Constraint Contextual Rewriting*

Alessandro Armando
DIST, Universita di Genova & LORIA-INRIA-Lorraine

Silvio Raniset
DIST, Universita di Genova

Abstract

We are interested in the problem of integrating decision procedures with rewrit-
ing as in many state-of-the-art verification systems. We define Constraint Contextual
Rewriting (CCR) as a generalization of contextual rewriting, whereby the rewriting
context is processed by the available decision procedures. We show how CCR accounts
for some of the most important integration schemas adopted in state-of-the-art ver-
ification systems. The rule-based presentation of CCR given in this paper contrasts
the practice of describing the integration either by examples or in informal ways with
high-level ideas intermixed with implementation details. Important properties (e.g.
soundness) of the proposed integration schema can be formally stated and proved.
Moreover, the approach is amenable of operationalization. This has allowed us to
easily fast-prototype and validate the integration schemas described in this paper.

1 Introduction

We are interested in the problem of integrating decision procedures with rewriting as in
many state-of-the-art verification systems such as NQTHM [4], Pvs [13], Tecton [9] and
STEP [7]. The key factors in the success of such systems are (a) a tight integration
schema for the cooperation of decision procedures, and (b) a carefully designed integration
schema between the decision procedures and rewriting. While abstract accounts of (a) can
be found in the literature (see, e.g., [12, 14]), only informal descriptions often intermixed
with implementation details are available for (b). This situation is exemplified in [12],
where the paradigm for cooperating decision procedures is abstractly described whilst the
integration schema with the simplifier is described at a much lower level of detail.

In this paper, we propose a general schema, for the integration of decision procedures in
formula simplification. The key idea is to generalize conteztual rewriting (see, e.g., [15]),
to allow the available decision procedures to access and manipulate the rewriting context.
We call Constraint Conteztual Rewriting (CCR) this extended form of rewriting. We show
how CCR easily accounts for some of the most important integration schemas adopted in
state-of-the-art verification systems. This is exemplified by encoding in our framework

“We wish to thank Alan Smaill and Ian Green for their very useful comments on an earlier version of
this paper. We also would like to thank Olga Caprotti and Deepak Kapur for pointing us to some of the
relevant works in the literature.

tViale Causa 13 — 16145 Genova — Italia, armando@dist.unige.it & 615, rue du Jardin Botanique, BP
101 — 54602 Villers les Nancy Cedex — France, armando@loria.fr

Viale Causa 13 — 16145 Genova — Italia, silvio@dist.unige.it

65

both contextual rewriting and two sophisticated integration schemas: the simplifier of
NQTHM [3], and the simplifier of Tecton [9]. Furthermore, we identify the set of the
interface functionalities that the decision procedure must provide for the integration to be
effective. The rule-based specification of CCR given in this paper contrasts the practice of
describing the integration by examples or in informal ways with high-level ideas intermixed
with implementation details. As a result, important properties (e.g. soundness) of the
integration schemas of interest can be formally stated and discussed. Finally, the rule-
based formalization is amenable of mechanization. This has allowed us to easily fast-
prototype and validate the integration schemas described in this paper.

The paper is structured as follows. In Section 2, we put CCR in the context of formula
simplification, we discuss the rules for CCR and constraint simplification, and give hints on
the soundness of the integration schema. In Section 3, we show that contextual rewriting
as well as the integration schemas of NQTHM and Tecton are all instances of CCR. In
Section 4 we compare with related work, and in Section 5 we draw some final conclusions.

Formal Preliminaries. By %, II (possibly subscribed) we denote collections of function
and predicate symbols (with their arity), respectively. By V we denote a set of variables.
7(XUV) and 7(X) denote the set of terms and ground terms built on ¥ and V. Further-
more, we assume that 7(XUV) is the smallest set containing V' s.t. f(t1,...,t,) € 7(XUV)
whenever f € Y and t; € 7(XUV) (i=1,...,n). A term ¢t € 7(X UV) may be viewed as
a finite ordered tree, whose leaves are labeled by constants (i.e. function symbols of zero
arity) or variables and whose internal nodes are labeled with function symbols of positive
arity with out-degree equal to the arity of the label. A position within a term may be
represented as a sequence of positive integers, describing the path from the outermost
symbol to the head of the sub-term at that position. With ¢|, we denote the sub-term of ¢
at position p. The term ¢ with its sub-term ¢|, replaced by a term s is denoted by #[s], and
we call t[], the context of s. A substitution is a mapping from variables to terms and it is
written out as {z1 > t1,..., 2, —> t,}, s.t. there are only finitely many z; (i = 1,...,n)
not mapped to themselves. If o is a substitution and s € 7(X U V'), then so denotes the
result of applying o to s. We also call a substitution a function & from 7(X U V) to itself,
obtained as the extension of a substitution o from V to 7(X U V) in such a way that
f1, ... ty)d = f(t16,...,t,0), for each f € X, for all terms t; € 7(XUV) (1 =1,...,n)
and z6 = xo, for each z € V. A term t matches a term t' if there exists a substitution o
s.t. t'o =t.

A (X,T1,V)-atom is either an expression ¢(t1,... ,t,) where ¢ € T and t; € T(X U V)
(¢=1,... ,n) or an expression t; = to where t1,to € 7(XUV). A (3,11, V)-literal is either
a (X,II, V)-atom or a negated (X, II, V')-atom. The variables in a (X,II, V')-atom (-literal)
are understood to be universally quantified. We write (¥, II)-atom (-literal) instead of
(3,11, 0)-atom (-literal). The set of (3, II)-expressions is the union of 7(X) and the set
of (3,IT)-atoms. A (3,11, V)-formula is the smallest set containing the (X, I, V')-literals
and if a is a (3,11, V)-formula then —(«) is a (X,II, V)-formula, and if oy, s are two
(3,11, V)-formulae then (o ¢ ag) is a (3, I1, V)-formula, where “o” is one of the following
logical connectives A, V, — and <. (Below, a # b abbreviates =(a = b).) We assume
that the language contains the propositional constants true and false denoting truth and
falsity, respectively. A (3,11, V')-theory is a collection of (X, II, V')-formulae.

In order to distinguish the symbols interpreted by the different modules of the combi-
nation/integration, we partition the sets of function and predicate symbols in the following
sub-sets: X;, X, II; and I, s.t. ¥, C ¥; and II, C II;. The subscript “j” labels the sets

66

of function and predicate symbols of the (fragment of the) logic of the prover, where the
combination/integration of decision procedures and contextual rewriting takes place. The
subscript “c” labels the sets of function and predicate symbols handled by a (combination
of) decision procedure(s). The assumptions II. C II; and ¥, C ¥; mean that a subset of
the logic of the prover is handled by the decision procedure(s) and that contextual rewrit-
ing is able to handle the whole class of formulae in the logic. Finally, we call constraints
the (¥, II,)-literals.

Below, we use sets of literal with different meanings. If P is a set of literals then P is the
set of the negations of the literals in P. The logical reading of a set of literals {l1,...,l,}

is I1 V... VI, whereas the logical reading of its negation is =l1 A ... A =l,. Constraint
stores are denoted with sets of (3;,II.)-atoms, such as {ci,...,c,} whose logical reading
is ¢y A ... Acy. The ambiguous use of brackets for both sets of literals and constraint

stores is made clear by the context. Below, sometimes, a set of literal and/or a constraint
store is used in a logical formula: that set should be replaced by the conjunction of each
literal in it.

A conditional rewrite rule is an implication in which the equation in the conclusion is
oriented, for which we write (p1,... ,pn =1 =7), where | € 7(X;,V), r € 7(2;, V') with
V' CV,and fori=1,...,n (n > 0) p; is a (X;,1I;,V;)-atom with V; C V. The logical
reading of a conditional rewrite rule is (p1 A...Ap, — [= r).1 A conditional constraint rule
is an implication in which the conclusion belongs to the set of (X;, IT,)-literals, for which
we write (p1,... ,pn — ¢), where cis a (X;,1l;,V)-atom, and for i = 1,... ,n (n > 0) p;
is a (5,10, V;)-atom with V; C V. The logical reading of a conditional constraint rule is
(p1 A... Apy, — c).2 In the following, we consider a set R of conditional rewrite rules and
a set C'R of conditional constraint rules. We assume these two sets to be fixed during the
simplification of a formula.

Above, we have assumed a quantifier-free first-order language. However, this assump-
tion is not fundamental to our approach. The crucial point is to be able to partition
the set of formulae so to recognize those that can be handled by the decision procedure
and those that must be handled with the help of the rewriting mechanism. With this
respect even a higher-order language with a binding operator (i.e. a language containing
the lambda-calculus) can be used, if a suitable form of rewriting can be defined and at
least one decision procedure for a fragment of the logic is available.

In order to precisely present the functionalities of the modules as well as their in-
tegration, we introduce the notion of contextual reduction system (CRS). The overall
specification will consist of a set of mutually inductive defined CRSs mirroring the deep
interplay of the modules. This concept allows us to unambiguously and modularly specify
the integration/combination of decision procedures. Formally, a contextual reduction sys-
tem is a family of structures (Q;, S;, R;)icr, where QQ; and S; are sets and R; a set of rules
of inference, i.e. subsets of T; x T}, x - - x T}, , where T, abbreviates (Q, x S, x S.), kj € I
forj=1,...,n,and n > 0. If ¢ € Q;, and s,s" € S;, then we abbreviate (g, s, s') with

q:: s— s’ and use the term sequent to refer to objects of this form. We write s—s’ in place
1 I

of q:: s—s' when ¢ plays no significant role. The sequent g:: s— s’ is read as follows: the
I I

object s reduces to s’ under the context ¢ by using the functionalities offered by module i.

As an example, take i to be a simplification module, s the first-order atom P(f(f(g(a))))

and ¢ the following conjunction f(f(a)) = f(a) A f(g(a)) = a, then s rewrites to P(a)

'For n = 0, we obtain a rewrite rule for which we write (I = r), whose logical reading is | = r.
*For n = 0, we obtain a constraint rule for which we write (c), where (Z;,TI.)-atom.

67

under the context c.?
As usual, inference rules will be presented schematically:

! /
Cly 't Sklk—l>skl cee Gyt Sknk—>8kn

fi !
Citt $i—> 8
1

We inductively define the notion of derivation of the sequent q:: ag—az, to be a sequence
I

ag,G1, ... , 00y such that ag,ario € S, q:: S,—>Sgro is the conclusion of a rule, say rg1,
1
in R;, and agy is a sequence of derivations of the premises of ry4 1, for K =0,... ,2n —
al as a2n—3 a2n—1
. . r r3 n-3 on—1 .
2. We will use the notation ¢ :: a9 — ag — -+ ——= agp—2 — a9y in place of
I 1 1 1
A0, A1,02,03, - . 0273, A2n—2, A2p—1, G2, and use the notation ¢ :: a —* a' to indicate
1

that there is a derivation of ¢ :: a — a’.

I

A constraint domain is a (3., I1.)-structure D, where a (3, IT)-structure consists of a
set D and an assignment of functions and relations on D to the symbols of ¥ and II (resp.)
which respect the arity of the symbols. A model of a (X, II)-theory T is a (X, IT)-structure
under which all the formulae in T evaluate to true. A D-model of a theory T is a model
of T extending D (this requires that the signature of D is contained in the signature of
T). We write T =p ¢ to denote that ¢ is valid in all D-models of T. In the sequel we
assume the existence of a background (X;,I1;)-theory T such that (i) the models of T" are
D-models, (ii) if (p1,... ,pp =1 =7r) E Rthen T =p (p1 A... App — 1 =), and (iii) if
(p1y--- ypn > ¢) ECRthen T Ep (p1 A ... Apn = ©).

2 Combining Rewriting and Decision Procedures

A well established approach to formula simplification amounts to rewriting the sub-
expressions of the input formula using the sub-formulae surrounding the expression being
rewritten as the context of rewriting. For instance, when the formulae to simplify are
clauses the negation of all the literals in the clause (but the one in which the expression
being rewritten occurs) can be used as context of rewriting.

We abstract from the language employed by postulating the existence of a function
Cxt(-,-) s.t. (A Cxt(P,u) = (s ~t)) = (P[s], + P[t],) holds in the background theory,
for every formula ® and for every legal position u in ®, where Cxt(®,u) denotes a finite
set of literals, A Cxt(®,u) denotes the conjunction of the literals in this set and “~” is a
congruence relation — e.g. “=" and “”. Then, the simplification activity which relies on
rewriting can be modeled as follows:

Cxt(®,u):: C°——C C:us—t

cs—fe ccr

O[t].,

. if cs-init-state(C°)
(I)[S]u cl—simp

simp

where cl-simp is the rule name (standing for clause simplification), simp is one of the module
defining the CRS formalizing simplification of formulae by means of constraint contextual

3The context and atoms of the example could be extracted out of the following clause P(f(f(g(a))))V
f(f(a) # f(a) V f(g(a)) # a, by focusing on the first literal and assuming the negation of the remaining
ones.

68

rewriting, C':: s— ¢ models constraint contextual rewriting, i.e. the activity of rewriting
ccr

s to t using C' as the context of rewriting (a formal definition is given in Section 2.1), and
Cxt(®,u):: C°—— C models the activity of extending the constraint store C° with the

cs—fe
facts contained in the context Cxt(®,u) (indeed, cs-fe stands for constraint store’s fact

extension). Finally, cs-init-state is a predicate which is true only for the constraint
store C° equivalent to the empty set of constraints. Thus, we could read the above rule
as follows: expression s at position u in the formula ® can be replaced by expression ¢,
provided that ¢ is obtained by constraint contextual rewriting s in the context obtained
by extending the empty context with the expressions surrounding s in the formula ®.

For the sake of simplicity, in the rest of the paper we will assume that —— is defined
simp

so as to formalize clause simplification. Therefore, Cxt(®,u) can be thought of returning
the conjunction of the negation of each literal in the clause ®, but the one within which
the position u occurs.

2.1 Constraint Contextual Rewriting

Given a set of conditional rewrite rules R, the (ternary) constraint contextual rewriting

relation _:: .—> _ is defined by the following rules:
CcCr

Cup="22 e ifpisa (3;,11;)-literal and cs-unsat(C)
CcCr

i.e. rewrite the literal p to true under the context C' if this is not consistent (inconsistency
of the constraint store is checked by cs-unsat),

pi C——C'

cs—fe

if p is a (X;,1I.)-literal and cs-unsat(C")

cxt—entails
C:p——— true

ccr

i.e. rewrite the literal p to true under the context C, if after adding C' the negation of the
literal being rewritten, we get an inconsistent constraint store,

!
Ci:e—e
cs—canon

canon !
Cie——e
CcCr

i.e. rewrite the expression e to its canonical form ¢’ under the context C, if the decision
procedure is able to derive a canonical form out of e and its context C,

C::{pio,... ,pna}T)@
riv

W if (p1,.--pn—I1l=>1)ER
C:: s[lo]y— s[rol, (P ")
ccr

i.e. rewrite the sub-term [o at position u in the expression s to the sub-term ro under
the context C, if there exist a substitution ¢ and a conditional rewrite rule in R whose
conclusion is of the form [= r s.t. the sub-term at position u in s is [0 and, once the
hypotheses of the conditional rewrite rule have been added to the constraint store C,
we get the empty constraint store (we say that we have relieved the hypotheses of the
constraint rule).

69

Finally, the activity of relieving the hypotheses of a conditional rewrite rule is modeled as
follows:

C::p—>true
ccr

C: PU{p}%P
riv

i.e. relive the hypothesis p under the context C, if p rewrites to true by constraint con-
textual rewriting under the context C.

2.2 Constraint Simplification

We are now in the position to make precise some of the previously introduced concepts.
Mainly, we are going to precisely characterize the predicate cs-init-state, the test
for constraint store inconsistency, the relation returning the canonical form of a given
expression w.r.t. the constraint store and, finally, the relation computing the extension of
the constraint store with new facts. Formally, we assume the decision procedure provides
the rewriter with the following set of functionalities:

e cs-init-state(C) holdsif and only if C' is equivalent to the empty set of constraints.
e cs-unsat(C) only if C is unsatisfiable.

e C::e——— ¢ if and only if ¢’ is the canonical representation of the expression p
CcS—canon

w.r.t. the constraint store C. If there is no canonical representation for the input
expression e then ¢’ is e itself or a normal form computed w.r.t. the information
contained in the constraint store. As an example of canonical representation of an
expression w.r.t. a constraint store, consider a procedure for congruence closure of a
certain equivalence relation. This procedure builds a graph encoding the equivalence
classes for the relation. Once a term is presented as the input, the procedure returns
the chosen witness for the equivalence class to which the term belongs.

e P C — C' if and only if C’ is the constraint store obtained by extending the
cs—t1e

constraint store C' with the literals in P.

By assuming that the definition of P:: C—— C’ relies on a constraint simplification

cs—fe
relation C———C",* we can model the activity of heuristically augmenting the constraint
cs—simp

store with selected instances of constraints in the following way:

P:C——C'

;fe if oracle(C, P)

C augmen c’
cs—simp

where P is a set of valid constraints “guessed” by the oracle relation. As we will see
in Section 3, different definitions of oracle provides us with forms of augmentation of
different strength. For instance, it is possible in this way to inform the decision procedure
about properties of interpreted function symbols, which otherwise the decision procedure
does not know anything about.

*An example of constraint simplification relation is given by the variable elimination process performed
on a set of inequalities C. An inequality is an atom of the form a1 * 1 + ... + an * x, < 0, where the a;’s
are the coefficients (e.g. real numbers) and the z;’s are distinct variables. The variable elimination process
consists of cross-multiplying coefficients and adding inequalities so as to cancel out one variable at a time
until no more variable can be eliminated, thus obtaining C".

70

Soundness. The soundness of the simplification mechanism amounts to proving that if

® —— &' then T =p (® + @) and can be easily inferred from the soundness of CCR.
simp

The soundness of CCR amounts to showing that if C':: e— €', then T, C' =p e ~ €’ (where
Cccr

“~7 is “” if e and €’ are (3, I1;)-literals and “="ife, ¢’ € 7(X2;)). The soundness of CCR
can be proved under the assumption that the interface functionalities enjoy the following
properties: (i) if cs-init-state(C) then =p C, (ii) if cs-unsat(C) then C [=p false,
(#ii) if C:: e————¢€' then C |=p e ~ €/, where “~” is “<” if e and €' are (X;,1I;)-
cs—cCanon
literals and “=” if e,e’ € 7(%;), (iv) if P : C—f) C' then T =p C' + (C U P), and
cs—Tt1e

finally (v) if oracle(C, P) then T |=p P. The proof proceeds by straightforward mutual
rule induction.

3 Case Studies

In this section, we show that contextual rewriting as well as the integration schemas of
NQTHM and Tecton are all instances of CCR.

3.1 Contextual Rewriting

Contextual rewriting is the instance of CCR where the decision procedure is taken to be
an (incremental) satisfiability procedure for the theory of equality. The constraint store
is a pair (A4, G) where A is a set of literals and G (G°) is the (initial) state of the decision
procedure and keeps in some internal form a representation of the equivalence classes
induced by the ground equalities fed to the procedure. cs-init-state(C') holds if and
only if C' = (), G°). cs-unsat({A, G)) if and only if (s # s) € A for some term s, orp € A

and —p € A for some atom p. (AUP,G) (A, G

(A, G):: e =", cc-canon(G, e) ccss_j:;p
cs—normal P (4, G>—t> (4,
cs—ex
where —— is defined by:
cs—simp <AU {a — b},G>chlerge><A,cc—merge(G,a, b)>
cs—simp

(AU {p}, @)= = 2=(A U {ec-canon(C,p)}, G)
where cc-canon(G,p) returns the representative of the equivalence class of p in G, and
cc-merge(G,a,b) denotes the state obtained from G by merging the equivalence classes
of a and b in G.
To illustrate consider the following example. Let R = {u # 0 — rem(u * v,u) = 0}.
It can be shown that {(rem(y *z,z) =0), (z*y # y*2z),(x =0)} S—>* {true}. The sub-
imp

derivation associated to CCR is as follows (where Gy is the constraint store representing
{(zxy=yx2)}):

I, 5 H3.
({z #0},Go) = (rem(y xz,z) =0) _normal, (rem(z *y,z) = 0) —— (0 =0) 20l e
ccr ccr ccr

where II; is the singleton sequence containing the following sub-derivation:

(rem(y » z,) = 0):: ({z # 0},Go) =% ({a # 0}, Go)

({x #0},Go):: (rem(y * z,z) = O)Lmal> (rem(z *y,z) = 0)

ccr

71

and II5 is the singleton sequence containing the following sub-derivation:

(= 0),7# 0}, Go) 55 # 01, G1) <=2 ({0 £ 0},G1)
{(w =0)}: ({w # 0}, Go) == ({0 £ 0},G1>

({or # 0}, Go) i: (w # 0) =55 frue

<{CU 7é 0}’ G0> . {(l’ 75 0)} relieve @
({z # 0},Go) :: (rem(z xy,x) = 0) “crew, (0 s

(G is the constraint store representing {(z = 0), (z *y = y*z)}.) Since II3 can be readily
constructed using the rules given in Section 2 it is omitted here. No augmentation is
needed for the above example to succeed.

3.2 NQTHM

The way NQTHM incorporates an (incremental) decision procedure for linear arithmetic
(LA for short) can be easily formalized in our framework. The state of the decision
procedure is taken to be a pair (A, L) where A is a finite set of literals, and L (L°) represent
the (initial) state of the decision procedure, and keeps in some internal representation the
linear facts issued by the simplifier. cs-init-state(C) holds if and only if C' = ((), L°).

cs-unsat and —— are defined as in Section 3.1, whereas —— and —— are
cs—ext cs—normal cs—simp

defined in the following way:
linearize(p): (L,0)——— (L', E)

. h I . . .
(A,L):: e 4 .. — etius pove if p is a (3, II,)-literal
cs—normal (A U {p} L) (A U E L >
cs—simp

where linearize(p) returns a finite set of linear inequalities which logically imply p, and

—— is defined as follows:
push—polys P (L’m add—polys (L,,E)
push—polys

where L' is the state resulting from the extension of L with P, and if L’ is consistent then
E is a (possibly empty) set of equalities entailed by L', otherwise E = {a # a} for some
term a.

To illustrate, consider a simple variant of the first example of Section 3.1, where R =
{u>0—rem(u*v,u) = 0}. It is easy to show that {(rem(z xy,z) =0), (z <0)} —*

simp
{true}.
More sophisticated forms of simplifications can be obtained if augmentation is used,
and oracle((A, L), P) is defined to hold whenever (i) there exists a constraint rule
(p1y--. ,pn — 1(5)) € CR, (i) (A,G) :: {p1o,... ,pna}—>® and (i) (A,G) 5'0?1?;

and (iv) P = {r(f)}. The following complex example (from [3]) shows the power of the
resulting simplification mechanism. By taking CR = {((0 < i) — j <ix*j),(0 < ms(z))}
it can be shown that {ms(c) +ms?(a) + ms?(b) < ms(c) +ms2(b) +2* (ms?(a) * ms(b)) +
ms*(a)} S_—mp>* {true} where ms?(z) abbreviates ms(z) *ms(z) and ms™*!(z) abbreviates

ms(x) * ms™(z), for n > 1.

SFor the lack of space, we do not consider some features of the actual system (i.e. the use of the type-set
specialist and the (weak) form of reasoning about equalities carried by the simplifier). However there is no
serious obstacle towards extending our current formulation to include such features.

72

3.3 Tecton

The decision procedure is a combination of a decision procedure for the theory of equality
and a decision procedure for LA. The constraint store is a triple (A, G, L) where A is a
set of literals, L and G (L° and G°) represent the (initial) state of the decision procedures
for LA and the theory of equality, respectively. cs-init-state(C') holds if and only if
C =(0,G°, L°).

(AU separate(P),G, L)———(A',G', L")

A, G, L) e—200 e G o
(A6 L s et cecanon(Gre) P (4,6, L) =0 (A,G 1)
CS—ex

separate(P) returns a set of literals which are either (X, U A, TI,)-literals or equalities
between terms in 7(X, U A) where ¥, = 3, \ ¥, and A is a new set of constants (called
abstraction constants) such that ¥, N A = () and £, N A = (). Tt is assumed that the set
of literals returned by separate(P) is unsatisfiable if and only if P is.

cc—merge
) ——(

(Au{s=1t},G,L A, cc-merge(G,s,t),L) ifs,te1(X,UA)

cs—simp

(AU{p}, G, L) =—"(A U {cc-canon(G,p)}, G, L)
cs—simp
linearize(p): (L,0)——— (L', E)

push—polys if p is a (3, U A, II.)-literal

(AU{p},G.L)="5(AUE,G, L)
cs—simp
oracle((A4,G, L), P) is defined to hold whenever: (i) there exists a constraint rule
(p1y-.. ,pn — r(8)) € CR, (ii) (A,G,L):: {pro,... ,pna}T)V), (11i) (A,G,L):: 5'0?1?;
riv

and (iv) P = {r(t)}, or (1) there exists a term u occurring in A or G, (2) (A,G,L) ::
u ?* v,and (3) P={(u=v)}.

The following example (from [9]) shows the strength of the resulting simplification
mechanism. Let R = {maz(z,y) = ¢ — min(z,y) = y} and CR = {p(z) — f(z) <
g(z)}. Tt can be shown that the clause {—p(z), ~(z < f(maz(z,y))), (0 < min(z,y)), ~(z <
maz(z,y)), ~(maz(z,y) < z),z < g(x) + y} can be simplified to {true}.

Implementation. Our framework can be readily built on top of several implementation
languages and logical frameworks. We found convenient to build a first prototype in
Prolog, following the methodology envisaged in [8] (for more on this, see section 4). This
amounted to a careful design of the sequents and the rules, as well as the implementation
of the interpreter for the strategies specifying the application of the rules. Next we refined
the rules described in Sections 2 and 3 to encode control information (e.g. a field storing
the literal being rewritten so as to avoid looping). As far as the strategy of application of
the rules is concerned, a simple depth-first strategy is sufficient to tackle all the examples
shown in this paper.

4 Related Work

In [3], Boyer and Moore carefully report the integration of a decision procedure for LA
within their prover. In [10], Kapur and Nie describe the integration of a decision procedure
for LA with contextual rewriting. This results in a powerful form of simplification. As

73

shown in Section 3 both integration schemas have been neatly recasted in our framework.
The advantage is that CCR provides us with an abstract characterization of the func-
tionalities provided by the decision procedure thereby providing an integration schema
which is independent from the specific decision procedure employed. PVs [13] comes with
a decision procedure for equality and LA (among many others). The decision procedures
are tightly integrated following the schema proposed in [14]. A preliminary analysis of
PVS suggests that also such an integration schema can be recast in our framework. STEP
[7] implements a form of contextual rewriting integrated with a semi-decision procedure
for first-order logic and a bunch of decision procedures extended to deal with non-ground
constraints. The encoding of the integration schema used in STEP in our framework seems
to be a very interesting experiment. [8] describes a framework and a methodology (Open
Mechanized Reasoning System, OMRS) to compose and to enhance reasoning modules. As
an application of OMRS, a rational reconstruction of Boyer and Moore’s integration schema
is reported in [6]. Following OMRS, we adopt a rule-based approach to specify reasoning
modules, and in the definition of the rules we stress the distinction between logic and
control.

Many extensions to constraint solving aiming at a better trade-off between declarativity
and efficiency have been put forward in Constraint Programming (CP). In particular,
SoleX [11] is a mechanism for the domain independent extension of constraint solvers so
to deal with programmer-defined constraints. This work resembles ours in the rule-based
presentation, in the semantical extension of the constraint rules by means of guarded
rewrite rules, and in being domain independent. In [5], a general framework for the
extension/combination of solvers using rewrite rules and strategies is proposed. In [1],
Apt gives a proof theoretic account of constraint solving. This work is similar to ours in
the rule based presentation, it is more fundational in nature since it aims at giving an
abstract account of CP in the “proof as computation” paradigm, but it does not deal with
integration issues. In [2], we compare the Constraint Logic Programming paradigm (CLP)
with CCR, discussing potentials for cross-fertilization between the fields of Automated
Theorem Proving and CLP on the problem of integrating decision procedures.

5 Conclusions

We have proposed an extension to contextual rewriting (called Constraint Contextual
Rewriting), where contextual information can be accessed by the available decision proce-
dures. The interface functionalities between the rewriting engine and the decision proce-
dures have been precisely described. These functionalities specify how the parts interact,
yielding an effective simplification mechanism. The soundness of the integration schema
has been hinted. The encoding in our framework of the Boyer and Moore’s integration
schema and the one adopted in Tecton gives evidence of the flexibility and generality
of the approach. Prototypes of these two integration schemas have been easily derived
from the rule-based presentation and used to validate the models. Further properties (e.g.
termination) are under investigation.

References

[1] K. R. Apt. A Proof Theoretic View of Constraint Programming. Fundamenta Infor-
maticae, 33(1):1-27, 1998.

74

2]

[11]

[12]

A. Armando, E. Melis, and S. Ranise. Constraint Solving in Logic Programming and
in Automated Deduction: a Comparison. In Proc. 8" Intl. Conf. on Artificial Intelli-
gence: Methodology, Systems, Applications (AIMSA’98). Sozopol, Bulgaria, Septem-
ber 21 - 23., 1998.

R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theorem
Provers: A Case Study of Linear Arithmetic. Machine Intelligence, 11:83-124, 1988.

R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

C. Castro. Building Constraint Solvers Using Rewrite Rules and Strategies.
Submitted for publication. Preliminar version available at http://www.loria.fr/-
~castro/PAPERS/publications.html, 1998.

A. Coglio, F. Giunchiglia, P. Pecchiari, and C. L. Talcott. A Logic Level Specification
of the NQTHM Simplification Process. Technical report, IRST, 1997.

Z. Manna et. al. STEP: The Stanford Temporal Prover. Technical Report CS-TR-
94-1518, Stanford University, June 1994.

F. Giunchiglia, P. Pecchiari, and C. L. Talcott. Reasoning Theories: Towards an
Architecture for Open Mechanized Reasoning Systems. Technical Report TR-9409-
15, IRST, Nov. 1994.

D. Kapur, D.R. Musser, and X. Nie. An Overview of the Tecton Proof System.
Theoretical Computer Science, Vol. 133, October 1994.

D. Kapur and X. Nie. Reasoning about Numbers in Tecton. In Proc. 8" Inl. Symp.
Methodologies for Intelligent Systems, pages 57-70, Charlotte (North Carolina), Oc-
tober 1994.

E. Monfroy and C. Ringeissen. SoleX: a Domain-Independent Scheme for Constraint
Solver Extension. In 4" Intl. Conf. on Artificial Intelligence and Symbolic Compu-
tation (AISC’98). Plattsburgh, New York, September, 1998.

G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures.
Technical Report STAN-CS-78-652, Stanford Computer Science Department, April
1978.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
Proc. 11" Intl. Conf. on Automated Deduction (CADE’92). Saratoga, June 748 —
752., 1992.

R.E. Shostak. Deciding Combination of Theories. Journal of the ACM, 31(1):1-12,
1984.

H. Zhang. Contextual Rewriting in Automated Reasoning. Fundamenta Informaticae,
24(1/2):107-123, 1995.

7

