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Abstract

The general problem of testing the isomorphism of two given �nite interpretations

of �rst-order logic is known to be isomorphism complete, i.e. polynomially equivalent

to the graph isomorphism problem (GI). It is easy to see that this fact still holds

when sorts are introduced. However, this isomorphism problem is relevant only for

interpretations of a �xed signature, and in some cases, according to the signature,

is much simpler than the general problem. We therefore establish exactly for which

signatures is the associated isomorphism problem simpler than GI, and for which is

it isomorphism complete. It turns out that non-monadic signatures are isomorphism

complete just as is the case in unsorted logic, while the classi�cation of monadic

signatures is more complex and interesting.

1 Introduction

In the context of model building, it is very common to consider sorts in order to reduce

the search space. It is also a trivial thought that things get more complex if we consider

a formula with more non-logical symbols than another one. But then why not consider

only one sort, and one function symbol encoding all others? Because the corresponding

interpretations would poorly represent the objects we are looking for, and the search would

browse many meaningless structures. A search can only be e�cient if the search space

consists of reasonable candidates, not weird mixtures of unsuitable representations. We

may question whether the art of �nding a suitable, or \searchable" representation can rest

on �rm ground.

When we search for �nite models of a �rst order sorted formula, the search space is

determined by the set of non-logical symbols used in the formula, i.e. the signature. It is

clear that some signatures are much simpler than others, for example the interpretations

of a signature � with only one constant symbol cannot match the rich structure of graphs,

while this is possible with a binary predicate symbol. Of course, there may be many ways

to represent any kind of objects as �nite algebras, but we may obtain negative results by

considering the relative complexity of source and target structures of representations: the

represented object is necessarily simpler than the structure into which it is encoded.

We will only consider transformations that preserve isomorphisms in order to ensure

fair representations. We will also focus on a very elementary measure for the complexity

of a structure: the computational complexity of the associated isomorphism problem. The

�
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reason is that the general isomorphism problem between �nite algebras is known to be

isomorphism complete, while it is believed that this class is disjoint from the class P. Hence

�nite interpretations of simple signatures, i.e. inducing a polynomial isomorphism test,

are strictly simpler than those rich enough to embed graphs.

2 Preliminaries

Definition 2.1. Given a �nite set S, whose elements are called sorts, the set of �rst-order

S-types is T

1

(S) =

S

k2N

S

k

� (S ] fog). For t = hd

1

; : : : ; d

k

; ri 2 T

1

(S), if k 6= 0 then t is

said to be functional, and is noted d

1

� : : :� d

k

! r; dom t is d

1

� : : :� d

k

and rng t is r.

If k = 1, t is said to be monadic, and atomic if k = 0.

A signature � = hS;F ; �i is given by a �nite set S of sorts, a �nite set F of symbols

and a function � from F to T

1

(S). f 2 � stands for f 2 F , and �

f

for �(f). If �

f

is functional and rng�

f

= o, then f is a predicate symbol. A signature � is monadic if

8f 2 �, �

f

is either monadic or atomic.

A sort interpretation I of S is a function which associates a �nite non empty set to each

element of S, such that 8s; s

0

2 S, if s 6= s

0

then I(s)\I(s

0

) = ; and I(s)\f>;?g = ;. We

extend I to the set of �rst order S-types by: I(o) = f>;?g, 8s

1

; : : : ; s

n

2 S; I(s

1

� : : :�

s

n

) =

Q

n

i=1

I(s

i

) and for any functional �rst-order S-type t, I(t) is the set of functions

from I(dom t) to I(rng t).

A �-interpretation I = hD; vi is given by a sort interpretation D of S and a function

v from F to

S

t2T

1

(S)

D(t) such that 8f 2 �; v(f) 2 D(�

f

). In the sequel, I

f

stands for

v(f), and I(t) for D(t). r

Given two problems P and Q, we note P /

P

Q when P polynomially reduces to Q

(see [1]). We note GI the problem of graph isomorphism: given two graphs G = hV;Ei

and G

0

= hV

0

; E

0

i, GI is true of G;G

0

i� 9� such that � : G

�

=

G

0

. We will also consider

the usual brands of graphs, directed, labeled, multigraphs. Their isomorphism problem

are known to be all polynomially equivalent to GI, i.e. isomorphism complete (see e.g.

[2]). Other standard notions as paths, connexity, etc. will also be assumed.

We will obviously make extensive use of isomorphisms between interpretations: given a

signature � and two �-interpretations I; I

0

, an isomorphism between I and I

0

is a function

� such that 8s 2 S, � is 1-1 from I(s) onto I

0

(s), � is the identity on I(o) = I

0

(o), and

8f 2 �, let �

f

= d

1

� : : :�d

n

! r, then 8hx

1

; : : : ; x

n

i 2 I(d

1

� : : :�d

n

); I

0

f

(x

�

1

; : : : ; x

�

n

) =

I

f

(x

1

; : : : ; x

n

)

�

. This is noted � : I

�

=

I

0

. Finally, we note Iso(�) the problem which,

given two �-interpretations I; I

0

, is true i� 9� such that � : I

�

=

I

0

.

Since we only consider isomorphism problems, we will provide polynomial time trans-

formations from source structures (graphs, interpretations) to target structures, while

preserving isomorphisms in both directions. When isomorphic source objects are trans-

formed into isomorphic target objects, we say that the transformation is invariant (in-

tuitively, only their structure is transformed). If source objects are isomorphic whenever

their transformed objects are isomorphic, the transformation is accurate (all the structure

is transformed). A transformation both invariant and accurate is said to be fair.

As an example, we �rst prove that things get more complex by adding sorts.

Lemma 2.1 Let � = hS;F ; �i and �

0

= hS ] fsg;F ; �i, then Iso(�) /

P

Iso(�

0

)

Proof. �-interpretations I can be transformed into �

0

-interpretations

e

I by taking

e

I

f

= I

f

and

e

I(t) = I(t) for all f 2 F and t 2 S, and

e

I(s) = fag, where a 62

U

t2S

I(t). This
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transformation is obviously polynomial. It is invariant since any isomorphism � between

two �-interpretations I; I

0

can be extended to an isomorphism between

e

I and

e

I

0

by a

�

= a.

It is accurate since any isomorphism � :

e

I

�

=

e

I

0

is 1-1 from

e

I(s) onto

e

I

0

(s), hence a

�

= a,

and the restriction of � to

U

t2S

e

I(t) is an isomorphism between I and I

0

. Hence the

problem Iso(�) can be solved by using Iso(�

0

) (whether the answer is yes or no) through

this polynomial and fair transformation. q.e.d.

In the sequel, we will establish properties of speci�c signatures, the statement of which

will be eased by the following notation: for a given S and any �rst-order S-types t

1

; : : : ; t

n

,

we note dt

1

; : : : ; t

n

e for any signature � = hS;F ; �i where F contains exactly n symbols

f

1

; : : : ; f

n

and 8i 2 f1 : : :ng; �(f

i

) = t

i

. If S is not speci�ed, we take the smallest possible

one: the set of symbols appearing in the t

i

's.

It is easy to see that things get more complex by adding arguments to functions.

Theorem 2.2 Iso(dd

1

� : : :� d

n

! re) /

P

Iso(dd

0

� : : :� d

n

! re)

Proof. If �;�

0

have a unique f 2 �; f 2 �

0

with �

f

= d

1

� : : : � d

n

! r, and �

0

f

=

d

0

� : : :� d

n

! r. We �rst consider the case where d

0

2 fd

1

; : : : ; d

n

; rg.

We transform�-interpretations I into �

0

-interpretations

e

I by: 8s 2 S;

e

I(s) = I(s) and

8hx

0

; : : : ; x

n

i 2

e

I(d

0

� : : :� d

n

);

e

I

f

(x

0

; : : : ; x

n

) = I

f

(x

1

; : : : ; x

n

). This transformation is

clearly polynomial: the graph of I

f

is duplicated jI(d

0

)j times. Since 8�;

e

I

f

(x

�

0

; : : : ; x

�

n

) =

I

f

(x

�

1

; : : : ; x

�

n

) and

e

I

f

(x

0

; : : : ; x

n

)

�

= I

f

(x

1

; : : : ; x

n

)

�

, it is obviously fair.

If d

0

is a new sort, we �rst add d

0

to �

0

, which yields �

00

and Iso(�) /

P

Iso(�

00

) by

lemma 2.1. The previous case yields Iso(�

00

) /

P

Iso(�

0

). q.e.d.

It is not as easy to prove that things get more complex by adding objects to a signature.

More precisely, given two signatures � = hS;F ; �i and �

0

= hS

0

;F

0

; �

0

i, we say that � � �

0

i� S � S

0

, F � F

0

and 8f 2 F ; �(f) = �

0

(f).

Definition 2.2. To any signature � we associate a directed multigraph G

�

=

hS; E

�

; fst

�

; snd

�

i, where E

�

is the set of hf; ii for f 2 � such that �

f

is func-

tional, with rng�

f

6= o and i is an integer between 1 and the arity n of f ; then for

�

f

= d

1

� : : :� d

n

! r, we take fst

�

(hf; ii) = d

i

and snd

�

(hf; ii) = r (see �gure 1). r

d

1

r

d

2

Figure 1: G

�

for � = dd

1

� d

2

! r; d

1

! r; r! oe

We now come to the more di�cult task of adding a new function symbol g : d

1

�d

n

!

t to a signature � while preserving isomorphisms. The trivial thing to do is to take

some constant function for I

g

, but this necessarily involves an element of I(t), therefore

disturbing the whole structure of the �-interpretation I. The solution is to add a new

element a

t

to I(t) in order to hold the \blind" value of I

g

. But then for any f 2 � with

t among its domain sort, we have to provide a value for I

f

(a

t

), and hence to add other

elements to other range sets in order to hold the images of these new elements, in an

inductive way.
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Lemma 2.3 Let � = hS;F ; �

jF

i and �

0

= hS;F ] fgg; �i, then Iso(�) /

P

Iso(�

0

)

Proof. Let t = rng �(g) if �(g) is functional, and t = �(g) otherwise.

If t = o, to every �-interpretation I we associate a �

0

-interpretation

e

I de�ned by:

8s 2 S;

e

I(s) = I(s), 8f 2 �;

e

I

f

= I

f

and 8x 2 I(dom �(g));

e

I

g

(x) = > if �(g) is

functional, or

e

I

g

= > otherwise. This transformation is obviously polynomial and fair.

If t 2 S, let S

t

be the set of s 2 S such that there exists a path in G

�

from t to s, and

including t. Given a �-interpretation I, to every s 2 S we associate a di�erent a

s

such that

a

s

62

U

s

0

2S

I(s

0

), and we build the �

0

-interpretation

e

I de�ned by 8s 2 S�S

t

;

e

I(s) = I(s),

8s 2 S

t

;

e

I(s) = I(s) ] fa

s

g and 8f 2 �, if �(f) is atomic then

e

I

f

= I

f

, and if �(f) is

d

1

� : : :� d

n

! r, then 8hx

1

; : : : ; x

n

i 2

e

I(d

1

� : : : � d

n

);

e

I

f

(x

1

; : : : ; x

n

) = [if x

1

= a

d

1

or : : : or x

n

= a

d

n

then a

r

else I

f

(x

1

; : : : ; x

n

)]. Finally, if �(g) is functional then 8x 2

e

I(dom �(g));

e

I

g

(x) = a

t

, and

e

I

g

= a

t

otherwise (see �gure 2). The transformation from I

to

e

I is polynomial, and we have to prove that it is fair.

f

f

0

s t u

g

a

t

a

u

Figure 2: Adding a g : s! t to f : s! t; f

0

: t! u

If � : I

�

=

I

0

, then we extend � to

e

I(s) by: a

�

s

= a

0

s

. We have

e

I

�

g

= a

�

t

= a

0

t

=

e

I

0

g

or 8x 2

e

I(dom �(g));

e

I

0

g

(x

�

) = a

0

t

= a

�

t

=

e

I

g

(x)

�

. Moreover, 8f 2 �; if �(g) = d

1

�

: : :� d

n

! r, then 8hx

1

; : : : ; x

n

i 2 I(d

1

� : : :� d

n

);

e

I

0

f

(x

�

1

; : : : ; x

�

n

) = [if x

�

1

= a

0

d

1

or : : :

or x

�

n

= a

0

d

n

then a

0

r

else I

0

f

(x

�

1

; : : : ; x

�

n

)]= [if x

1

= a

d

1

or : : : or x

n

= a

d

n

then a

�

r

else

I

f

(x

1

; : : : ; x

n

)

�

] =

e

I

f

(x

1

; : : : ; x

n

)

�

, and obviously

e

I

�

f

= I

�

f

= I

0

f

=

e

I

0

f

if �(f) is atomic.

The transformation is therefore invariant.

Conversely, let � :

e

I

�

=

e

I

0

, we �rst prove that 8s 2 S

t

; a

�

s

= a

0

s

by induction on the

length of the path form t to s in G

�

. If this is 0, i.e. s = t, we have 8x 2

e

I(dom �(g)); a

�

t

=

e

Ig(x)

�

=

e

I

0

g

(x

�

) = a

0

t

. If this is true of d

i

and there is an arrow in G

�

form d

i

to r,

i.e. there is a f 2 � with �(f) = d

1

� : : : � d

n

! r, then a

�

r

=

e

I

f

(a

d

1

; : : : ; a

d

n

)

�

=

e

I

0

f

(a

�

d

1

; : : : ; a

�

d

n

) = a

0

r

since a

�

d

i

= a

0

d

i

. Hence it is clear that 8s 2 S, � is 1-1 from I(s)

onto I

0

(s), and that 8f 2 � such that �(f) is functional, say d

1

� : : :� d

n

! r, we have

8hx

1

; : : : ; x

n

i 2 I(d

1

� : : : � d

n

); I

f

(x

1

; : : : ; x

n

)

�

=

e

I

f

(x

1

; : : : ; x

n

)

�

=

e

I

0

f

(x

�

1

; : : : ; x

�

n

) =

I

0

f

(x

�

1

; : : : ; x

�

n

) since x

�

i

6= a

0

d

i

. Hence the transformation is fair. q.e.d.

Corollary 2.4 if � � �

0

then Iso(�) /

P

Iso(�

0

)

Proof. If � = hS;F ; �i and �

0

= hS

0

;F

0

; �

0

i, let �

00

= hS

0

;F ; �i, then Iso(�) /

P

Iso(�

00

) by

induction with lemma 2.1, and Iso(�

00

) /

P

Iso(�

0

) by induction using lemma 2.3. q.e.d.
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3 Non-monadic signatures

In this section we study the complexity of sorted objects of arity two.

Theorem 3.1 GI /

P

Iso(ds � s! oe) and GI /

P

Iso(ds� s

0

! oe)

Proof. An interpretation I of s� s! o is a binary relation on I(s), which is essentially a

directed graph with I(s) as set of vertices. Also, any graphG = hV;Ei can be considered as

an adjacency relation, i.e. an interpretation I ofR 2 ds�s

0

! oe with I(s) = V; I(s

0

) = E,

and 8v 2 V; 8e 2 E; I

R

(v; e) = > i� v 2 e. These trivial transformations are fair. q.e.d.

These two cases will be the base for the �ve remaining cases of objects of arity two.

We begin with the essentially unsorted case.

Theorem 3.2 Iso(ds � s! oe) /

P

Iso(ds� s! se)

Proof. If R 2 �; f 2 �

0

with R �

R

= s � s ! o and �

0

f

= s � s ! s, and given a �-

interpretation I, we consider two elements which are not in I(s), say t and f, and we build

the �

0

-interpretation

e

I by

e

I(s) = I(s)]ft; fg and 8x; y 2 I(s);

e

I

f

(x; y) = t if I

R

(x; y) = >,

and f otherwise,

e

I

f

(x; t) =

e

I

f

(x; f) =

e

I

f

(t; y) =

e

I

f

(f; y) =

e

I

f

(t; t) =

e

I

f

(f; f) = t and

e

I

f

(t; f) =

e

I

f

(f; t) = f (see �gure 3).

R a b

a ? >

b ? ?

f a b t f

a f t t t

b f f t t

t t t t f

f t t f t

Figure 3: from a R : s� s! o to a f : s� s! s

This transformation is polynomial and invariant (easy by extending �-isomorphisms �

by t

�

= t

0

and f

�

= f

0

). Suppose now that � :

e

I

�

=

e

I

0

, with I; I

0

two �-interpretations. We

have 8x; y 2

e

I(s);

e

I

f

(x; y)

�

=

e

I

0

f

(x

�

; y

�

) 2 ft

0

; f

0

g, hence ft

�

; f

�

g = ft

0

; f

0

g. 8z 2 ft; fg, by

de�nition we have t

0

=

e

I

0

f

(z

�

; z

�

) =

e

I

f

(z; z)

�

= t

�

, and f

�

= f

0

, from which it is easy to

conclude that � : I

�

=

I

0

, hence the transformation is fair. q.e.d.

In the next case, compared with the previous one, we release the constraints by taking

one argument of a di�erent sort, which makes things almost easier!

Theorem 3.3 Iso(ds � s

0

! oe) /

P

Iso(ds� s

0

! s

0

e) /

P

Iso(ds

0

� s! s

0

e)

Proof. As in the proof of theorem 3.2, if �

R

= s� s

0

! o and �

0

f

= s� s

0

! s

0

, and given

a �-interpretation I we build the �

0

-interpretation

e

I by

e

I(s) = I(s),

e

I(s

0

) = I(s

0

)]ft; fg,

and 8hx; yi 2 I(s�s

0

);

e

I

f

(x; y) = t if I

R

(x; y) = >, and f otherwise,

e

I

f

(x; t) =

e

I

f

(x; f) = t

(see �gure 4). Invariance is trivial.

R a

0

b

0

a ? >

b ? ?

f a

0

b

0

t f

a f t t t

b f f t t

Figure 4: from a R : s� s

0

! o to a f : s� s

0

! s

0
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If � :

e

I

�

=

e

I

0

, with I; I

0

two �-interpretations, we have 8x 2 I(s); t

�

=

e

I

f

(x; t)

�

=

e

I

0

f

(x

�

; t

�

) 2 ft

0

; f

0

g, hence t

�

=

e

I

0

f

(x

�

; t

�

) = t

0

. If 9hx; yi 2 I(s� s

0

) such that I

R

(x; y) =

?, then f

�

=

e

I

0

f

(x

�

; y

�

) 2 ft

0

; f

0

g, hence f

�

= f

0

, from which it is easy to prove that

� : I

�

=

I

0

. If 8hx; yi 2 I(s � s

0

); I

R

(x; y) = >, then

e

I

0

f

(x

�

; y

�

) = t

�

= t

0

, and hence

8hx; yi 2 I

0

(s� s

0

); I

0

R

(x; y) = >, and I and I

0

are also isomorphic. This proves that the

transformation is fair. Iso(ds� s

0

! s

0

e) /

P

Iso(ds

0

� s! s

0

e) is obvious. q.e.d.

The next case is a further release of constraints by taking a third sort for the range.

This time things get more complex, because the target structure has one more sort than

the source, and we have to preclude any unwanted isomorphism on this new sort.

Theorem 3.4 Iso(ds� s

0

! oe) /

P

Iso(ds� s

0

! s

00

e) and Iso(ds� s! oe) /

P

Iso(ds�

s! s

00

e)

Proof. If R 2 �; f 2 �

0

with �

R

= s�s

0

! o and �

0

f

= s�s

0

! s

00

, given a �-interpretation

I we build a �

0

-interpretation

e

I in the following way. We �rst consider two sets A;B such

that A;B; I(s); I(s

0

) are disjoint two by two, and jAj = jI(s)j+ 1; jBj = jI(s

0

)j + 1, and

we also consider t; f as above. Let

e

I(s) = I(s) ] A;

e

I(s

0

) = I(s

0

) ] B;

e

I(s

00

) = ft; fg,

and 8hx; yi 2

e

I(s � s

0

);

e

I

f

(x; y) = t if either x 2 A and y 2 B, or x 62 A; y 62 B and

I

R

(x; y) = >; otherwise

e

I

f

(x; y) = f (see �gure 5). The transformation from I to

e

I

is obviously polynomial and invariant (by extending any �-isomorphism � : I

�

=

I

0

by

t

�

= t

0

; f

�

= f

0

, by any bijection from A to A

0

and from B to B

0

as well).

R a

0

b

0

a ? >

b ? ?

f a

0

b

0

c

0

d

0

e

0

a f t f f f

b f f f f f

c f f t t t

d f f t t t

e f f t t t

Figure 5: from a R : s � s

0

! o to a f : s � s

0

! s

00

, with A = fc; d; eg; B = fc

0

; d

0

; e

0

g

If � :

e

I

�

=

e

I

0

, we have ft

�

; f

�

g = ft

0

; f

0

g as above. Let n = j

e

I(s)j; m = j

e

I(s

0

)j, we

can view

e

I

f

as a (n;m)-matrix; it clearly contains a sub-matrix uniformly equal to t (this

is (

e

I

f

)

jA�B

), hence the (n;m)-matrix

e

I

0

f

contains a (jAj; jBj)-matrix uniformly equal

to t

�

, and also a (jA

0

j; jB

0

j)-matrix uniformly equal to t

0

. Since jA

0

j = jAj > n=2 and

jB

0

j = jBj > m=2, these sub-matrices have to intersect, hence t

�

= t

0

, and f

�

= f

0

hold.

Suppose there is an x 2 A such that x

�

62 A

0

, then 8y 2 B;

e

I

0

f

(x

�

; y

�

) =

e

I

f

(x; y)

�

= t

0

,

hence y

�

62 B

0

. Therefore B

�

\ B

0

= ;, hence B

�

� I

0

(s), which is impossible since

jB

�

j = jBj = jB

0

j > jI

0

(s)j. We conclude that 8x 2 A; x

�

2 A

0

, hence I(s)

�

= I

0

(s),

and similarly I(s

0

)

�

= I

0

(s

0

), hence we easily obtain � : I

�

=

I

0

, which proves that the

transformation is fair. This proof holds if s = s

0

by taking A = B. q.e.d.

Corollary 3.5 If � is a non-monadic signature, then Iso(�) is isomorphism complete.

Proof. � contains a f such that �

f

is not monadic. Let r = rng�

f

, s; s

0

the last two sorts

in dom�

f

(we may have s = s

0

), and t = s�s

0

! r, by successive applications of theorem

2.2 we obtain Iso(dte) /

P

Iso(d�

f

e). By corollary 2.4, we also have Iso(d�

f

e) /

P

Iso(�).

If r = o, theorem 3.1 yields GI /

P

Iso(dte). If r is a sort, we have three di�erent cases.

If r 62 fs; s

0

g, we also use theorem 3.4 to get GI /

P

Iso(dte), if r = s = s

0

, we use theorem
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3.2, and if r 2 fs; s

0

g with s 6= s

0

, we use theorem 3.3 to get the same result. We therefore

have GI /

P

Iso(dte) /

P

Iso(d�

f

e) /

P

Iso(�) /

P

GI (this last fact is well-known, see e.g.

[3] [4]). q.e.d.

4 hard monadic signatures

In this section and the next we only consider monadic signatures. From now on, the term

\monadic functions" refers to function symbols which are not predicate symbols. We will

prove that the complexity of binary relations can be simulated by pairs of well chosen

monadic functions. The criterion for a pair of functions to have this property is purely

syntactic: they should have the same domain sort. In graph theoretic language, this means

that this domain sort s, as a vertex of G

�

, has an output degree (number of edges out

of s, noted d

+

(s)) at least 2. We start with the case where these monadic functions have

di�erent domain and range sorts.

Theorem 4.1 Iso(ds

0

� s

00

! oe) /

P

Iso(ds ! s

0

; s ! s

00

e) and Iso(ds

0

� s

0

! oe) /

P

Iso(ds! s

0

; s! s

0

e)

Proof. Let � be the signature with the unique symbol R and �

R

= s

0

� s

00

! o, and �

0

with only the symbols f; g and �

0

f

= s ! s

0

and �

0

g

= s ! s

00

. To any �-interpretation

I we associate the �

0

-interpretation

e

I de�ned by:

e

I(s

0

) = I(s

0

);

e

I(s

00

) = I(s

00

);

e

I(s) =

fhx; yi 2 I(s

0

� s

00

)=I

R

(x; y) = >g and

e

I

f

(hx; yi) = x;

e

I

g

(hx; yi) = y (see �gure 6).

R a

0

b

0

a ? >

b > >

ha; b

0

i

hb; a

0

i

hb; b

0

i

a

b

a

0

b

0

f g

Figure 6: from a R : s

0

� s

00

! o to a f : s! s

0

; g : s! s

00

If � : I

�

=

I

0

, we extend � to all hx; yi 2 I(s) by hx; yi

�

= hx

�

; y

�

i. Since 8hx; yi 2

I(s

0

� s

00

), we have hx; yi 2

e

I(s) i� I

R

(x; y) = > i� I

0

R

(x

�

; y

�

) = > i� hx

�

; y

�

i = hx; yi

�

2

e

I

0

(s), then � is clearly 1-1 from

e

I(s) onto

e

I

0

(s). We also have 8hx; yi 2

e

I(s);

e

I

f

(hx; yi)

�

=

x

�

=

e

I

0

f

(hx; yi

�

), and similarly for g, hence � :

e

I

�

=

e

I

0

.

If � :

e

I

�

=

e

I

0

, then 8hx; yi 2

e

I(s), we have

e

I

0

f

(hx; yi

�

) =

e

I

f

(hx; yi)

�

= x

�

, and

e

I

0

g

(hx; yi

�

) = y

�

, hence hx; yi

�

= hx

�

; y

�

i. Then 8hx; yi 2 I(s

0

�s

00

), we have I

R

(x; y) = >

i� hx; yi 2

e

I(s) i� hx; yi

�

2

e

I

0

(s) i� I

0

R

(x

�

; y

�

) = >, hence � : I

�

=

I

0

. The transformation

is therefore fair, and it is trivially polynomial. This proof holds if s

0

= s

00

. q.e.d.

We now turn to the case where monadic functions have the same domain and range

sort, which is more di�cult than the previous one since we somehow have to \mix" in one

set both the domain and the range of a function.

Theorem 4.2 Iso(ds � s ! oe) /

P

Iso(ds

0

! s

0

; s

0

! s

00

e) and Iso(ds � s ! oe) /

P

Iso(ds

0

! s

0

; s

0

! s

0

e)

Proof. Let � be the signature with the unique symbol R and �

R

= s � s ! o, and �

0

with only the symbols f; g and �

0

f

= s

0

! s

0

and �

0

g

= s

0

! s

00

. To any �-interpretation
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I we associate the �

0

-interpretation

e

I de�ned by:

e

I(s

0

) = fhx; s

0

i=x 2 I(s)g ] fhx; y; s

0

i=x; y 2 I(s); I

R

(x; y) = >g

e

I(s

00

) = fhx; s

00

i=x 2 I(s)g ] fhx; y; s

00

i=x; y 2 I(s); I

R

(x; y) = >g

and

e

I

f

(hx; s

0

i) = hx; s

0

i;

e

I

f

(hx; y; s

0

i) = hx; s

0

i;

e

I

g

(hx; s

0

i) = hx; s

00

i;

e

I

g

(hx; y; s

0

i) = hy; s

00

i

(see �gure 7). Remark that

e

I(s

0

) \

e

I(s

00

) = ; and s

0

= s

00

)

e

I(s

0

) =

e

I(s

00

).

R a b

a ? >

b > >

ha; s

0

i ha; s

00

i

ha; b; s

0

i

hb; b; s

0

i

hb; a; s

0

i

hb; s

0

i

ha; b; s

00

i

hb; b; s

00

i

hb; a; s

00

i

hb; s

00

i

f

g

Figure 7: from a R : s� s! o to a f : s

0

! s

0

; g : s

0

! s

00

If � : I

�

=

I

0

, we consider the function � from

e

I(s

0

) to

e

I

0

(s

0

) and from

e

I(s

00

) to

e

I

0

(s

00

)

de�ned by hx; s

0

i

�

= hx

�

; s

0

i; hx; y; s

0

i

�

= hx

�

; y

�

; s

0

i; hx; s

00

i

�

= hx

�

; s

00

i; hx; y; s

00

i

�

=

hx

�

; y

�

; s

00

i. Since 8x; y 2 I(s), we have hx; y; s

0

i 2

e

I(s

0

) i� I

R

(x; y) = > i� I

0

R

(x

�

; y

�

) = >

i� hx

�

; y

�

; s

0

i = hx; y; s

0

i

�

2

e

I

0

(s

0

), and hx; s

0

i 2

e

I(s

0

) i� x 2 I(s) i� x

�

2 I

0

(s) i�

hx

�

; s

0

i = hx; s

0

i

�

2

e

I

0

(s

0

), then � is 1-1 from

e

I(s

0

) onto

e

I

0

(s

0

), and similarly 1-1 from

e

I(s

00

) onto

e

I

0

(s

00

). The conclusion � :

e

I

�

=

e

I

0

comes from:

e

I

f

(hx; s

0

i)

�

= hx; s

0

i

�

= hx

�

; s

0

i =

e

I

0

f

(hx

�

; s

0

i) =

e

I

0

f

(hx; s

0

i

�

)

e

I

f

(hx; y; s

0

i)

�

= hx; s

0

i

�

= hx

�

; s

0

i =

e

I

0

f

(hx

�

; y

�

; s

0

i) =

e

I

0

f

(hx; y; s

0

i

�

)

e

I

g

(hx; s

0

i)

�

= hx; s

00

i

�

= hx

�

; s

00

i =

e

I

0

g

(hx

�

; s

0

i) =

e

I

0

g

(hx; s

0

i

�

)

e

I

g

(hx; y; s

0

i)

�

= hy; s

00

i

�

= hy

�

; s

00

i =

e

I

0

g

(hx

�

; y

�

; s

0

i) =

e

I

0

g

(hx; y; s

0

i

�

)

If � :

e

I

�

=

e

I

0

, then 8x 2 I(s);

e

I

0

f

(hx; s

0

i

�

) =

e

I

f

(hx; s

0

i)

�

= hx; s

0

i

�

, i.e. hx; s

0

i

�

is

a �x point of

e

I

0

f

, hence is of the form hy; s

0

i, with y 2 I

0

(s), and this y is unique (for

� is 1-1), we note it x

�

. We also have 8x; y 2 I(s);

e

I

0

f

(hx; y; s

0

i

�

) =

e

I

f

(hx; y; s

0

i)

�

=

hx; s

0

i

�

, hence hx; y; s

0

i

�

is not a �xpoint of

e

I

0

f

, and should be of the form hx

0

; y

0

; s

0

i.

Since � is 1-1 from

e

I(s

0

) onto

e

I

0

(s

0

), it is therefore also 1-1 form fhx; s

0

i=x 2 I(s)g

onto fhy; s

0

i=y 2 I

0

(s)g, hence � is also 1-1 from I(s) onto I

0

(s). Moreover, we have

hx

�

; s

00

i =

e

I

0

g

(hx

�

; s

00

i) =

e

I

0

g

(hx; s

00

i

�

) =

e

I

g

(hx; s

00

i)

�

= hx; s

00

i

�

. As noted above, we

have

e

I

0

f

(hx; y; s

0

i

�

) = hx; s

0

i

�

= hx

�

; s

0

i and similarly

e

I

0

g

(hx; y; s

0

i

�

) = hy; s

00

i

�

= hy

�

; s

00

i,

hence hx; y; s

0

i

�

= hx

�

; y

�

; s

0

i. We conclude that 8x; y 2 I(s); I(x; y) = > i� hx; y; s

0

i 2

e

I(s

0

) i� hx; y; s

0

i

�

= hx

�

; y

�

; s

0

i 2

e

I

0

(s

0

) i� I

0

(x

�

; y

�

) = >, hence that � : I

�

=

I

0

. Hence

the transformation is fair, and trivially polynomial. This proof holds if s

0

= s

00

. q.e.d.

Corollary 4.3 If � is a monadic signature such that d

+

(G

�

) > 1 then Iso(�) is isomor-

phism complete.

Proof. If d

+

(G

�

) > 1, then 9s 2 S; 9f; g 2 � such that dom f = dom g = s. If rng f = s

or rng g = s, we use theorem 4.2, otherwise theorem 4.1, to get GI /

P

Iso(d�(f); �(g)e)

(together with theorem 3.1). We then proceed as in corollary 3.5. q.e.d.
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5 easy monadic signatures

We now prove that the isomorphism problem for all other signatures, i.e. monadic such

that G

�

has output degree at most one, is polynomial. We �rst provide the simplest

possible representation of the corresponding interpretations.

Definition 5.1. A graph G = hV;Ei is a partial function graph (or PFG), if E is the

graph of a partial function from V to V . A labeled PFG (or LPFG), is a labeled graph

whose underlying graph is a PFG. The isomorphism problem between LPFG's is noted

LPFGI. r

Lemma 5.1 If � is monadic and d

+

(G

�

) � 1 then Iso(�) /

P

LPFGI

Proof. We transform �-interpretations I into graphs. 8s 2 S, let P

s

be the set of predicate

symbols of type s! o in �, and 8x 2 I(s), let P

I

(x) = fP 2 P

s

=I

P

(x) = >g, and C

I

(x)

be the set of constant symbols c 2 � such that I

c

= x, then we consider the vertex v(s; x)

labeled by hs;P

I

(x); C

I

(x)i. Next, for every function symbol f 2 �, say �

f

= s ! s

0

(with possibly s = s

0

), and every x 2 I(s) we consider the edge hv(s; x); v(s

0

; I

f

(x))i.

Remark that 8s 2 S; 8x 2 I(s), there is at most one f 2 � such that dom f = s, hence

there is at most one edge out of v(s; x). Hence the graph F

I

thus de�ned is a PFG. The

transformation from I to F

I

is polynomial, we prove that it is fair.

If � : I

�

=

I

0

, let � de�ned by 8s 2 S; 8x 2 I(s); v(s; x)

�

= v

0

(s; x

�

), it preserves labels

i� P

I

(x) = P

I

0

(x

�

) and C

I

(x) = C

I

0

(x

�

), which is obvious since 8P 2 P

s

; I

0

P

(x) = I

P

(x

�

)

and 8c 2 �; c 2 C

I

(x) i� I

c

= x i� I

0

c

= I

�

c

= x

�

i� c 2 C

I

0

(x

�

). Edges are also

preserved by �, since hv(s; x); v(s

0

; I

f

(x))i

�

= hv(s; x

�

); v(s

0

; I

0

f

(x

�

))i is an edge of F

I

0

,

hence � : F

I

�

=

F

I

0

.

Conversely, if � : F

I

�

=

F

I

0

, then 8s 2 S; 8x 2 I(s), by the preservation of labels there

is a unique y 2 I

0

(s) such that v(s; x)

�

= v

0

(s; y), and we note it x

�

. For any f 2 �, say

�

f

= s ! s

0

, then 8x 2 I(s), the unique edge out of v(s; x)

�

should be the image of the

unique edge out of v(s; x), i.e. hv(s; x); v(s

0

; I

f

(x))i

�

= hv

0

(s; x

�

); v

0

(s

0

; I

0

f

(x

�

))i, hence

I

f

(x)

�

= I

0

f

(x

�

). Moreover, for any P 2 �, say �

P

= s ! o, then 8x 2 I(s), we have

I

P

(x) = > i� P 2 P

I

(x), part of the label of v(s; x), i� (by the preservation of labels)

P 2 P

I

0
(x

�

), part of the label of v

0

(s; x

�

), i� I

0

P

(x

�

) = >. Similarly, for any c 2 �, let

x = I

c

and s = �

c

, we have c 2 C

I

(x), part of the label of v(s; x), hence c 2 C

I

0

(x

�

), part

of the label of v

0

(s; x

�

), hence I

0

c

= x

�

= I

�

c

. Hence � : I

�

=

I

0

. q.e.d.

Remark that not all LPFG's correspond to �-interpretations, since the structure of

labels is a special one. The following proof analyses the structure of PFG's, hence gives

good insight into the structure of \easy" interpretations.

Lemma 5.2 The problem LPFGI is polynomial.

Proof. Since testing the isomorphism of two graphs with n connex components each

requires O(n

2

) tests of isomorphisms between connex components, we may only consider

connex LPFG's. In such a graph G = hV;Ei, there is at least one undirected path between

two vertices v

1

; v

2

. If d

+

(v

1

) = d

+

(v

2

) = 0, then such a path must contain a third vertex v

with d

+

(v) � 2, which is impossible. Hence there is at most one vertex r with d

+

(r) = 0.

If there is such a r, then the number of vertices exceeds the number of edges by one, hence

G is a tree, with edges directed to the root r.
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Figure 8: example of a PFG

If there is no root in G, i.e. 8v 2 V; d

+

(v) = 1. Let v

0

2 V , and 8i 2 N; v

i+1

is the

unique vertex such that hv

i

; v

i+1

i 2 E. Since V is �nite, 9i; j; i < j and v

i

= v

j

, hence G

contains a cycle, of length c = j � i. By removing one edge from the cycle we obtain a

connex LPFG with a root, hence a tree, which proves that G is a cycle of trees (�gure 8).

It is clear that testing the isomorphism of two cycles of c labeled trees requires at most

O(c

2

) tests of isomorphism between labeled trees, well-known to be polynomial. q.e.d.

Corollary 5.3 If � is monadic and d

+

(G

�

) � 1 then Iso(�) is polynomial.

Therefore, if we agree that GI is not polynomial, we get the result that Iso(�) is not

isomorphism complete only in the case that � is monadic and no two functions have the

same domain sort. Monadic predicates have no in
uence on Iso(�).

If we translate this result to standard �rst order signatures (without sorts), which is

equivalent to the sorted case with jSj = 1, we get that Iso(�) is not isomorphism complete

exactly when � is monadic and has at most one function symbol. In comparison, the

sorted case has a much richer structure, since polynomial cases are obtained with any

monadic � such that G

�

is a PFG, and any PFG can be obtained as a G

�

(more than

once since atomic objects and unary predicates are not represented in G

�

). However, the

PFG underlying a �-interpretation I may not be any PFG, and is closely dependent on

G

�

. For instance, F

I

may contain trees as connex components i� this is also the case of

G

�

. Hence our embedding of easy interpretations into LPFG, though fair, is not an exact

one.
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