
Constraint Contextual Rewriting

�

Alessandro Armando

y

DIST, Universit�a di Genova & LORIA-INRIA-Lorraine

Silvio Ranise

z

DIST, Universit�a di Genova

Abstra
t

We are interested in the problem of integrating de
ision pro
edures with rewrit-

ing as in many state-of-the-art veri�
ation systems. We de�ne Constraint Contextual

Rewriting (CCR) as a generalization of
ontextual rewriting, whereby the rewriting

ontext is pro
essed by the available de
ision pro
edures. We show how CCR a

ounts

for some of the most important integration s
hemas adopted in state-of-the-art ver-

i�
ation systems. The rule-based presentation of CCR given in this paper
ontrasts

the pra
ti
e of des
ribing the integration either by examples or in informal ways with

high-level ideas intermixed with implementation details. Important properties (e.g.

soundness) of the proposed integration s
hema
an be formally stated and proved.

Moreover, the approa
h is amenable of operationalization. This has allowed us to

easily fast-prototype and validate the integration s
hemas des
ribed in this paper.

1 Introdu
tion

We are interested in the problem of integrating de
ision pro
edures with rewriting as in

many state-of-the-art veri�
ation systems su
h as nqthm [4℄, pvs [13℄, Te
ton [9℄ and

STeP [7℄. The key fa
tors in the su

ess of su
h systems are (a) a tight integration

s
hema for the
ooperation of de
ision pro
edures, and (b) a
arefully designed integration

s
hema between the de
ision pro
edures and rewriting. While abstra
t a

ounts of (a)
an

be found in the literature (see, e.g., [12, 14℄), only informal des
riptions often intermixed

with implementation details are available for (b). This situation is exempli�ed in [12℄,

where the paradigm for
ooperating de
ision pro
edures is abstra
tly des
ribed whilst the

integration s
hema with the simpli�er is des
ribed at a mu
h lower level of detail.

In this paper, we propose a general s
hema for the integration of de
ision pro
edures in

formula simpli�
ation. The key idea is to generalize
ontextual rewriting (see, e.g., [15℄),

to allow the available de
ision pro
edures to a

ess and manipulate the rewriting
ontext.

We
all Constraint Contextual Rewriting (CCR) this extended form of rewriting. We show

how CCR easily a

ounts for some of the most important integration s
hemas adopted in

state-of-the-art veri�
ation systems. This is exempli�ed by en
oding in our framework

�

We wish to thank Alan Smaill and Ian Green for their very useful
omments on an earlier version of

this paper. We also would like to thank Olga Caprotti and Deepak Kapur for pointing us to some of the

relevant works in the literature.

y

Viale Causa 13 { 16145 Genova { Italia, armando�dist.unige.it & 615, rue du Jardin Botanique, BP

101 { 54602 Villers les Nan
y Cedex { Fran
e, armando�loria.fr

z

Viale Causa 13 { 16145 Genova { Italia, silvio�dist.unige.it

65

both
ontextual rewriting and two sophisti
ated integration s
hemas: the simpli�er of

nqthm [3℄, and the simpli�er of Te
ton [9℄. Furthermore, we identify the set of the

interfa
e fun
tionalities that the de
ision pro
edure must provide for the integration to be

e�e
tive. The rule-based spe
i�
ation of CCR given in this paper
ontrasts the pra
ti
e of

des
ribing the integration by examples or in informal ways with high-level ideas intermixed

with implementation details. As a result, important properties (e.g. soundness) of the

integration s
hemas of interest
an be formally stated and dis
ussed. Finally, the rule-

based formalization is amenable of me
hanization. This has allowed us to easily fast-

prototype and validate the integration s
hemas des
ribed in this paper.

The paper is stru
tured as follows. In Se
tion 2, we put CCR in the
ontext of formula

simpli�
ation, we dis
uss the rules for CCR and
onstraint simpli�
ation, and give hints on

the soundness of the integration s
hema. In Se
tion 3, we show that
ontextual rewriting

as well as the integration s
hemas of nqthm and Te
ton are all instan
es of CCR. In

Se
tion 4 we
ompare with related work, and in Se
tion 5 we draw some �nal
on
lusions.

Formal Preliminaries. By �, � (possibly subs
ribed) we denote
olle
tions of fun
tion

and predi
ate symbols (with their arity), respe
tively. By V we denote a set of variables.

�(�[V) and �(�) denote the set of terms and ground terms built on � and V . Further-

more, we assume that �(�[V) is the smallest set
ontaining V s.t. f(t

1

; : : : ; t

n

) 2 �(�[V)

whenever f 2 � and t

i

2 �(� [V) (i = 1; : : : ; n). A term t 2 �(� [V) may be viewed as

a �nite ordered tree, whose leaves are labeled by
onstants (i.e. fun
tion symbols of zero

arity) or variables and whose internal nodes are labeled with fun
tion symbols of positive

arity with out-degree equal to the arity of the label. A position within a term may be

represented as a sequen
e of positive integers, des
ribing the path from the outermost

symbol to the head of the sub-term at that position. With tj

p

we denote the sub-term of t

at position p. The term t with its sub-term tj

p

repla
ed by a term s is denoted by t[s℄

p

and

we
all t[℄

p

the
ontext of s. A substitution is a mapping from variables to terms and it is

written out as fx

1

7! t

1

; : : : ; x

n

7! t

n

g, s.t. there are only �nitely many x

i

(i = 1; : : : ; n)

not mapped to themselves. If � is a substitution and s 2 �(� [V), then s� denotes the

result of applying � to s. We also
all a substitution a fun
tion �̂ from �(�[V) to itself,

obtained as the extension of a substitution � from V to �(� [V) in su
h a way that

f(t

1

; : : : ; t

n

)�̂ = f(t

1

�̂; : : : ; t

n

�̂), for ea
h f 2 �, for all terms t

i

2 �(� [V) (i = 1; : : : ; n)

and x�̂ = x�, for ea
h x 2 V . A term t mat
hes a term t

0

if there exists a substitution �

s.t. t

0

� = t.

A (�;�; V)-atom is either an expression q(t

1

; : : : ; t

n

) where q 2 � and t

i

2 �(� [V)

(i = 1; : : : ; n) or an expression t

1

= t

2

where t

1

; t

2

2 �(�[V). A (�;�; V)-literal is either

a (�;�; V)-atom or a negated (�;�; V)-atom. The variables in a (�;�; V)-atom (-literal)

are understood to be universally quanti�ed. We write (�;�)-atom (-literal) instead of

(�;�; ;)-atom (-literal). The set of (�;�)-expressions is the union of �(�) and the set

of (�;�)-atoms. A (�;�; V)-formula is the smallest set
ontaining the (�;�; V)-literals

and if � is a (�;�; V)-formula then :(�) is a (�;�; V)-formula, and if �

1

; �

2

are two

(�;�; V)-formulae then (�

1

��

2

) is a (�;�; V)-formula, where \�" is one of the following

logi
al
onne
tives ^, _, ! and $. (Below, a 6= b abbreviates :(a = b).) We assume

that the language
ontains the propositional
onstants true and false denoting truth and

falsity, respe
tively. A (�;�; V)-theory is a
olle
tion of (�;�; V)-formulae.

In order to distinguish the symbols interpreted by the di�erent modules of the
ombi-

nation/integration, we partition the sets of fun
tion and predi
ate symbols in the following

sub-sets: �

j

, �

, �

j

and �

, s.t. �

� �

j

and �

� �

j

. The subs
ript \j" labels the sets

66

of fun
tion and predi
ate symbols of the (fragment of the) logi
 of the prover, where the

ombination/integration of de
ision pro
edures and
ontextual rewriting takes pla
e. The

subs
ript \
" labels the sets of fun
tion and predi
ate symbols handled by a (
ombination

of) de
ision pro
edure(s). The assumptions �

� �

j

and �

� �

j

mean that a subset of

the logi
 of the prover is handled by the de
ision pro
edure(s) and that
ontextual rewrit-

ing is able to handle the whole
lass of formulae in the logi
. Finally, we
all
onstraints

the (�

j

;�

)-literals.

Below, we use sets of literal with di�erent meanings. If P is a set of literals then P is the

set of the negations of the literals in P . The logi
al reading of a set of literals fl

1

; : : : ; l

n

g

is l

1

_ : : : _ l

n

, whereas the logi
al reading of its negation is :l

1

^ : : : ^ :l

n

. Constraint

stores are denoted with sets of (�

j

;�

)-atoms, su
h as f

1

; : : : ;

n

g whose logi
al reading

is

1

^ : : : ^

n

. The ambiguous use of bra
kets for both sets of literals and
onstraint

stores is made
lear by the
ontext. Below, sometimes, a set of literal and/or a
onstraint

store is used in a logi
al formula: that set should be repla
ed by the
onjun
tion of ea
h

literal in it.

A
onditional rewrite rule is an impli
ation in whi
h the equation in the
on
lusion is

oriented, for whi
h we write (p

1

; : : : ; p

n

! l) r), where l 2 �(�

j

; V), r 2 �(�

j

; V

0

) with

V

0

� V , and for i = 1; : : : ; n (n � 0) p

i

is a (�

j

;�

j

; V

i

)-atom with V

i

� V . The logi
al

reading of a
onditional rewrite rule is (p

1

^: : :^p

n

! l = r).

1

A
onditional
onstraint rule

is an impli
ation in whi
h the
on
lusion belongs to the set of (�

j

;�

)-literals, for whi
h

we write (p

1

; : : : ; p

n

!
), where
 is a (�

j

;�

; V)-atom, and for i = 1; : : : ; n (n � 0) p

i

is a (�

j

;�

j

; V

i

)-atom with V

i

� V . The logi
al reading of a
onditional
onstraint rule is

(p

1

^ : : : ^ p

n

!
).

2

In the following, we
onsider a set R of
onditional rewrite rules and

a set CR of
onditional
onstraint rules. We assume these two sets to be �xed during the

simpli�
ation of a formula.

Above, we have assumed a quanti�er-free �rst-order language. However, this assump-

tion is not fundamental to our approa
h. The
ru
ial point is to be able to partition

the set of formulae so to re
ognize those that
an be handled by the de
ision pro
edure

and those that must be handled with the help of the rewriting me
hanism. With this

respe
t even a higher-order language with a binding operator (i.e. a language
ontaining

the lambda-
al
ulus)
an be used, if a suitable form of rewriting
an be de�ned and at

least one de
ision pro
edure for a fragment of the logi
 is available.

In order to pre
isely present the fun
tionalities of the modules as well as their in-

tegration, we introdu
e the notion of
ontextual redu
tion system (CRS). The overall

spe
i�
ation will
onsist of a set of mutually indu
tive de�ned CRSs mirroring the deep

interplay of the modules. This
on
ept allows us to unambiguously and modularly spe
ify

the integration/
ombination of de
ision pro
edures. Formally, a
ontextual redu
tion sys-

tem is a family of stru
tures hQ

i

; S

i

; R

i

i

i2I

, where Q

i

and S

i

are sets and R

i

a set of rules

of inferen
e, i.e. subsets of T

i

�T

k

1

�� � ��T

k

n

, where T

z

abbreviates (Q

z

�S

z

�S

z

), k

j

2 I

for j = 1; : : : ; n, and n � 0. If q 2 Q

i

, and s; s

0

2 S

i

, then we abbreviate hq; s; s

0

i with

q :: s�!

i

s

0

and use the term sequent to refer to obje
ts of this form. We write s�!

i

s

0

in pla
e

of q :: s�!

i

s

0

when q plays no signi�
ant role. The sequent q :: s�!

i

s

0

is read as follows: the

obje
t s redu
es to s

0

under the
ontext q by using the fun
tionalities o�ered by module i.

As an example, take i to be a simpli�
ation module, s the �rst-order atom P (f(f(g(a))))

and
 the following
onjun
tion f(f(a)) = f(a) ^ f(g(a)) = a, then s rewrites to P (a)

1

For n = 0, we obtain a rewrite rule for whi
h we write (l) r), whose logi
al reading is l = r.

2

For n = 0, we obtain a
onstraint rule for whi
h we write (
), where (�

j

;�

)-atom.

67

under the
ontext
.

3

As usual, inferen
e rules will be presented s
hemati
ally:

k

1

:: s

k

1

�!

k

1

s

0

k

1

� � �

k

n

:: s

k

n

�!

k

n

s

0

k

n

i

:: s

i

r

i

�!

i

s

0

i

We indu
tively de�ne the notion of derivation of the sequent q :: a

0

�!

i

a

2n

to be a sequen
e

a

0

; a

1

; : : : ; a

2n

su
h that a

k

; a

k+2

2 S

i

, q :: s

k

�!

i

s

k+2

is the
on
lusion of a rule, say r

k+1

,

in R

i

, and a

k+1

is a sequen
e of derivations of the premises of r

k+1

, for k = 0; : : : ; 2n �

2. We will use the notation q :: a

0

a

1

r

1

�!

i

a

2

a

3

r

3

�!

i

� � �

a

2n�3

r

2n�3

���!

i

a

2n�2

a

2n�1

r

2n�1

���!

i

a

2n

in pla
e of

a

0

; a

1

; a

2

; a

3

; : : : ; a

2n�3

; a

2n�2

; a

2n�1

; a

2n

, and use the notation q :: a �!

i

�

a

0

to indi
ate

that there is a derivation of q :: a �!

i

a

0

.

A
onstraint domain is a (�

;�

)-stru
ture D, where a (�;�)-stru
ture
onsists of a

set D and an assignment of fun
tions and relations on D to the symbols of � and � (resp.)

whi
h respe
t the arity of the symbols. A model of a (�;�)-theory T is a (�;�)-stru
ture

under whi
h all the formulae in T evaluate to true. A D-model of a theory T is a model

of T extending D (this requires that the signature of D is
ontained in the signature of

T). We write T j=

D

� to denote that � is valid in all D-models of T . In the sequel we

assume the existen
e of a ba
kground (�

j

;�

j

)-theory T su
h that (i) the models of T are

D-models, (ii) if (p

1

; : : : ; p

n

! l) r) 2 R then T j=

D

(p

1

^ : : : ^ p

n

! l = r), and (iii) if

(p

1

; : : : ; p

n

!
) 2 CR then T j=

D

(p

1

^ : : : ^ p

n

!
).

2 Combining Rewriting and De
ision Pro
edures

A well established approa
h to formula simpli�
ation amounts to rewriting the sub-

expressions of the input formula using the sub-formulae surrounding the expression being

rewritten as the
ontext of rewriting. For instan
e, when the formulae to simplify are

lauses the negation of all the literals in the
lause (but the one in whi
h the expression

being rewritten o

urs)
an be used as
ontext of rewriting.

We abstra
t from the language employed by postulating the existen
e of a fun
tion

Cxt(�; �) s.t. (

V

Cxt(�; u)! (s � t))! (�[s℄

u

$ �[t℄

u

) holds in the ba
kground theory,

for every formula � and for every legal position u in �, where Cxt(�; u) denotes a �nite

set of literals,

V

Cxt(�; u) denotes the
onjun
tion of the literals in this set and \�" is a

ongruen
e relation { e.g. \=" and \$". Then, the simpli�
ation a
tivity whi
h relies on

rewriting
an be modeled as follows:

Cxt(�; u) :: C

Æ

���!

s�fe

C C :: s�!

r

t

if
s-init-state(C

Æ

)

�[s℄

u

l�simp

����!

simp

�[t℄

u

where
l-simp is the rule name (standing for
lause simpli�
ation), simp is one of the module

de�ning the CRS formalizing simpli�
ation of formulae by means of
onstraint
ontextual

3

The
ontext and atoms of the example
ould be extra
ted out of the following
lause P (f(f(g(a))))_

f(f(a) 6= f(a) _ f(g(a)) 6= a, by fo
using on the �rst literal and assuming the negation of the remaining

ones.

68

rewriting, C :: s�!

r

t models
onstraint
ontextual rewriting, i.e. the a
tivity of rewriting

s to t using C as the
ontext of rewriting (a formal de�nition is given in Se
tion 2.1), and

Cxt(�; u) :: C

Æ

���!

s�fe

C models the a
tivity of extending the
onstraint store C

Æ

with the

fa
ts
ontained in the
ontext Cxt(�; u) (indeed,
s-fe stands for
onstraint store's fa
t

extension). Finally,
s-init-state is a predi
ate whi
h is true only for the
onstraint

store C

Æ

equivalent to the empty set of
onstraints. Thus, we
ould read the above rule

as follows: expression s at position u in the formula �
an be repla
ed by expression t,

provided that t is obtained by
onstraint
ontextual rewriting s in the
ontext obtained

by extending the empty
ontext with the expressions surrounding s in the formula �.

For the sake of simpli
ity, in the rest of the paper we will assume that ��!

simp

is de�ned

so as to formalize
lause simpli�
ation. Therefore, Cxt(�; u)
an be thought of returning

the
onjun
tion of the negation of ea
h literal in the
lause �, but the one within whi
h

the position u o

urs.

2.1 Constraint Contextual Rewriting

Given a set of
onditional rewrite rules R, the (ternary)
onstraint
ontextual rewriting

relation :: �!

r

is de�ned by the following rules:

C :: p

s�unsat

�����!

r

true if p is a (�

j

;�

j

)-literal and
s-unsat(C)

i.e. rewrite the literal p to true under the
ontext C if this is not
onsistent (in
onsisten
y

of the
onstraint store is
he
ked by
s-unsat),

p :: C���!

s�fe

C

0

if p is a (�

j

;�

)-literal and
s-unsat(C

0

)

C :: p

xt�entails

������!

r

true

i.e. rewrite the literal p to true under the
ontext C, if after adding C the negation of the

literal being rewritten, we get an in
onsistent
onstraint store,

C :: e�����!

s�
anon

e

0

C :: e

anon

���!

r

e

0

i.e. rewrite the expression e to its
anoni
al form e

0

under the
ontext C, if the de
ision

pro
edure is able to derive a
anoni
al form out of e and its
ontext C,

C :: fp

1

�; : : : ; p

n

�g�!

rlv

;

if (p

1

; : : : ; p

n

! l) r) 2 R

C :: s[l�℄

u

rew

��!

r

s[r�℄

u

i.e. rewrite the sub-term l� at position u in the expression s to the sub-term r� under

the
ontext C, if there exist a substitution � and a
onditional rewrite rule in R whose

on
lusion is of the form l) r s.t. the sub-term at position u in s is l� and, on
e the

hypotheses of the
onditional rewrite rule have been added to the
onstraint store C,

we get the empty
onstraint store (we say that we have relieved the hypotheses of the

onstraint rule).

69

Finally, the a
tivity of relieving the hypotheses of a
onditional rewrite rule is modeled as

follows:

C :: p�!

r

true

C :: P [fpg

relieve

���!

rlv

P

i.e. relive the hypothesis p under the
ontext C, if p rewrites to true by
onstraint
on-

textual rewriting under the
ontext C.

2.2 Constraint Simpli�
ation

We are now in the position to make pre
ise some of the previously introdu
ed
on
epts.

Mainly, we are going to pre
isely
hara
terize the predi
ate
s-init-state, the test

for
onstraint store in
onsisten
y, the relation returning the
anoni
al form of a given

expression w.r.t. the
onstraint store and, �nally, the relation
omputing the extension of

the
onstraint store with new fa
ts. Formally, we assume the de
ision pro
edure provides

the rewriter with the following set of fun
tionalities:

�
s-init-state(C) holds if and only if C is equivalent to the empty set of
onstraints.

�
s-unsat(C) only if C is unsatis�able.

� C :: e�����!

s�
anon

e

0

if and only if e

0

is the
anoni
al representation of the expression p

w.r.t. the
onstraint store C. If there is no
anoni
al representation for the input

expression e then e

0

is e itself or a normal form
omputed w.r.t. the information

ontained in the
onstraint store. As an example of
anoni
al representation of an

expression w.r.t. a
onstraint store,
onsider a pro
edure for
ongruen
e
losure of a

ertain equivalen
e relation. This pro
edure builds a graph en
oding the equivalen
e

lasses for the relation. On
e a term is presented as the input, the pro
edure returns

the
hosen witness for the equivalen
e
lass to whi
h the term belongs.

� P :: C���!

s�fe

C

0

if and only if C

0

is the
onstraint store obtained by extending the

onstraint store C with the literals in P .

By assuming that the de�nition of P :: C���!

s�fe

C

0

relies on a
onstraint simpli�
ation

relation C�����!

s�simp

C

0

,

4

we
an model the a
tivity of heuristi
ally augmenting the
onstraint

store with sele
ted instan
es of
onstraints in the following way:

P :: C���!

s�fe

C

0

if ora
le(C;P)

C

augment

�����!

s�simp

C

0

where P is a set of valid
onstraints \guessed" by the ora
le relation. As we will see

in Se
tion 3, di�erent de�nitions of ora
le provides us with forms of augmentation of

di�erent strength. For instan
e, it is possible in this way to inform the de
ision pro
edure

about properties of interpreted fun
tion symbols, whi
h otherwise the de
ision pro
edure

does not know anything about.

4

An example of
onstraint simpli�
ation relation is given by the variable elimination pro
ess performed

on a set of inequalities C. An inequality is an atom of the form a

1

� x

1

+ : : : + a

n

� x

n

� 0, where the a

i

's

are the
oeÆ
ients (e.g. real numbers) and the x

i

's are distin
t variables. The variable elimination pro
ess

onsists of
ross-multiplying
oeÆ
ients and adding inequalities so as to
an
el out one variable at a time

until no more variable
an be eliminated, thus obtaining C

0

.

70

Soundness. The soundness of the simpli�
ation me
hanism amounts to proving that if

� ��!

simp

�

0

then T j=

D

(� $ �

0

) and
an be easily inferred from the soundness of CCR.

The soundness of CCR amounts to showing that if C :: e�!

r

e

0

, then T;C j=

D

e � e

0

(where

\�" is \$" if e and e

0

are (�

j

;�

j

)-literals and \=" if e; e

0

2 �(�

j

)). The soundness of CCR

an be proved under the assumption that the interfa
e fun
tionalities enjoy the following

properties: (i) if
s-init-state(C) then j=

D

C, (ii) if
s-unsat(C) then C j=

D

false,

(iii) if C :: e�����!

s�
anon

e

0

then C j=

D

e � e

0

, where \�" is \$" if e and e

0

are (�

j

;�

j

)-

literals and \=" if e; e

0

2 �(�

j

), (iv) if P :: C���!

s�fe

C

0

then T j=

D

C

0

$ (C [P), and

�nally (v) if ora
le(C;P) then T j=

D

P . The proof pro
eeds by straightforward mutual

rule indu
tion.

3 Case Studies

In this se
tion, we show that
ontextual rewriting as well as the integration s
hemas of

nqthm and Te
ton are all instan
es of CCR.

3.1 Contextual Rewriting

Contextual rewriting is the instan
e of CCR where the de
ision pro
edure is taken to be

an (in
remental) satis�ability pro
edure for the theory of equality. The
onstraint store

is a pair hA;Gi where A is a set of literals and G (G

Æ

) is the (initial) state of the de
ision

pro
edure and keeps in some internal form a representation of the equivalen
e
lasses

indu
ed by the ground equalities fed to the pro
edure.
s-init-state(C) holds if and

only if C = h;; G

Æ

i.
s-unsat(hA;Gi) if and only if (s 6= s) 2 A for some term s, or p 2 A

and :p 2 A for some atom p.

hA;Gi :: e

�
anon

������!

s�normal

-
anon(G; e)

hA [P;Gi�����!

s�simp

hA

0

; G

0

i

P :: hA;Gi

s�ext

����!

s�ext

hA

0

; G

0

i

where �����!

s�simp

is de�ned by:

hA [fa = bg; Gi

�merge

������!

s�simp

hA;

-merge(G; a; b)i

hA [fpg; Gi

�
anon

�����!

s�simp

hA [f

-
anon(G; p)g; Gi

where

-
anon(G; p) returns the representative of the equivalen
e
lass of p in G, and

-merge(G; a; b) denotes the state obtained from G by merging the equivalen
e
lasses

of a and b in G.

To illustrate
onsider the following example. Let R = fu 6= 0 ! rem(u � v; u)) 0g.

It
an be shown that f(rem(y � z; x) = 0); (x � y 6= y � z); (x = 0)g ��!

simp

�

ftrueg. The sub-

derivation asso
iated to CCR is as follows (where G

0

is the
onstraint store representing

f(x � y = y � z)g):

hfx 6= 0g; G

0

i :: (rem(y � z; x) = 0)

�

1

normal

����!

r

(rem(x � y; x) = 0)

�

2

rew

��!

r

(0 = 0)

�

3

entails

���!

r

true

where �

1

is the singleton sequen
e
ontaining the following sub-derivation:

(rem(y � z; x) = 0) :: hfx 6= 0g; G

0

i

s�se

���!

s�se

hfx 6= 0g; G

0

i

hfx 6= 0g; G

0

i :: (rem(y � z; x) = 0)

normal

����!

r

(rem(x � y; x) = 0)

71

and �

2

is the singleton sequen
e
ontaining the following sub-derivation:

hf(x = 0); x 6= 0g; G

0

i

�merge

�����!

s�simp

hfx 6= 0g; G

1

i

�
anon

�����!

s�simp

hf0 6= 0g; G

1

i

f(x = 0)g :: hfx 6= 0g; G

0

i

xt�fe

����!

s�ext

hf0 6= 0g; G

1

i

hfx 6= 0g; G

0

i :: (x 6= 0)

xt�entails

������!

r

true

hfx 6= 0g; G

0

i :: f(x 6= 0)g

relieve

���!

rlv

;

hfx 6= 0g; G

0

i :: (rem(x � y; x) = 0)

rew

��!

r

(0 = 0)

(G

1

is the
onstraint store representing f(x = 0); (x � y = y � z)g.) Sin
e �

3

an be readily

onstru
ted using the rules given in Se
tion 2 it is omitted here. No augmentation is

needed for the above example to su

eed.

3.2 NQTHM

The way nqthm in
orporates an (in
remental) de
ision pro
edure for linear arithmeti

(LA for short)
an be easily formalized in our framework.

5

The state of the de
ision

pro
edure is taken to be a pair hA;Li where A is a �nite set of literals, and L (L

Æ

) represent

the (initial) state of the de
ision pro
edure, and keeps in some internal representation the

linear fa
ts issued by the simpli�er.
s-init-state(C) holds if and only if C = h;; L

Æ

i.

s-unsat and ����!

s�ext

are de�ned as in Se
tion 3.1, whereas ������!

s�normal

and �����!

s�simp

are

de�ned in the following way:

hA;Li :: e

id

������!

s�normal

e

linearize(p) :: hL; ;i������!

push�polys

hL

0

; Ei

if p is a (�

j

;�

)-literal

hA [fpg; Li

la�ext

�����!

s�simp

hA [E;L

0

i

where linearize(p) returns a �nite set of linear inequalities whi
h logi
ally imply p, and

������!

push�polys

is de�ned as follows:

P :: hL; ;i

add�polys

������!

push�polys

hL

0

; Ei

where L

0

is the state resulting from the extension of L with P , and if L

0

is
onsistent then

E is a (possibly empty) set of equalities entailed by L

0

, otherwise E = fa 6= ag for some

term a.

To illustrate,
onsider a simple variant of the �rst example of Se
tion 3.1, where R =

fu > 0! rem(u � v; u)) 0g. It is easy to show that f(rem(x � y; x) = 0); (x � 0)g ��!

simp

�

ftrueg.

More sophisti
ated forms of simpli�
ations
an be obtained if augmentation is used,

and ora
le(hA;Li; P) is de�ned to hold whenever (i) there exists a
onstraint rule

(p

1

; : : : ; p

n

! r(~s)) 2 CR, (ii) hA;Gi :: fp

1

�; : : : ; p

n

�g�!

rlv

;, and (iii) hA;Gi :: ~s��!

r

~

t,

and (iv) P = fr(

~

t)g. The following
omplex example (from [3℄) shows the power of the

resulting simpli�
ation me
hanism. By taking CR = f((0 < i)! j � i � j); (0 < ms(x))g

it
an be shown that fms(
)+ms

2

(a)+ms

2

(b) < ms(
)+ms

2

(b)+2 � (ms

2

(a) �ms(b))+

ms

4

(a)g ��!

simp

�

ftrueg where ms

2

(x) abbreviates ms(x)�ms(x) andms

n+1

(x) abbreviates

ms(x) �ms

n

(x), for n > 1.

5

For the la
k of spa
e, we do not
onsider some features of the a
tual system (i.e. the use of the type-set

spe
ialist and the (weak) form of reasoning about equalities
arried by the simpli�er). However there is no

serious obsta
le towards extending our
urrent formulation to in
lude su
h features.

72

3.3 Te
ton

The de
ision pro
edure is a
ombination of a de
ision pro
edure for the theory of equality

and a de
ision pro
edure for LA. The
onstraint store is a triple hA;G;Li where A is a

set of literals, L and G (L

Æ

and G

Æ

) represent the (initial) state of the de
ision pro
edures

for LA and the theory of equality, respe
tively.
s-init-state(C) holds if and only if

C = h;; G

Æ

; L

Æ

i.

hA;G;Li :: e

�
anon

������!

s�normal

-
anon(G; e)

hA [separate(P); G; Li�����!

s�simp

hA

0

; G

0

; L

0

i

P :: hA;G;Li

s�ext

����!

s�ext

hA

0

; G

0

; L

0

i

separate(P) returns a set of literals whi
h are either (�

[�;�

)-literals or equalities

between terms in �(�

p

[�) where �

p

= �

j

n �

and � is a new set of
onstants (
alled

abstra
tion
onstants) su
h that �

\� = ; and �

p

\� = ;. It is assumed that the set

of literals returned by separate(P) is unsatis�able if and only if P is.

hA [fs = tg; G; Li

�merge

������!

s�simp

hA;

-merge(G; s; t); Li if s; t 2 �(�

p

[�)

hA [fpg; G; Li

�
anon

�����!

s�simp

hA [f

-
anon(G; p)g; G; Li

linearize(p) :: hL; ;i������!

push�polys

hL

0

; Ei

if p is a (�

[�;�

)-literal

hA [fpg; G; Li

la�ext

�����!

s�simp

hA [E;G;L

0

i

ora
le(hA;G;Li; P) is de�ned to hold whenever: (i) there exists a
onstraint rule

(p

1

; : : : ; p

n

! r(~s)) 2 CR, (ii) hA;G;Li :: fp

1

�; : : : ; p

n

�g�!

rlv

;, (iii) hA;G;Li :: ~s��!

r

~

t,

and (iv) P = fr(

~

t)g, or (1) there exists a term u o

urring in A or G, (2) hA;G;Li ::

u �!

r

�

v, and (3) P = f(u = v)g.

The following example (from [9℄) shows the strength of the resulting simpli�
ation

me
hanism. Let R = fmax(x; y) = x ! min(x; y)) yg and CR = fp(x) ! f(x) �

g(x)g. It
an be shown that the
lause f:p(x);:(z � f(max(x; y)));:(0 < min(x; y));:(x �

max(x; y));:(max(x; y) � x); z < g(x) + yg
an be simpli�ed to ftrueg.

Implementation. Our framework
an be readily built on top of several implementation

languages and logi
al frameworks. We found
onvenient to build a �rst prototype in

Prolog, following the methodology envisaged in [8℄ (for more on this, see se
tion 4). This

amounted to a
areful design of the sequents and the rules, as well as the implementation

of the interpreter for the strategies spe
ifying the appli
ation of the rules. Next we re�ned

the rules des
ribed in Se
tions 2 and 3 to en
ode
ontrol information (e.g. a �eld storing

the literal being rewritten so as to avoid looping). As far as the strategy of appli
ation of

the rules is
on
erned, a simple depth-�rst strategy is suÆ
ient to ta
kle all the examples

shown in this paper.

4 Related Work

In [3℄, Boyer and Moore
arefully report the integration of a de
ision pro
edure for LA

within their prover. In [10℄, Kapur and Nie des
ribe the integration of a de
ision pro
edure

for LA with
ontextual rewriting. This results in a powerful form of simpli�
ation. As

73

shown in Se
tion 3 both integration s
hemas have been neatly re
asted in our framework.

The advantage is that CCR provides us with an abstra
t
hara
terization of the fun
-

tionalities provided by the de
ision pro
edure thereby providing an integration s
hema

whi
h is independent from the spe
i�
 de
ision pro
edure employed. pvs [13℄
omes with

a de
ision pro
edure for equality and LA (among many others). The de
ision pro
edures

are tightly integrated following the s
hema proposed in [14℄. A preliminary analysis of

pvs suggests that also su
h an integration s
hema
an be re
ast in our framework. STeP

[7℄ implements a form of
ontextual rewriting integrated with a semi-de
ision pro
edure

for �rst-order logi
 and a bun
h of de
ision pro
edures extended to deal with non-ground

onstraints. The en
oding of the integration s
hema used in STeP in our framework seems

to be a very interesting experiment. [8℄ des
ribes a framework and a methodology (Open

Me
hanized Reasoning System, omrs) to
ompose and to enhan
e reasoning modules. As

an appli
ation of omrs, a rational re
onstru
tion of Boyer and Moore's integration s
hema

is reported in [6℄. Following omrs, we adopt a rule-based approa
h to spe
ify reasoning

modules, and in the de�nition of the rules we stress the distin
tion between logi
 and

ontrol.

Many extensions to
onstraint solving aiming at a better trade-o� between de
larativity

and eÆ
ien
y have been put forward in Constraint Programming (CP). In parti
ular,

SoleX [11℄ is a me
hanism for the domain independent extension of
onstraint solvers so

to deal with programmer-de�ned
onstraints. This work resembles ours in the rule-based

presentation, in the semanti
al extension of the
onstraint rules by means of guarded

rewrite rules, and in being domain independent. In [5℄, a general framework for the

extension/
ombination of solvers using rewrite rules and strategies is proposed. In [1℄,

Apt gives a proof theoreti
 a

ount of
onstraint solving. This work is similar to ours in

the rule based presentation, it is more fundational in nature sin
e it aims at giving an

abstra
t a

ount of CP in the \proof as
omputation" paradigm, but it does not deal with

integration issues. In [2℄, we
ompare the Constraint Logi
 Programming paradigm (CLP)

with CCR, dis
ussing potentials for
ross-fertilization between the �elds of Automated

Theorem Proving and CLP on the problem of integrating de
ision pro
edures.

5 Con
lusions

We have proposed an extension to
ontextual rewriting (
alled Constraint Contextual

Rewriting), where
ontextual information
an be a

essed by the available de
ision pro
e-

dures. The interfa
e fun
tionalities between the rewriting engine and the de
ision pro
e-

dures have been pre
isely des
ribed. These fun
tionalities spe
ify how the parts intera
t,

yielding an e�e
tive simpli�
ation me
hanism. The soundness of the integration s
hema

has been hinted. The en
oding in our framework of the Boyer and Moore's integration

s
hema and the one adopted in Te
ton gives eviden
e of the
exibility and generality

of the approa
h. Prototypes of these two integration s
hemas have been easily derived

from the rule-based presentation and used to validate the models. Further properties (e.g.

termination) are under investigation.

Referen
es

[1℄ K. R. Apt. A Proof Theoreti
 View of Constraint Programming. Fundamenta Infor-

mati
ae, 33(1):1{27, 1998.

74

[2℄ A. Armando, E. Melis, and S. Ranise. Constraint Solving in Logi
 Programming and

in Automated Dedu
tion: a Comparison. In Pro
. 8

th

Intl. Conf. on Arti�
ial Intelli-

gen
e: Methodology, Systems, Appli
ations (AIMSA'98). Sozopol, Bulgaria, Septem-

ber 21 - 23., 1998.

[3℄ R. S. Boyer and J S. Moore. Integrating De
ision Pro
edures into Heuristi
 Theorem

Provers: A Case Study of Linear Arithmeti
. Ma
hine Intelligen
e, 11:83{124, 1988.

[4℄ R.S. Boyer and J S. Moore. A Computational Logi
. A
ademi
 Press, 1979.

[5℄ C. Castro. Building Constraint Solvers Using Rewrite Rules and Strategies.

Submitted for publi
ation. Preliminar version available at http://www.loria.fr/-

~
astro/PAPERS/publi
ations.html, 1998.

[6℄ A. Coglio, F. Giun
higlia, P. Pe

hiari, and C. L. Tal
ott. A Logi
 Level Spe
i�
ation

of the NQTHM Simpli�
ation Pro
ess. Te
hni
al report, IRST, 1997.

[7℄ Z. Manna et. al. STeP: The Stanford Temporal Prover. Te
hni
al Report CS-TR-

94-1518, Stanford University, June 1994.

[8℄ F. Giun
higlia, P. Pe

hiari, and C. L. Tal
ott. Reasoning Theories: Towards an

Ar
hite
ture for Open Me
hanized Reasoning Systems. Te
hni
al Report TR-9409-

15, IRST, Nov. 1994.

[9℄ D. Kapur, D.R. Musser, and X. Nie. An Overview of the Te
ton Proof System.

Theoreti
al Computer S
ien
e, Vol. 133, O
tober 1994.

[10℄ D. Kapur and X. Nie. Reasoning about Numbers in Te
ton. In Pro
. 8

th

Inl. Symp.

Methodologies for Intelligent Systems, pages 57{70, Charlotte (North Carolina), O
-

tober 1994.

[11℄ E. Monfroy and C. Ringeissen. SoleX: a Domain-Independent S
heme for Constraint

Solver Extension. In 4

th

Intl. Conf. on Arti�
ial Intelligen
e and Symboli
 Compu-

tation (AISC'98). Plattsburgh, New York, September, 1998.

[12℄ G. Nelson and D.C. Oppen. Simpli�
ation by Cooperating De
ision Pro
edures.

Te
hni
al Report STAN-CS-78-652, Stanford Computer S
ien
e Department, April

1978.

[13℄ S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Veri�
ation System. In

Pro
. 11

th

Intl. Conf. on Automated Dedu
tion (CADE'92). Saratoga, June 748 {

752., 1992.

[14℄ R.E. Shostak. De
iding Combination of Theories. Journal of the ACM, 31(1):1{12,

1984.

[15℄ H. Zhang. Contextual Rewriting in Automated Reasoning. Fundamenta Informati
ae,

24(1/2):107{123, 1995.

75

