-rule is a liberalization of the �

�

-rule implies that completeness is

trivially preserved and does not have to be proved.

The soundness proof, which because of space restrictions we can only sketch, follows

the same lines as that for the �

�

-rule. First, satis�ability of tableaux is de�ned, and

then it is proved that satis�ability is preserved when a tableau is expanded or a (closing)

substitution is applied to a tableau.

The main idea for proving that satis�ability of tableau is preserved is to inductively

de�ne a sequence (M

n

)

n�0

of structures that all have the domain D. This sequence is an

approximation of a structureM

�

= hD;I

�

i for the signature �

�

�

. The interpretation I

�

is constructed in such a way that the Skolem function symbols are interpreted in the right

way.

The initial structureM

0

= hD;I

0

i is an arbitrary structure for the signature � = �

0

that satis�es the formula to be proved;M

n+1

= hD;I

n+1

i is a structure for the signature

�

n+1

; I

n+1

coincides with I

n

on all symbols in �

n

. The function symbols of rank r � n

are already been interpreted inM

n

.

To de�ne the interpretation of the function symbols of rank n + 1, let us consider

the formula � = (9x)�

0

and let ' be the key formula corresponding to �

0

and � =

fy

1

=x; y

2

=t

1

; : : : ; y

n+1

=t

n

g the substitution such that '� � �

0

. Let '

1

= RelV ('; fx

0

g)

be the corresponding relevant extracted key formula and let f

[�]

R

�

�

the related Skolem

functional symbol introduced to Skolemize the formula � = (9x)�

0

. The Skolem term

substituted to the variable x, f

[�]

R

�

�

(t

1

; : : : ; t

i

), where t

1

; : : : ; t

i

are the terms in �

0

corre-

sponding to the free variables of '

1

is interpreted as follows:

1. If there is a variable assignment A such that (M

n

; A) j= ', according to the semantics

of the existential quanti�er then we choose an element c of the domain such that:

(M

n

; A[x c]) j= '

0

and de�ne

[f

[�]

R

�

�

(t

1

; : : : ; t

i

)]

I

n+1

= c

2. otherwise we de�ne

[f

[�]

R

�

�

(t

1

; : : : ; t

i

)]

I

n+1

= c

where c is an arbitrarily chosen element of the domain.

7 Conclusion

We have introduced a new version of the �-rule in semantic tableau, based on the �

�

-rule

of Baaz and Ferm�uller.

The new rule carries mainly two features:

1. For Skolemization, we identify formulae that are identical up to irrelevant subfor-

mulae, and assign them the same Skolem function symbol.

2. We abstract from the terms in an existential formula before assigning it a Skolem

symbol; the terms are used as arguments of the Skolem term that is introduced.

95



As we already pointed out, both these features independently enable an exponential re-

duction in proof complexity.

Key formulae and extracted key formulae are not expensive to calculate. Global

Skolemization has already been implemented in SETL. As a next step, we plan to im-

plement a semantic tableau system employing the �

�

�

-rule and several additional opti-

mizations. We believe that our version of the �-rule o�ers many advantages over previous

versions and a good ratio between reduction in proof length and costs of execution.

What we want to emphasize as the main point of our work is not the fact that it is

possible at all to gain an exponential speedup, but that our rule (in particular due to

the second feature mentioned above) triggers Skolemization in a quite natural way. If a

proof introduces functions in a generalizing manner, we keep closer to the usual intuition

of what the meaning of a function is, i.e., an abstraction that is applicable to di�erent

elements.
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