
Constraint Contextual Rewriting

�

Alessandro Armando

y

DIST, Universit�a di Genova & LORIA-INRIA-Lorraine

Silvio Ranise

z

DIST, Universit�a di Genova

Abstrat

We are interested in the problem of integrating deision proedures with rewrit-

ing as in many state-of-the-art veri�ation systems. We de�ne Constraint Contextual

Rewriting (CCR) as a generalization of ontextual rewriting, whereby the rewriting

ontext is proessed by the available deision proedures. We show how CCR aounts

for some of the most important integration shemas adopted in state-of-the-art ver-

i�ation systems. The rule-based presentation of CCR given in this paper ontrasts

the pratie of desribing the integration either by examples or in informal ways with

high-level ideas intermixed with implementation details. Important properties (e.g.

soundness) of the proposed integration shema an be formally stated and proved.

Moreover, the approah is amenable of operationalization. This has allowed us to

easily fast-prototype and validate the integration shemas desribed in this paper.

1 Introdution

We are interested in the problem of integrating deision proedures with rewriting as in

many state-of-the-art veri�ation systems suh as nqthm [4℄, pvs [13℄, Teton [9℄ and

STeP [7℄. The key fators in the suess of suh systems are (a) a tight integration

shema for the ooperation of deision proedures, and (b) a arefully designed integration

shema between the deision proedures and rewriting. While abstrat aounts of (a) an

be found in the literature (see, e.g., [12, 14℄), only informal desriptions often intermixed

with implementation details are available for (b). This situation is exempli�ed in [12℄,

where the paradigm for ooperating deision proedures is abstratly desribed whilst the

integration shema with the simpli�er is desribed at a muh lower level of detail.

In this paper, we propose a general shema for the integration of deision proedures in

formula simpli�ation. The key idea is to generalize ontextual rewriting (see, e.g., [15℄),

to allow the available deision proedures to aess and manipulate the rewriting ontext.

We all Constraint Contextual Rewriting (CCR) this extended form of rewriting. We show

how CCR easily aounts for some of the most important integration shemas adopted in

state-of-the-art veri�ation systems. This is exempli�ed by enoding in our framework

�

We wish to thank Alan Smaill and Ian Green for their very useful omments on an earlier version of

this paper. We also would like to thank Olga Caprotti and Deepak Kapur for pointing us to some of the

relevant works in the literature.

y

Viale Causa 13 { 16145 Genova { Italia, armando�dist.unige.it & 615, rue du Jardin Botanique, BP

101 { 54602 Villers les Nany Cedex { Frane, armando�loria.fr

z

Viale Causa 13 { 16145 Genova { Italia, silvio�dist.unige.it

65

both ontextual rewriting and two sophistiated integration shemas: the simpli�er of

nqthm [3℄, and the simpli�er of Teton [9℄. Furthermore, we identify the set of the

interfae funtionalities that the deision proedure must provide for the integration to be

e�etive. The rule-based spei�ation of CCR given in this paper ontrasts the pratie of

desribing the integration by examples or in informal ways with high-level ideas intermixed

with implementation details. As a result, important properties (e.g. soundness) of the

integration shemas of interest an be formally stated and disussed. Finally, the rule-

based formalization is amenable of mehanization. This has allowed us to easily fast-

prototype and validate the integration shemas desribed in this paper.

The paper is strutured as follows. In Setion 2, we put CCR in the ontext of formula

simpli�ation, we disuss the rules for CCR and onstraint simpli�ation, and give hints on

the soundness of the integration shema. In Setion 3, we show that ontextual rewriting

as well as the integration shemas of nqthm and Teton are all instanes of CCR. In

Setion 4 we ompare with related work, and in Setion 5 we draw some �nal onlusions.

Formal Preliminaries. By �, � (possibly subsribed) we denote olletions of funtion

and prediate symbols (with their arity), respetively. By V we denote a set of variables.

�(�[V) and �(�) denote the set of terms and ground terms built on � and V . Further-

more, we assume that �(�[V) is the smallest set ontaining V s.t. f(t

1

; : : : ; t

n

) 2 �(�[V)

whenever f 2 � and t

i

2 �(� [V) (i = 1; : : : ; n). A term t 2 �(� [V) may be viewed as

a �nite ordered tree, whose leaves are labeled by onstants (i.e. funtion symbols of zero

arity) or variables and whose internal nodes are labeled with funtion symbols of positive

arity with out-degree equal to the arity of the label. A position within a term may be

represented as a sequene of positive integers, desribing the path from the outermost

symbol to the head of the sub-term at that position. With tj

p

we denote the sub-term of t

at position p. The term t with its sub-term tj

p

replaed by a term s is denoted by t[s℄

p

and

we all t[℄

p

the ontext of s. A substitution is a mapping from variables to terms and it is

written out as fx

1

7! t

1

; : : : ; x

n

7! t

n

g, s.t. there are only �nitely many x

i

(i = 1; : : : ; n)

not mapped to themselves. If � is a substitution and s 2 �(� [V), then s� denotes the

result of applying � to s. We also all a substitution a funtion �̂ from �(�[V) to itself,

obtained as the extension of a substitution � from V to �(� [V) in suh a way that

f(t

1

; : : : ; t

n

)�̂ = f(t

1

�̂; : : : ; t

n

�̂), for eah f 2 �, for all terms t

i

2 �(� [V) (i = 1; : : : ; n)

and x�̂ = x�, for eah x 2 V . A term t mathes a term t

0

if there exists a substitution �

s.t. t

0

� = t.

A (�;�; V)-atom is either an expression q(t

1

; : : : ; t

n

) where q 2 � and t

i

2 �(� [V)

(i = 1; : : : ; n) or an expression t

1

= t

2

where t

1

; t

2

2 �(�[V). A (�;�; V)-literal is either

a (�;�; V)-atom or a negated (�;�; V)-atom. The variables in a (�;�; V)-atom (-literal)

are understood to be universally quanti�ed. We write (�;�)-atom (-literal) instead of

(�;�; ;)-atom (-literal). The set of (�;�)-expressions is the union of �(�) and the set

of (�;�)-atoms. A (�;�; V)-formula is the smallest set ontaining the (�;�; V)-literals

and if � is a (�;�; V)-formula then :(�) is a (�;�; V)-formula, and if �

1

; �

2

are two

(�;�; V)-formulae then (�

1

��

2

) is a (�;�; V)-formula, where \�" is one of the following

logial onnetives ^, _, ! and $. (Below, a 6= b abbreviates :(a = b).) We assume

that the language ontains the propositional onstants true and false denoting truth and

falsity, respetively. A (�;�; V)-theory is a olletion of (�;�; V)-formulae.

In order to distinguish the symbols interpreted by the di�erent modules of the ombi-

nation/integration, we partition the sets of funtion and prediate symbols in the following

sub-sets: �

j

, �

, �

j

and �

, s.t. �

� �

j

and �

� �

j

. The subsript \j" labels the sets

66

of funtion and prediate symbols of the (fragment of the) logi of the prover, where the

ombination/integration of deision proedures and ontextual rewriting takes plae. The

subsript \" labels the sets of funtion and prediate symbols handled by a (ombination

of) deision proedure(s). The assumptions �

� �

j

and �

� �

j

mean that a subset of

the logi of the prover is handled by the deision proedure(s) and that ontextual rewrit-

ing is able to handle the whole lass of formulae in the logi. Finally, we all onstraints

the (�

j

;�

)-literals.

Below, we use sets of literal with di�erent meanings. If P is a set of literals then P is the

set of the negations of the literals in P . The logial reading of a set of literals fl

1

; : : : ; l

n

g

is l

1

_ : : : _ l

n

, whereas the logial reading of its negation is :l

1

^ : : : ^ :l

n

. Constraint

stores are denoted with sets of (�

j

;�

)-atoms, suh as f

1

; : : : ;

n

g whose logial reading

is

1

^ : : : ^

n

. The ambiguous use of brakets for both sets of literals and onstraint

stores is made lear by the ontext. Below, sometimes, a set of literal and/or a onstraint

store is used in a logial formula: that set should be replaed by the onjuntion of eah

literal in it.

A onditional rewrite rule is an impliation in whih the equation in the onlusion is

oriented, for whih we write (p

1

; : : : ; p

n

! l) r), where l 2 �(�

j

; V), r 2 �(�

j

; V

0

) with

V

0

� V , and for i = 1; : : : ; n (n � 0) p

i

is a (�

j

;�

j

; V

i

)-atom with V

i

� V . The logial

reading of a onditional rewrite rule is (p

1

^: : :^p

n

! l = r).

1

A onditional onstraint rule

is an impliation in whih the onlusion belongs to the set of (�

j

;�

)-literals, for whih

we write (p

1

; : : : ; p

n

!), where is a (�

j

;�

; V)-atom, and for i = 1; : : : ; n (n � 0) p

i

is a (�

j

;�

j

; V

i

)-atom with V

i

� V . The logial reading of a onditional onstraint rule is

(p

1

^ : : : ^ p

n

!).

2

In the following, we onsider a set R of onditional rewrite rules and

a set CR of onditional onstraint rules. We assume these two sets to be �xed during the

simpli�ation of a formula.

Above, we have assumed a quanti�er-free �rst-order language. However, this assump-

tion is not fundamental to our approah. The ruial point is to be able to partition

the set of formulae so to reognize those that an be handled by the deision proedure

and those that must be handled with the help of the rewriting mehanism. With this

respet even a higher-order language with a binding operator (i.e. a language ontaining

the lambda-alulus) an be used, if a suitable form of rewriting an be de�ned and at

least one deision proedure for a fragment of the logi is available.

In order to preisely present the funtionalities of the modules as well as their in-

tegration, we introdue the notion of ontextual redution system (CRS). The overall

spei�ation will onsist of a set of mutually indutive de�ned CRSs mirroring the deep

interplay of the modules. This onept allows us to unambiguously and modularly speify

the integration/ombination of deision proedures. Formally, a ontextual redution sys-

tem is a family of strutures hQ

i

; S

i

; R

i

i

i2I

, where Q

i

and S

i

are sets and R

i

a set of rules

of inferene, i.e. subsets of T

i

�T

k

1

�� � ��T

k

n

, where T

z

abbreviates (Q

z

�S

z

�S

z

), k

j

2 I

for j = 1; : : : ; n, and n � 0. If q 2 Q

i

, and s; s

0

2 S

i

, then we abbreviate hq; s; s

0

i with

q :: s�!

i

s

0

and use the term sequent to refer to objets of this form. We write s�!

i

s

0

in plae

of q :: s�!

i

s

0

when q plays no signi�ant role. The sequent q :: s�!

i

s

0

is read as follows: the

objet s redues to s

0

under the ontext q by using the funtionalities o�ered by module i.

As an example, take i to be a simpli�ation module, s the �rst-order atom P (f(f(g(a))))

and the following onjuntion f(f(a)) = f(a) ^ f(g(a)) = a, then s rewrites to P (a)

1

For n = 0, we obtain a rewrite rule for whih we write (l) r), whose logial reading is l = r.

2

For n = 0, we obtain a onstraint rule for whih we write (), where (�

j

;�

)-atom.

67

under the ontext .

3

As usual, inferene rules will be presented shematially:

k

1

:: s

k

1

�!

k

1

s

0

k

1

� � �

k

n

:: s

k

n

�!

k

n

s

0

k

n

i

:: s

i

r

i

�!

i

s

0

i

We indutively de�ne the notion of derivation of the sequent q :: a

0

�!

i

a

2n

to be a sequene

a

0

; a

1

; : : : ; a

2n

suh that a

k

; a

k+2

2 S

i

, q :: s

k

�!

i

s

k+2

is the onlusion of a rule, say r

k+1

,

in R

i

, and a

k+1

is a sequene of derivations of the premises of r

k+1

, for k = 0; : : : ; 2n �

2. We will use the notation q :: a

0

a

1

r

1

�!

i

a

2

a

3

r

3

�!

i

� � �

a

2n�3

r

2n�3

���!

i

a

2n�2

a

2n�1

r

2n�1

���!

i

a

2n

in plae of

a

0

; a

1

; a

2

; a

3

; : : : ; a

2n�3

; a

2n�2

; a

2n�1

; a

2n

, and use the notation q :: a �!

i

�

a

0

to indiate

that there is a derivation of q :: a �!

i

a

0

.

A onstraint domain is a (�

;�

)-struture D, where a (�;�)-struture onsists of a

set D and an assignment of funtions and relations on D to the symbols of � and � (resp.)

whih respet the arity of the symbols. A model of a (�;�)-theory T is a (�;�)-struture

under whih all the formulae in T evaluate to true. A D-model of a theory T is a model

of T extending D (this requires that the signature of D is ontained in the signature of

T). We write T j=

D

� to denote that � is valid in all D-models of T . In the sequel we

assume the existene of a bakground (�

j

;�

j

)-theory T suh that (i) the models of T are

D-models, (ii) if (p

1

; : : : ; p

n

! l) r) 2 R then T j=

D

(p

1

^ : : : ^ p

n

! l = r), and (iii) if

(p

1

; : : : ; p

n

!) 2 CR then T j=

D

(p

1

^ : : : ^ p

n

!).

2 Combining Rewriting and Deision Proedures

A well established approah to formula simpli�ation amounts to rewriting the sub-

expressions of the input formula using the sub-formulae surrounding the expression being

rewritten as the ontext of rewriting. For instane, when the formulae to simplify are

lauses the negation of all the literals in the lause (but the one in whih the expression

being rewritten ours) an be used as ontext of rewriting.

We abstrat from the language employed by postulating the existene of a funtion

Cxt(�; �) s.t. (

V

Cxt(�; u)! (s � t))! (�[s℄

u

$ �[t℄

u

) holds in the bakground theory,

for every formula � and for every legal position u in �, where Cxt(�; u) denotes a �nite

set of literals,

V

Cxt(�; u) denotes the onjuntion of the literals in this set and \�" is a

ongruene relation { e.g. \=" and \$". Then, the simpli�ation ativity whih relies on

rewriting an be modeled as follows:

Cxt(�; u) :: C

Æ

���!

s�fe

C C :: s�!

r

t

if s-init-state(C

Æ

)

�[s℄

u

l�simp

����!

simp

�[t℄

u

where l-simp is the rule name (standing for lause simpli�ation), simp is one of the module

de�ning the CRS formalizing simpli�ation of formulae by means of onstraint ontextual

3

The ontext and atoms of the example ould be extrated out of the following lause P (f(f(g(a))))_

f(f(a) 6= f(a) _ f(g(a)) 6= a, by fousing on the �rst literal and assuming the negation of the remaining

ones.

68

rewriting, C :: s�!

r

t models onstraint ontextual rewriting, i.e. the ativity of rewriting

s to t using C as the ontext of rewriting (a formal de�nition is given in Setion 2.1), and

Cxt(�; u) :: C

Æ

���!

s�fe

C models the ativity of extending the onstraint store C

Æ

with the

fats ontained in the ontext Cxt(�; u) (indeed, s-fe stands for onstraint store's fat

extension). Finally, s-init-state is a prediate whih is true only for the onstraint

store C

Æ

equivalent to the empty set of onstraints. Thus, we ould read the above rule

as follows: expression s at position u in the formula � an be replaed by expression t,

provided that t is obtained by onstraint ontextual rewriting s in the ontext obtained

by extending the empty ontext with the expressions surrounding s in the formula �.

For the sake of simpliity, in the rest of the paper we will assume that ��!

simp

is de�ned

so as to formalize lause simpli�ation. Therefore, Cxt(�; u) an be thought of returning

the onjuntion of the negation of eah literal in the lause �, but the one within whih

the position u ours.

2.1 Constraint Contextual Rewriting

Given a set of onditional rewrite rules R, the (ternary) onstraint ontextual rewriting

relation :: �!

r

is de�ned by the following rules:

C :: p

s�unsat

�����!

r

true if p is a (�

j

;�

j

)-literal and s-unsat(C)

i.e. rewrite the literal p to true under the ontext C if this is not onsistent (inonsisteny

of the onstraint store is heked by s-unsat),

p :: C���!

s�fe

C

0

if p is a (�

j

;�

)-literal and s-unsat(C

0

)

C :: p

xt�entails

������!

r

true

i.e. rewrite the literal p to true under the ontext C, if after adding C the negation of the

literal being rewritten, we get an inonsistent onstraint store,

C :: e�����!

s�anon

e

0

C :: e

anon

���!

r

e

0

i.e. rewrite the expression e to its anonial form e

0

under the ontext C, if the deision

proedure is able to derive a anonial form out of e and its ontext C,

C :: fp

1

�; : : : ; p

n

�g�!

rlv

;

if (p

1

; : : : ; p

n

! l) r) 2 R

C :: s[l�℄

u

rew

��!

r

s[r�℄

u

i.e. rewrite the sub-term l� at position u in the expression s to the sub-term r� under

the ontext C, if there exist a substitution � and a onditional rewrite rule in R whose

onlusion is of the form l) r s.t. the sub-term at position u in s is l� and, one the

hypotheses of the onditional rewrite rule have been added to the onstraint store C,

we get the empty onstraint store (we say that we have relieved the hypotheses of the

onstraint rule).

69

Finally, the ativity of relieving the hypotheses of a onditional rewrite rule is modeled as

follows:

C :: p�!

r

true

C :: P [fpg

relieve

���!

rlv

P

i.e. relive the hypothesis p under the ontext C, if p rewrites to true by onstraint on-

textual rewriting under the ontext C.

2.2 Constraint Simpli�ation

We are now in the position to make preise some of the previously introdued onepts.

Mainly, we are going to preisely haraterize the prediate s-init-state, the test

for onstraint store inonsisteny, the relation returning the anonial form of a given

expression w.r.t. the onstraint store and, �nally, the relation omputing the extension of

the onstraint store with new fats. Formally, we assume the deision proedure provides

the rewriter with the following set of funtionalities:

� s-init-state(C) holds if and only if C is equivalent to the empty set of onstraints.

� s-unsat(C) only if C is unsatis�able.

� C :: e�����!

s�anon

e

0

if and only if e

0

is the anonial representation of the expression p

w.r.t. the onstraint store C. If there is no anonial representation for the input

expression e then e

0

is e itself or a normal form omputed w.r.t. the information

ontained in the onstraint store. As an example of anonial representation of an

expression w.r.t. a onstraint store, onsider a proedure for ongruene losure of a

ertain equivalene relation. This proedure builds a graph enoding the equivalene

lasses for the relation. One a term is presented as the input, the proedure returns

the hosen witness for the equivalene lass to whih the term belongs.

� P :: C���!

s�fe

C

0

if and only if C

0

is the onstraint store obtained by extending the

onstraint store C with the literals in P .

By assuming that the de�nition of P :: C���!

s�fe

C

0

relies on a onstraint simpli�ation

relation C�����!

s�simp

C

0

,

4

we an model the ativity of heuristially augmenting the onstraint

store with seleted instanes of onstraints in the following way:

P :: C���!

s�fe

C

0

if orale(C;P)

C

augment

�����!

s�simp

C

0

where P is a set of valid onstraints \guessed" by the orale relation. As we will see

in Setion 3, di�erent de�nitions of orale provides us with forms of augmentation of

di�erent strength. For instane, it is possible in this way to inform the deision proedure

about properties of interpreted funtion symbols, whih otherwise the deision proedure

does not know anything about.

4

An example of onstraint simpli�ation relation is given by the variable elimination proess performed

on a set of inequalities C. An inequality is an atom of the form a

1

� x

1

+ : : : + a

n

� x

n

� 0, where the a

i

's

are the oeÆients (e.g. real numbers) and the x

i

's are distint variables. The variable elimination proess

onsists of ross-multiplying oeÆients and adding inequalities so as to anel out one variable at a time

until no more variable an be eliminated, thus obtaining C

0

.

70

Soundness. The soundness of the simpli�ation mehanism amounts to proving that if

� ��!

simp

�

0

then T j=

D

(� $ �

0

) and an be easily inferred from the soundness of CCR.

The soundness of CCR amounts to showing that if C :: e�!

r

e

0

, then T;C j=

D

e � e

0

(where

\�" is \$" if e and e

0

are (�

j

;�

j

)-literals and \=" if e; e

0

2 �(�

j

)). The soundness of CCR

an be proved under the assumption that the interfae funtionalities enjoy the following

properties: (i) if s-init-state(C) then j=

D

C, (ii) if s-unsat(C) then C j=

D

false,

(iii) if C :: e�����!

s�anon

e

0

then C j=

D

e � e

0

, where \�" is \$" if e and e

0

are (�

j

;�

j

)-

literals and \=" if e; e

0

2 �(�

j

), (iv) if P :: C���!

s�fe

C

0

then T j=

D

C

0

$ (C [P), and

�nally (v) if orale(C;P) then T j=

D

P . The proof proeeds by straightforward mutual

rule indution.

3 Case Studies

In this setion, we show that ontextual rewriting as well as the integration shemas of

nqthm and Teton are all instanes of CCR.

3.1 Contextual Rewriting

Contextual rewriting is the instane of CCR where the deision proedure is taken to be

an (inremental) satis�ability proedure for the theory of equality. The onstraint store

is a pair hA;Gi where A is a set of literals and G (G

Æ

) is the (initial) state of the deision

proedure and keeps in some internal form a representation of the equivalene lasses

indued by the ground equalities fed to the proedure. s-init-state(C) holds if and

only if C = h;; G

Æ

i. s-unsat(hA;Gi) if and only if (s 6= s) 2 A for some term s, or p 2 A

and :p 2 A for some atom p.

hA;Gi :: e

�anon

������!

s�normal

-anon(G; e)

hA [P;Gi�����!

s�simp

hA

0

; G

0

i

P :: hA;Gi

s�ext

����!

s�ext

hA

0

; G

0

i

where �����!

s�simp

is de�ned by:

hA [fa = bg; Gi

�merge

������!

s�simp

hA; -merge(G; a; b)i

hA [fpg; Gi

�anon

�����!

s�simp

hA [f-anon(G; p)g; Gi

where -anon(G; p) returns the representative of the equivalene lass of p in G, and

-merge(G; a; b) denotes the state obtained from G by merging the equivalene lasses

of a and b in G.

To illustrate onsider the following example. Let R = fu 6= 0 ! rem(u � v; u)) 0g.

It an be shown that f(rem(y � z; x) = 0); (x � y 6= y � z); (x = 0)g ��!

simp

�

ftrueg. The sub-

derivation assoiated to CCR is as follows (where G

0

is the onstraint store representing

f(x � y = y � z)g):

hfx 6= 0g; G

0

i :: (rem(y � z; x) = 0)

�

1

normal

����!

r

(rem(x � y; x) = 0)

�

2

rew

��!

r

(0 = 0)

�

3

entails

���!

r

true

where �

1

is the singleton sequene ontaining the following sub-derivation:

(rem(y � z; x) = 0) :: hfx 6= 0g; G

0

i

s�se

���!

s�se

hfx 6= 0g; G

0

i

hfx 6= 0g; G

0

i :: (rem(y � z; x) = 0)

normal

����!

r

(rem(x � y; x) = 0)

71

and �

2

is the singleton sequene ontaining the following sub-derivation:

hf(x = 0); x 6= 0g; G

0

i

�merge

�����!

s�simp

hfx 6= 0g; G

1

i

�anon

�����!

s�simp

hf0 6= 0g; G

1

i

f(x = 0)g :: hfx 6= 0g; G

0

i

xt�fe

����!

s�ext

hf0 6= 0g; G

1

i

hfx 6= 0g; G

0

i :: (x 6= 0)

xt�entails

������!

r

true

hfx 6= 0g; G

0

i :: f(x 6= 0)g

relieve

���!

rlv

;

hfx 6= 0g; G

0

i :: (rem(x � y; x) = 0)

rew

��!

r

(0 = 0)

(G

1

is the onstraint store representing f(x = 0); (x � y = y � z)g.) Sine �

3

an be readily

onstruted using the rules given in Setion 2 it is omitted here. No augmentation is

needed for the above example to sueed.

3.2 NQTHM

The way nqthm inorporates an (inremental) deision proedure for linear arithmeti

(LA for short) an be easily formalized in our framework.

5

The state of the deision

proedure is taken to be a pair hA;Li where A is a �nite set of literals, and L (L

Æ

) represent

the (initial) state of the deision proedure, and keeps in some internal representation the

linear fats issued by the simpli�er. s-init-state(C) holds if and only if C = h;; L

Æ

i.

s-unsat and ����!

s�ext

are de�ned as in Setion 3.1, whereas ������!

s�normal

and �����!

s�simp

are

de�ned in the following way:

hA;Li :: e

id

������!

s�normal

e

linearize(p) :: hL; ;i������!

push�polys

hL

0

; Ei

if p is a (�

j

;�

)-literal

hA [fpg; Li

la�ext

�����!

s�simp

hA [E;L

0

i

where linearize(p) returns a �nite set of linear inequalities whih logially imply p, and

������!

push�polys

is de�ned as follows:

P :: hL; ;i

add�polys

������!

push�polys

hL

0

; Ei

where L

0

is the state resulting from the extension of L with P , and if L

0

is onsistent then

E is a (possibly empty) set of equalities entailed by L

0

, otherwise E = fa 6= ag for some

term a.

To illustrate, onsider a simple variant of the �rst example of Setion 3.1, where R =

fu > 0! rem(u � v; u)) 0g. It is easy to show that f(rem(x � y; x) = 0); (x � 0)g ��!

simp

�

ftrueg.

More sophistiated forms of simpli�ations an be obtained if augmentation is used,

and orale(hA;Li; P) is de�ned to hold whenever (i) there exists a onstraint rule

(p

1

; : : : ; p

n

! r(~s)) 2 CR, (ii) hA;Gi :: fp

1

�; : : : ; p

n

�g�!

rlv

;, and (iii) hA;Gi :: ~s��!

r

~

t,

and (iv) P = fr(

~

t)g. The following omplex example (from [3℄) shows the power of the

resulting simpli�ation mehanism. By taking CR = f((0 < i)! j � i � j); (0 < ms(x))g

it an be shown that fms()+ms

2

(a)+ms

2

(b) < ms()+ms

2

(b)+2 � (ms

2

(a) �ms(b))+

ms

4

(a)g ��!

simp

�

ftrueg where ms

2

(x) abbreviates ms(x)�ms(x) andms

n+1

(x) abbreviates

ms(x) �ms

n

(x), for n > 1.

5

For the lak of spae, we do not onsider some features of the atual system (i.e. the use of the type-set

speialist and the (weak) form of reasoning about equalities arried by the simpli�er). However there is no

serious obstale towards extending our urrent formulation to inlude suh features.

72

3.3 Teton

The deision proedure is a ombination of a deision proedure for the theory of equality

and a deision proedure for LA. The onstraint store is a triple hA;G;Li where A is a

set of literals, L and G (L

Æ

and G

Æ

) represent the (initial) state of the deision proedures

for LA and the theory of equality, respetively. s-init-state(C) holds if and only if

C = h;; G

Æ

; L

Æ

i.

hA;G;Li :: e

�anon

������!

s�normal

-anon(G; e)

hA [separate(P); G; Li�����!

s�simp

hA

0

; G

0

; L

0

i

P :: hA;G;Li

s�ext

����!

s�ext

hA

0

; G

0

; L

0

i

separate(P) returns a set of literals whih are either (�

[�;�

)-literals or equalities

between terms in �(�

p

[�) where �

p

= �

j

n �

and � is a new set of onstants (alled

abstration onstants) suh that �

\� = ; and �

p

\� = ;. It is assumed that the set

of literals returned by separate(P) is unsatis�able if and only if P is.

hA [fs = tg; G; Li

�merge

������!

s�simp

hA; -merge(G; s; t); Li if s; t 2 �(�

p

[�)

hA [fpg; G; Li

�anon

�����!

s�simp

hA [f-anon(G; p)g; G; Li

linearize(p) :: hL; ;i������!

push�polys

hL

0

; Ei

if p is a (�

[�;�

)-literal

hA [fpg; G; Li

la�ext

�����!

s�simp

hA [E;G;L

0

i

orale(hA;G;Li; P) is de�ned to hold whenever: (i) there exists a onstraint rule

(p

1

; : : : ; p

n

! r(~s)) 2 CR, (ii) hA;G;Li :: fp

1

�; : : : ; p

n

�g�!

rlv

;, (iii) hA;G;Li :: ~s��!

r

~

t,

and (iv) P = fr(

~

t)g, or (1) there exists a term u ourring in A or G, (2) hA;G;Li ::

u �!

r

�

v, and (3) P = f(u = v)g.

The following example (from [9℄) shows the strength of the resulting simpli�ation

mehanism. Let R = fmax(x; y) = x ! min(x; y)) yg and CR = fp(x) ! f(x) �

g(x)g. It an be shown that the lause f:p(x);:(z � f(max(x; y)));:(0 < min(x; y));:(x �

max(x; y));:(max(x; y) � x); z < g(x) + yg an be simpli�ed to ftrueg.

Implementation. Our framework an be readily built on top of several implementation

languages and logial frameworks. We found onvenient to build a �rst prototype in

Prolog, following the methodology envisaged in [8℄ (for more on this, see setion 4). This

amounted to a areful design of the sequents and the rules, as well as the implementation

of the interpreter for the strategies speifying the appliation of the rules. Next we re�ned

the rules desribed in Setions 2 and 3 to enode ontrol information (e.g. a �eld storing

the literal being rewritten so as to avoid looping). As far as the strategy of appliation of

the rules is onerned, a simple depth-�rst strategy is suÆient to takle all the examples

shown in this paper.

4 Related Work

In [3℄, Boyer and Moore arefully report the integration of a deision proedure for LA

within their prover. In [10℄, Kapur and Nie desribe the integration of a deision proedure

for LA with ontextual rewriting. This results in a powerful form of simpli�ation. As

73

shown in Setion 3 both integration shemas have been neatly reasted in our framework.

The advantage is that CCR provides us with an abstrat haraterization of the fun-

tionalities provided by the deision proedure thereby providing an integration shema

whih is independent from the spei� deision proedure employed. pvs [13℄ omes with

a deision proedure for equality and LA (among many others). The deision proedures

are tightly integrated following the shema proposed in [14℄. A preliminary analysis of

pvs suggests that also suh an integration shema an be reast in our framework. STeP

[7℄ implements a form of ontextual rewriting integrated with a semi-deision proedure

for �rst-order logi and a bunh of deision proedures extended to deal with non-ground

onstraints. The enoding of the integration shema used in STeP in our framework seems

to be a very interesting experiment. [8℄ desribes a framework and a methodology (Open

Mehanized Reasoning System, omrs) to ompose and to enhane reasoning modules. As

an appliation of omrs, a rational reonstrution of Boyer and Moore's integration shema

is reported in [6℄. Following omrs, we adopt a rule-based approah to speify reasoning

modules, and in the de�nition of the rules we stress the distintion between logi and

ontrol.

Many extensions to onstraint solving aiming at a better trade-o� between delarativity

and eÆieny have been put forward in Constraint Programming (CP). In partiular,

SoleX [11℄ is a mehanism for the domain independent extension of onstraint solvers so

to deal with programmer-de�ned onstraints. This work resembles ours in the rule-based

presentation, in the semantial extension of the onstraint rules by means of guarded

rewrite rules, and in being domain independent. In [5℄, a general framework for the

extension/ombination of solvers using rewrite rules and strategies is proposed. In [1℄,

Apt gives a proof theoreti aount of onstraint solving. This work is similar to ours in

the rule based presentation, it is more fundational in nature sine it aims at giving an

abstrat aount of CP in the \proof as omputation" paradigm, but it does not deal with

integration issues. In [2℄, we ompare the Constraint Logi Programming paradigm (CLP)

with CCR, disussing potentials for ross-fertilization between the �elds of Automated

Theorem Proving and CLP on the problem of integrating deision proedures.

5 Conlusions

We have proposed an extension to ontextual rewriting (alled Constraint Contextual

Rewriting), where ontextual information an be aessed by the available deision proe-

dures. The interfae funtionalities between the rewriting engine and the deision proe-

dures have been preisely desribed. These funtionalities speify how the parts interat,

yielding an e�etive simpli�ation mehanism. The soundness of the integration shema

has been hinted. The enoding in our framework of the Boyer and Moore's integration

shema and the one adopted in Teton gives evidene of the exibility and generality

of the approah. Prototypes of these two integration shemas have been easily derived

from the rule-based presentation and used to validate the models. Further properties (e.g.

termination) are under investigation.

Referenes

[1℄ K. R. Apt. A Proof Theoreti View of Constraint Programming. Fundamenta Infor-

matiae, 33(1):1{27, 1998.

74

[2℄ A. Armando, E. Melis, and S. Ranise. Constraint Solving in Logi Programming and

in Automated Dedution: a Comparison. In Pro. 8

th

Intl. Conf. on Arti�ial Intelli-

gene: Methodology, Systems, Appliations (AIMSA'98). Sozopol, Bulgaria, Septem-

ber 21 - 23., 1998.

[3℄ R. S. Boyer and J S. Moore. Integrating Deision Proedures into Heuristi Theorem

Provers: A Case Study of Linear Arithmeti. Mahine Intelligene, 11:83{124, 1988.

[4℄ R.S. Boyer and J S. Moore. A Computational Logi. Aademi Press, 1979.

[5℄ C. Castro. Building Constraint Solvers Using Rewrite Rules and Strategies.

Submitted for publiation. Preliminar version available at http://www.loria.fr/-

~astro/PAPERS/publiations.html, 1998.

[6℄ A. Coglio, F. Giunhiglia, P. Pehiari, and C. L. Talott. A Logi Level Spei�ation

of the NQTHM Simpli�ation Proess. Tehnial report, IRST, 1997.

[7℄ Z. Manna et. al. STeP: The Stanford Temporal Prover. Tehnial Report CS-TR-

94-1518, Stanford University, June 1994.

[8℄ F. Giunhiglia, P. Pehiari, and C. L. Talott. Reasoning Theories: Towards an

Arhiteture for Open Mehanized Reasoning Systems. Tehnial Report TR-9409-

15, IRST, Nov. 1994.

[9℄ D. Kapur, D.R. Musser, and X. Nie. An Overview of the Teton Proof System.

Theoretial Computer Siene, Vol. 133, Otober 1994.

[10℄ D. Kapur and X. Nie. Reasoning about Numbers in Teton. In Pro. 8

th

Inl. Symp.

Methodologies for Intelligent Systems, pages 57{70, Charlotte (North Carolina), O-

tober 1994.

[11℄ E. Monfroy and C. Ringeissen. SoleX: a Domain-Independent Sheme for Constraint

Solver Extension. In 4

th

Intl. Conf. on Arti�ial Intelligene and Symboli Compu-

tation (AISC'98). Plattsburgh, New York, September, 1998.

[12℄ G. Nelson and D.C. Oppen. Simpli�ation by Cooperating Deision Proedures.

Tehnial Report STAN-CS-78-652, Stanford Computer Siene Department, April

1978.

[13℄ S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Veri�ation System. In

Pro. 11

th

Intl. Conf. on Automated Dedution (CADE'92). Saratoga, June 748 {

752., 1992.

[14℄ R.E. Shostak. Deiding Combination of Theories. Journal of the ACM, 31(1):1{12,

1984.

[15℄ H. Zhang. Contextual Rewriting in Automated Reasoning. Fundamenta Informatiae,

24(1/2):107{123, 1995.

75

