
Logical Deduction using the Local Computation Framework

Nic Wilson and J�erôme Mengin

School of Computing and Mathematical Sciences

Oxford Brookes University

Gipsy Lane, Headington, Oxford OX3 0BP, U.K.

fnic.wilson,jmenging@brookes.ac.uk

A Introduction

Computation in a number of uncertainty formalisms has recently been revolutionized by

the notion of local computation. [9] and [6] showed how Bayesian probability could be

e�ciently propagated in a network of variables; this has already lead to sizeable successful

applications, as well as a large body of literature on these Bayesian networks and related

issues (e.g., the majority of papers in the Uncertainty in Arti�cial Intelligence conferences

over the last ten years).

In the late `Eighties, Glenn Shafer and Prakash Shenoy [14] abstracted these ideas,

leading to their Local Computation framework. Remarkably, the propagation algorithms

of this general framework give rise to e�cient computation in a number of spheres of

reasoning: as well as Bayesian probability [12], the Local Computation framework can

be applied to the calculation of Dempster-Shafer Belief [14, 8], in�nitesimal probability

functions [17], and Zadeh's Possibility functions.

This paper describes how the framework can be used for the computation of logical

deduction.

Local Computation is based on a structural decomposition of knowledge into a network

of variables, in which there are two fundamental operations, combination and marginaliza-

tion. The combination of two pieces of information is another piece of information which

gives the combined e�ect; it is a little like conjunction in classical logic. Marginalization

projects a piece of information relating a set of variables, onto a subset of the variables:

it gives the impact of the piece of information on the smaller set of variables. Axioms

are given which are su�cient for the propagation of these pieces of information in the

network. General propagation algorithms can be de�ned using results in the Bayesian

network literature and elsewhere. These algorithms are often e�cient, depending, roughly

speaking, on topological properties of the network. The reason that Local Computation

can be very fast is that the propagation is expressed in terms of much smaller (`local')

problems, involving only a small part of the network.

Finite sets of possibilities (or constraints) can be propagated with this framework, and

so deduction in a �nite propositional calculus can be performed by considering sets of

possible worlds; this is implemented in, for example, PULCINELLA [11], and described

formally in [13]. However, dealing with sets of possible worlds is often not computationally

e�cient; it is only very recently [5] that it has been shown how to use Local Computation

to directly propagate sets of formulae in a �nite propositional calculus.

In the next section we introduce the Local Computation framework. We describe in

section C how a logic can be embedded in the framework, given that its semantics veri�es

certain properties. This is applied to �rst-order predicate calculus in section D. The last

section discusses applications and advantages of this approach.

135

B Axioms for Local Computation

The primitive objects in the Local Computation framework are an index set � (often called

the set of variables) and for each r � � a set V

r

, called the set of r-valuations, or, the

valuations on r.The set of valuations V is de�ned to be

S

r��

V

r

. We assume a function

 : V�V ! V , called combination, such that if A 2 V

r

and B 2 V

s

then A
B 2 V

r[s

, for

r; s � �. If A and B represent pieces of information then A
 B is intended to represent

an aggregation of the two pieces of information. We also assume that, for each r � �,

there is a function # r :

S

s�r

V

s

! V

r

, called marginalization to r.

The framework assumes that the following axioms are veri�ed:

Axiom LC1 (Combination and associativity of combination): Suppose A, B and C

are valuations. Then A
B = B
 A and A
 (B
 C) = (A
B)
 C.

Axiom LC2 (Consonance of marginalization): Suppose A is a t-valuation and r �

s � t � �. Then (A

#s

)

#r

= A

#r

.

Axiom LC3 (Distributivity of marginalization over combination)

1

: Suppose A is an

r-valuation and B is an s-valuation and r � t � r [s � �. Then (A
B)

#t

= A
B

#s\t

.

Let A

1

; : : : ; A

n

be valuations with, for i = 1; : : : ; n, A

i

2 V

r

i

. Many problems can be

expressed as calculating (A

1

 � � �
 A

n

)

#r

0

for some r

0

� �; in Bayesian probability this

computes the marginal of a joint probability distribution; we will see below how testing

the consistency of a set of formulae in propositional or predicate calculus can be expressed

in this way.

Elements of V

r

will generally be simpler objects when r is small; for example they may

be sets of formulae using only a small number of propositional symbols; also combination

and marginalization will generally be much easier on the simpler objects (the computa-

tional complexity of these operations is typically exponential in jrj). Direct computation

of (A

1

 � � �
 A

n

)

#r

0

will very often be infeasible as it involves a valuation in V

r

where

r =

S

n

i=0

r

i

. It can be seen that axioms LC1, LC2 and LC3 allow the computation of

(A

1

 � � �
 A

n

)

#r

0

to be broken down into a sequence of combinations and marginaliza-

tions, each within some V

r

i

(i.e., local computations), if H = fr

0

; : : : ; r

n

g is a hyperforest.

Brie
y, H is said to be a hyperforest if its elements can be ordered as s

0

; : : : ; s

n

where, for

i = 1; : : : ; n, there exists k

i

< i with s

i

\

S

j<i

s

j

� s

k

i

. The complexity of the computation

will typically be roughly exponentially related to max

i

jr

i

j.

If H is not a hyperforest then we can perform the computations in a hyperforest G

which covers H, i.e., such that for all r 2 H, there exists s 2 G with s � r. Finding a good

hyperforest cover has been studied in e.g., the graph theory, and statistics literature, see

[6].

C Similarity Model Structures

A Similarity Model Structure is de�ned to be a triple (M; �; (�

r

)

r��

), where M is a set,

the elements of which are called models, � is an indexing set, and each �

r

is an equivalence

relation on M. For this paper we will also assume the following monotonicity property:

for r � s � �, �

r

��

s

:For M;N 2 M, r � �, de�ne M

#r

to be fN : N �

r

Mg, and for

A �M, de�ne A

#r

to be

S

M2A

M

#r

. If A

#r

= A we say that A is r-closed.

Embedding Similarity Model Structures in the Local Computation Framework

To embed Similarity Model Structures in the Local Computation Framework we need to

de�ne r-valuations and the operations Combination and Marginalization. We use the same

1

LC3 is slightly stronger than the corresponding axiom A3 given in [14], (their axiom is LC3 but with

the restriction that r = t); it turns out to be occasionally useful to have this stronger axiom.

136

indexing set �; for r � �, the set of r-valuations V

r

is de�ned to be the set of r-closed

subsets of M. For A 2 V

s

, we have already de�ned its result under r-marginalization,

A

#r

. For A 2 V

r

and B 2 V

s

de�ne A
 B to be A \ B which can be shown to be an

element of V

r[s

.

It can easily be seen that axioms LC1 and LC2 are automatically satis�ed for this

embedding of Similarity Model Structures, but LC3 does not always hold, and is more

problematic. Similarity Model Structure (M; �; (�

r

)

r��

) is said to satisfy the Indepen-

dence Property if

for any r; s � � and M;N 2 M such that M �

r\s

N , there exists L 2 M such that

L �

r

M and L �

s

N .

This property may be paraphrased as: knowing the �

r

-equivalence class A of an un-

known model L doesn't tell us anything about its �

s

-equivalence class B, except that B

and A are both subsets of the same �

r\s

-equivalence class (i.e., that containing L).

The main result of this section is that a Similarity Model Structure satis�es the In-

dependence Property if and only if its embedding in the Local Computation framework

satis�es the distributivity axiom LC3.

Example: the propositional calculus

Consider the propositional calculus based on set of propositional symbols � = fP

1;

P

2;

: : :g.

Let M be the set of truth functions, i.e., functions from � to fT;Fg. For r � �, de�ne

�

r

by M �

r

N i� M and N agree on r, i.e., for all P

i

2 r, M(P

i

) = N(P

i

). Each �

r

-

equivalence class corresponds to an r-partial model, i.e, a function from r to fT;Fg. Hence

r-closed sets may be thought of as sets of r-partial models. Using the above embedding,

marginalising a set A of s-partial models to r � s amounts to restricting them to r. If B

is a set of t-models then A
B is the set of all M
N , with M 2 A, N 2 B such that M

and N agree on r \ s, where M
N is the r [s-valuation which agrees with M on r and

with N on s. The fact that such an r [s-valuation exists implies that the Independence

Property is satis�ed, so the Local Computation axioms hold.

Suppose, for i = 1; : : : ; n, �

i

is a set of formulae involving only �nite number of

propositional symbols r

i

� �. We can check if

S

i

�

i

is consistent or not by seeing if

(

N

i

[�

i

])

#;

is non-empty (where [�

i

] is the set of truth functions satisfying �

i

, which is an

r

i

-closed set). To do this we �nd a hyperforest cover of fr

i

: i = 1; : : : ; ng using a standard

algorithm, and perform local computations with sets of partial models.

The same approach can be used for a wide range of monotonic logics for which partial

models can be de�ned.

D Application to �rst-order theorem proving

We consider a set � of function and predicate symbols. Let L be the usual set of �rst-order

formulae built using these symbols together with individual variables from a set Var. For

r � �, let L

r

be the sublanguage of L comprising formulae, the function and predicate

symbols of which are all in r. Let M be the set of models on �: each model M 2 M is

de�ned by its universe U

M

and, for each n-ary function symbol f 2 �, an n-ary function

on U

M

, and for each n-ary predicate symbol P an n-ary relation P on U

M

. The set of

models of a subset � of L is noted [�]. For each r � � an equivalence relation �

r

on M

can naturally be de�ned by: M �

r

N if and only if M and N have the same universe and

give the same interpretation to the symbols of r.

For any r; s � � and M;N 2 M such that M �

r\s

N , let L be the model of universe

U

M

= U

N

which gives to each symbol in � � (s � r) the same interpretation as M , and

gives to each symbol in s� r the same interpretation as N : clearly L �

r

M and L �

s

N .

137

Thus the similarity model structure (M; �; (�

r

)

r��

) satis�es the Independence Property,

and can be embedded in the Local Computation Framework. Notice that if we consider

the set M

H

of Herbrand models of L, (M

H

; �; (�

r

)

r��

) still satis�es the Independence

Property, since the model L constructed above is a Herbrand model if M and N are.

Suppose now that we have a family (�

i

)

i

of subsets of L, each �

i

being more precisely

a subset of some L

r

i

with r

i

� �, and that we want to check the satis�ability of

S

i

�

i

.

It can easily be checked that the set of models of

S

i

�

i

is empty if and only if (

N

i

[�

i

])

#;

is empty. Performing marginalization and combination on sets of models would often not

be practical. However it is possible to work with �rst-order representations of sets of

models whenever it is possible to de�ne a function MARG such that MARG(�; r) � L

r

and [MARG(�; r)] = [�]

#r

. In this case (

N

i

[�

i

])

#;

= [MARG([

i

�

i

; ;)]. The formulas in

MARG([

i

�

i

; ;) do not contain any predicate or function symbols (except possibly the

equality predicate). More importantly we can look for a hyperforest cover of fr

i

: i =

1; : : : ; ng using a standard algorithm, and perform local computations of MARG on sets

of formulae. In the remainder of this section, we review some existing algorithms to

compute the marginalization of sets of formulae.

Marginalization can be computed using algorithms of for example [7, 16, 2, 1]. These

algorithms eliminate existentially quanti�ed predicate symbols. More precisely, suppose

that � is a formula containing the predicate and function symbols contained in a �nite

set r [fPg, with P =2 r, then it can be shown that [�]

#r

= [9P:�]. The algorithms

mentioned above are designed to compute a �rst-order formula equivalent to 9P:�. The

elimination of function symbols is the reverse of Skolemization, and is also performed by

these algorithms. The algorithms of [7, 1] always terminate but succeed only in cases

where � can be put under disjunctive normal form such that each conjunct contains no

positive occurrence of P or no negative occurrence of P . The algorithms of [16, 2] apply

to general formulas but do not always halt.

In the case of clauses without the equality predicate, marginalization can be de�ned

using the notion of production �eld [15, 4]: a production �eld P is de�ned by a set L of

literals closed under instantiation; we then write P = hLi. A clause C belongs to P if

every literal in C belongs to L. Given a set of clauses �, [4] de�nes the set of characteristic

clauses of � with respect to P , noted Carc(�;P), to be the set of clauses belonging to

P that are entailed by � and that are not subsumed by any other consequence of �

belonging to P . If we de�ne L

r

to be the set of literals whose predicate and function

symbols are all in r, it can be shown that, if [�]

H

is the set of Herbrand models of �,

[�]

#r

H

= [Carc(�; hL

r

i)]

H

. Algorithms to compute Carc can be found in e.g. [10, 4]. Notice

that these algorithms will not always terminate, since Carc(�; hL

r

i) may be in�nite.

E Discussion

Although this paper focuses on �rst-order theorem proving, the same approach can be

applied to modal, conditional, probabilistic [18] and possibilistic logics, all of which have

important applications in Arti�cial Intelligence. The approach also applies to certain,

restrictive, non-monotonic logics, which are based on simple conditional logics. Apart

from theorem proving, a number of problems can be expressed in terms of marginalization

to a non-empty set of variables, for example, in power structures, correspondence theory,

semantics for Hilbert calculi [2], circumscriptive query-answering [3], abduction [4].

Local Computation methods allow us to break down problems into smaller ones to

which classical theorem proving techniques can be e�ciently applied; for example, the

framework gives strategies for choosing in which order to perform resolutions. It is also

138

possible to get information about the complexity of a particular calculation, by considering

the size of the largest set in the hyperforest; in the same way, some formulae which make

the computation much worse can be recognised as those that increase the size of this

largest set.

Although it is not yet clear how theorem proving algorithms based on Local Com-

putation compare with standard ones, the generality of the framework has a number of

bene�ts. In particular, there are problems where di�erent kinds of information are more

suitably expressed using di�erent logical representations, e.g. sets of models, constraints,

clausal forms, terminological descriptions etc. A major di�culty of mixing representations

is that moving between them tends to be computationally expensive; the Local Computa-

tion framework suggests good places for mixing representations (namely in sub-languages

corresponding to small intersections between neighbouring sets in the hyperforest).

References

[1] P. Doherty, W. Lukasewicz, and A. Szalas. Computing circumscription revisited: A reduction

algorithm. In C. S. Mellish, editor, Proceedings of the 13th International Joint Conference

on Arti�cial Intelligence, pages 1502{1508. I.J.C.A.I., Morgan Kaufmann, 1995.

[2] D.M. Gabbay and H. J. Ohlbach. Quanti�er elimination in second-order predicate logic.

Report MPI-I-92-231, Max-Planck Institut f�ur Informatik, Saarbr�ucken, Germany, 1992.

[3] M. Gelfond, H. Przymusi�nska, and T. Przymusi�nski. On the relationship between circum-

scription and negation as failure. Arti�cial Intelligence, 38(1):75{94, 1989.

[4] K. Inoue. Linear resolution for consequence �nding. Arti�cial Intelligence, 56:301{353, 1992.

[5] J. Kohlas and S. Moral. Propositional information systems. Unpublished report, May 1996.

[6] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical

structures and their application to Expert Systems (with discussion). Journal of the Royal

Statistical Society ser. B, 50(2):157{224, 1988.

[7] V. Lifschitz. Computing circumscription. In Proceedings of the 9th International Joint

Conference on Arti�cial Intelligence, pages 121{127. I.J.C.A.I., Morgan Kaufmann, 1985.

[8] S. Moral and N. Wilson. Markov Chain Monte-Carlo algorithms for the calculation of

Dempster-Shafer belief. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence (AAAI-94), pages 269{274, 1994.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., 1988.

[10] T. Przymusi�nski. An algorithm to compute circumscription. Arti�cial Intelligence, 38(1):49{

73, 1989.

[11] A. Sa�otti and E. Umkehrer. PULCINELLA: A general tool for propagating uncertainty in

valuation networks. In Uncertainty in Arti�cial Intelligence: Proceedings of the 7th Confer-

ence, pages 323{331. Morgan Kaufmann, 1991.

[12] G. Shafer and P. P. Shenoy. Probability propagation. Annals of Mathematics and Arti�cial

Intelligence, 2:327{352, 1990.

[13] P. P. Shenoy. Consistency in valuation-based systems. ORSA Journal on Computing,

6(3):281{291, 1994.

[14] P. P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In

G. Shafer and J. Pearl, editors, Readings in Uncertain Reasoning, pages 575{610. Morgan

Kaufmann, 1990.

[15] P. Siegel. Repr�esentation et Utilisation de la Connaissance En Calcul Propositionnel. Th�ese

d'�etat, Universit�e d'Aix-Marseille II, Luminy, 1987.

[16] A. Szalas. On correspondence between modal and classical logic: Automated approach.

Technical Report MPI-I-92-209, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1992.

[17] N. Wilson. Extended Probability. In Proceedings of the 12th European Conference on

Arti�cial Intelligence (ECAI-96), pages 667{771. John Wiley and Sons Ltd, 1996.

[18] N.Wilson and S. Moral. A logical view of probability. In Proceedings of the 11th European

Conference on Arti�cial Intelligence (ECAI-94), pages 386{390, 1994.

139

