
Theorem Proving in Large Theories

�

Wolfgang Reif

��

Universit�at Ulm

Gerhard Schellhorn

���

Universit�at Ulm

1 Introduction

This paper investigates the performance of automated �rst-order theorem provers in for-

mal software veri�cation. We used the software veri�cation tool, KIV ([5], [6]) as a test

environment, and did comparative experiments with �ve automated theorem provers as

dedicated subsystems for the non-inductive �rst-order theorems that showed up during

proofs of speci�cation- and program properties in KIV. The �ve provers were Otter ([11]),

Protein ([1]), Setheo ([3]), Spass ([9]) and

3

T

A

P ([2]).

The challenge for the provers in this application domain (unlike in standard TPTP

benchmarks, [8]) is the large number of up to several hundred axioms in typical software

speci�cations. We found that both the success rates and the proof times of the automated

provers strongly depend on how good they are able to �nd out the few relevant axioms

that are really needed in the proofs.

In this paper we present a reduction technique that helps automated provers to con-

centrate on the right axioms. The reduction technique takes a large theory and a goal, and

computes a reduced axiom set by �ltering out as many irrelevant axioms as possible. The

proof search then is performed with the reduced axiom set. The reduction is independent

from the actual prover and the calculus. To evaluate the reduction technique we repeated

the original experiments once more, but now with the reduced axiom sets. The largest

theory in our experiments had 500 axioms. The reduced axiom sets for the test theorems

had around 20 axioms. With the reduction the provers were able to prove more theorems

than before. Furthermore, for those theorems that could already be proved without the

axiom reduction we got considerably shorter proof times.

The reduction works because software speci�cations are well structured theories. Find-

ing their structure is part of the early phases in the software life cycle. The reduction not

only exploits this structure (given by the software engineer) but to a certain extent also

explores resolvable axiom dependencies within unstructured speci�cation components.

In the next section we illustrate the problem with an example. In section 3 we present

the reduction criteria and the assumptions about the speci�cation structure. Section 4

reports on the experimental results.

�

This research was sponsored by the German Research Foundation (DFG) under grant Re 828/2-2, SPP

'Deduktion', project 'Integration of Automated and Interactive Theorem Proving', Universities Karlsruhe

and Ulm.

��

Abt. Programmiermethodik, Universit�at Ulm, D-89069 Ulm, Germany, reif@informatik.uni-ulm.de

���

Abt. Progr.meth., Universit�at Ulm, D-89069 Ulm, Germany, schellhorn@informatik.uni-ulm.de

119

2 An Example

The example is a speci�cation of a single datatype and not of a whole software system.

But it is su�cient to demonstrate the basic reduction criteria, and large enough to cause

some problems for the automated theorem provers.

It deals with the data type of �nite enumerations. These are bijections from a �nite

subset of data elements to an initial segment of the natural numbers. Examples for

enumerations are mappings which associate unique keys to database entries, or enumerate

the nodes in a graph. Actually, the speci�cation of enumerations was part of a larger KIV

case study on the veri�cation of depth-�rst search on graphs.

Enumerations can be constructed by ; (the empty bijection), and by en� d adding

a data element d (with fresh code number) to the enumeration en. Adding an element

twice has no e�ect. The size function #en returns the number of elements recorded in the

enumeration, and the predicate d 2 en tests for membership. The selector num of(d; en)

returns the number of the element d in en, and el of(n; en) gives back the element number

n in en. Both operations are unspeci�ed if d 62 en or if n � #en, respectively. Finally,

the operation en 	 d removes the element d and its code number from the enumeration (if

there is such an element). In addition all code numbers greater than num of(d; en) are

decremented by one in order to avoid gaps in the range of en	 d.

With a little experience the above description of �nite enumerations can be directly

translated into a bunch of axioms. However, from the software engineering point of view

an amorphous list of formulas is a bad representation. In the software design process, the

speci�cation is preceded by a careful problem analysis identifying decomposable subprob-

lems and their interrelations. With the standard algebraic speci�cation language used in

KIV, this information is made explicit in the speci�cation structure.

The formal speci�cation of �nite enumerations is partly shown in Fig. 1. It iden-

ti�es seven speci�cation modules. DelEnum is the toplevel speci�cation describing the

overall functionality of �nite enumerations over the parameter Elem. It imports the

subspeci�cation Enum and enriches it by the axioms for 	 (called the � of the enrich-

ment). Enum speci�es the remaining operations for �nite enumerations. The constraint

"enum generated by ;; �" gives a structural induction principle. The speci�cation is

formulated relative to a standard speci�cation of natural numbers (actually taken from the

KIV library, omitted in Fig. 1): NatBasic is the freely generated fragment of the natural

numbers with 0, successor succ, predecessor pred and ordering <. The enrichments Add

and Sub introduce addition and subtraction by recursive de�nitions. Nat is the union of

Add and Sub. The formal semantics of the speci�cation language is described in [10].

The speci�cation DelEnum (inclusive of all subspeci�cations) has 25 axioms, 13 of

which are given in Fig. 1. Furthermore, the speci�cation Nat from the library is associ-

ated with 77 additional standard lemmas to improve arithmetical reasoning. These are

persistent over the lifetime of the speci�cation, and have been proved long time ago once

and for all. Generally, the reuse of a library speci�cation may include axioms that are

relevant to one application but irrelevant to another. Altogether we get 102 axioms.

As test theorems we selected the 52 proof obligations for DelEnum, that showed up

during a KIV case study on depth-�rst search in graphs. We found that in order to prove

theorem n, it is a good idea to add all the n-1 previously proved theorems as lemmas to the

theory.Although this enlarges the theory again, the e�ect is positive: With the redundant

77 lemmas of Nat and the discipline to add all previously proved test examples to the

theory, the success rate of the �ve provers was doubled.

120

DelEnum

Enum

Elem Nat

Add Sub

NatBasic

� �

� �

��� �

� �

��uukk
k

k

k

k

k

� �

� �

� �

� �

��uukk
k

k

k

k

k

� �

� �
S

S

S

S

S

S

S))

� �

� �

��� �

� �

DelEnum =

enrich Enum with

functions

. 	 . : enum � elem ! enum;

axioms

: d 2 en ! en 	 d = en,

d 2 en ! #(en 	 d) = pred(# en),

d

1

2 en 	 d $ d 6= d

1

^ d

1

2 en,

d 2 en ^ d

1

2 en

^ num of(d, en) < num of(d

1

, en)

! num of(d

1

, en 	 d)

= pred(num of(d

1

, en)),

d 2 en ^ d

1

2 en

^ num of(d

1

, en) < num of(d, en)

! num of(d

1

, en 	 d) = num of(d

1

, en),

end enrich

Enum =

generic speci�cation

parameter Elem

using Nat target

sorts enum;

constants ; : enum;

functions

. � . : enum � elem ! enum;

num of : elem � enum ! nat;

el of : nat � enum ! elem;

. : enum ! nat;

predicates . 2 . : elem � enum;

variables en: enum;

axioms

enum generated by ;, �;

d 2 en ! en � d = en,

: d 2 ;,

d

1

2 en � d $ d = d

1

_ d

1

2 en,

; = 0,

: d 2 en ! #(en � d) = succ(# en),

: d 2 en ! num of(d, en � d) = # en,

d 6= d

1

! num of(d, en � d

1

) = num of(d, en),

d 2 en ! el of(num of(d, en), en) = d

end generic speci�cation

Fig. 1. The Example Speci�cation

3 Reduction Criteria

Speci�cations in KIV are built up from elementary �rst-order theories (with loose se-

mantics) with the usual operations known in algebraic speci�cation: union, enrichment,

parameterization, actualization and renaming.

Structuring operations are not used arbitrarily in formal speci�cations of software

systems. Enrichments \ESPEC = enrich SPEC by �", where � consists of a signature

and axioms to be added, are supposed to have the property of hierarchy persistency. This

property says that every model of SPEC can be extended to a model of ESPEC.

Hierarchy persistency of an enrichment implies safe reduction of the set of necessary

axioms to prove a theorem ': Every theorem ' that holds in (all models of) ESPEC and

uses only the signature of SPEC, already holds in SPEC.

For structuring operations other than enrichment there are criteria similar to hierarchy

persistency which also allow safe reduction of axioms. A speci�cation in which all struc-

turing operations ful�l these criteria is called modular. Modular speci�cations are very

natural in software development

1

. The speci�cation from the last section given in �g. 1 is

a modular speci�cation. Often the structure of an implementation by a system of software

modules (for the de�nition in KIV see [5]) follows the structure of the speci�cation. The

speci�cation is then called an architectural speci�cation ([4]).

1

The situation is di�erent in mathematics, consider e.g. the enrichment of rings to �elds, which is not

hierarchy persistent

121

We will now give several axiom reduction criteria and demonstrate them by an example.

For modular speci�cations, these criteria can be proved to be safe, i.e. a formula follows

from a set of axioms if it follows already from the reduced set of axioms. Even if there

are some non hierarchy persistent enrichments in a structured speci�cation, the axiom

reduction is still a very good heuristic.

Suppose we wanted to prove

th-45: #en = succ(0) ! ; � el of(0; en) = en

from our example theory. In the test suite, th-45 is the 45

th

theorem. Therefore at this

stage there are 146 (= 102 + 44) axioms in the theory. Potentially all of them can be

used in the proof. Actually an interactive proof in KIV used only 12 of them (6 of the

previously proved theorems, 4 axioms from Enum fuand two axioms from NatBasic).

The �rst criterion we apply is the

minimality criterion: To prove a theorem one never needs more axioms than those

of the minimal subspeci�cation MSPEC whose signature covers the signature of

the theorem.

In our case the minimal speci�cation MSPEC is Enum, since the operation 	 de�ned

in DelEnum does not occur in the theorem. Thereby 5 axioms and 17 lemmas can be

removed from the theory. In practice, this criterion does not lead to much reduction, since

theorems are usually formulated over the minimal subspeci�cation. Second, we apply the

structure criterion: If the enrichment "`enrich SPEC by�"' is a subspeci�cation

of the minimal speci�cation MSPEC, such that the operations from � are neither

used in speci�cations above the enrichment nor in the theorem, the axioms from

� can be dropped.

From this criterion we �nd, that the arithmetic operations + and � are not required.

They are neither used to de�ne any operation in the Enum speci�cation nor do they occur

in the theorem. Removing all axioms and theorems for + and � saves additional 4 axioms

and 57 lemmas, which no longer must be passed to the automated theorem prover. Third,

we can apply the

speci�cation criterion: Speci�cations, which contain operations, which have hi-

erarchy persistent de�nitions | typical cases are operations over free datatypes,

which are de�ned by (recursive or nonrecursive) de�nitions | can be split into

a basic speci�cation and into enrichments for the de�ned operations.

This criterion splits NatBasic into a speci�cation, which de�nes 0, succ and two en-

richments for the predecessor function and the < predicate. Now we can apply the

recursion criterion: The three previous criteria can be applied recursively, until

the set of axioms gets stable.

This eliminates the less predicate and the predecessor function. Again this removes 6

axioms and 18 lemmas from the theory.

After four reductions we are left with 38 axioms (10 axioms from the speci�cation, 28

additional lemmas), which may be relevant to the proof of the theorem. The set of relevant

axioms was reduced by a factor of almost 4. Although, this is not optimal (only twelve of

them are actually needed) it makes a big di�erence for automated theorem provers. E.g.

Otter was not able to prove the theorem with the full set of axioms within 5 minutes.

With the reduced set of axioms the time to prove the theorem was about 11 seconds.

122

4 Experimental Results

To evaluate the results of the axiom reduction we �rst tried the automated theorem provers

Otter, Protein, Setheo, Spass and

3

T

A

P on 45 noninductive (+ 7 inductive) theorems

de�ned over the DelEnum speci�cation from section 2. No theorem was invented for this

case study, all were existing theorems from a larger KIV case study. All provers were given

2 minutes of proof time on a SPARC 20. The results are summarized in Table 1. The �rst

line in the table gives the number of theorems which could be proved with the full set of

axioms, the second line gives the number for the reduced set of axioms.

Otter Protein Setheo Spass

3

T

A

P

full axiom set 35 30 34 22 9

reduced set 36 32 36 37 21

Table 1. Results for the Enum example

The numbers show that all provers bene�ted from the reduction of axioms, but there

were enormous di�erences: Very signi�cant improvements were made by Spass and

3

T

A

P ,

while the other three provers bene�ted less. The time necessary to prove theorems was

reduced by a factor of three on average.

As a second case study we considered 54 simple non inductive �rst-order theorems that

showed up during the veri�cation of a Prolog compiler in KIV ([7]). These are formulated

over a speci�cation which is built up from a lot of standard datatypes (lists, tuples, pairs

etc.).Therefore the speci�cation structure contains many di�erent sorts, but the hierarchy

of speci�cations is relatively at. The theorems are easier than the ones found in DelEnum

example, but the initial set of axioms is much larger (ca. 400). The axiom reduction is

more e�ective than in the previous example: The reduced set contains in most cases only

between 4 (!) and 25 axioms. Again the results varied largely as can be seen in table

2. Otter cannot prove more theorems, but the time to prove them decreases in several

examples from over 30 seconds to about 2.

Otter Protein Setheo Spass

3

T

A

P

full set 48 39 45 4 8

red. set 48 45 48 45 21

Table 2. Results for the compiler veri�cation example

Otter Setheo

full set 24 18

red. set 31 29

Table 3. Results for the graph example

It seems, that the syntacic criteria for using axioms built into Otter, Setheo and Pro-

teinare already are already strong enough, to avoid deduction with most irrelevant axioms

(for Otter the goal was distinguished by using the set of support strategy and binary

resolution; auto-mode, which does not distinguish the goal, can only prove 19 resp. 26

theorems). This is not too surprising, since in a at speci�cation structure using only ax-

ioms involving sorts (encoded as constants), which also occur in the theorem is already a

good approximation to the set of relevant axioms. To see, how Otter and Setheo (Protein

is very similar to Setheo, so we did not try it) would behave in general, we �nally tried

an example with the opposite characteristic: Only few sorts, but many operations. The

example is from the KIV library of standard speci�cations: There, a speci�cation Graph is

de�ned. The full set of axioms contains over 500 axioms. The 40 theorems considered were

theorems on the sets of nodes. Axiom reduction yields below 100 relevant axioms for all

123

these theorems. Table 3 gives the results. They clearly show the positive e�ect of axiom

reduction. It also shows that the syntactic criteria built into the provers is orthogonal to

exploiting the speci�cation structure with axiom reduction.

References

[1] P. Baumgartner and U. Furbach. Protein: A prover with a theory extension interface.

In Proc. 12th CADE, LNCS 804. Springer, 1994. for the newest version of Protein,

see the URL: http://www.uni-koblenz.de/ag-ki/Implementierungen/Protein/.

[2] B. Beckert, R. H�ahnle, P. Oel, and M. Sulzmann. The tableau-based theorem

prover

3

T

A

P , version 4.0. In Michael McRobbie, editor, Proc. 13th CADE, New

Brunswick/NJ, USA, LNCS 1104, pages 303{307. Springer, 1996. for the newest

version of

3

T

A

P , see the URL: http://i12www.ira.uka.de/~threetap/.

[3] C. Goller, R. Letz, K. Mayr, and J. Schumann. Setheo v3.2: Recent develop-

ments { system abstract. In A. Bundy, (ed.), 12th Int. Conf. on Automated Deduc-

tion, Springer LNCS 814. Nancy, France, 1994. for the newest version of Setheo,

see the URL: http://wwwjessen.informatik.tu-muenchen.de/forschung/reasoning/-

setheo.html.

[4] P. D. Mosses. Co� : The common framework initiative for algebraic speci�cation.

In H. Ehrig, F. v. Henke, J. Meseguer, and M. Wirsing, editors, Speci�cation and

Semantics. Dagstuhl-Seminar-Report 151, 1996. Further information available at

http://www.brics.dk/Projects/CoFI.

[5] W. Reif. The KIV-approach to Software Veri�cation. In M. Broy and S. J�ahnichen,

editors, KORSO: Methods, Languages, and Tools for the Construction of Correct

Software { Final Report. Springer LNCS 1009, 1995.

[6] W. Reif, G. Schellhorn, and K. Stenzel. Proving System Correctness with KIV 3.0.

In 14th International Conference on Automated Deduction. Proceedings, pages 69 {

72. Townsville, Australia, Springer LNCS 1249, 1997.

[7] G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The

WAM Case Study. Journal of Universal Computer Science (J.UCS), 1997. available

at the URL: http://hyperg.iicm.tu-graz.ac.at/jucs/.

[8] G. Sutcli�e, C. Suttner, and T. Yemenis. The tptp problem library. In A. Bundy,

editor, 12th International Conference on Automated Deduction, CADE-12, Springer

LNCS 814. Nancy, France, 1994.

[9] C. Weidenbach, B. Gaede, and G. Rock. Spass & otter, version 0.42. In 13th Int.

Conf. on Automated Deduction, CADE-13, Springer LNCS, 1996. for the newest ver-

sion of Spass, see the URL: http://www.mpi-sb.mpg.de/guide/software/spass.html.

[10] M. Wirsing. Algebraic Speci�cation, volume B of Handbook of Theoretical Computer

Science, chapter 13, pages 675 { 788. Elsevier, 1990.

[11] L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning, Introduction and

Applications (2nd ed.). McGraw Hill, 1992. for the newest version of OTTER, see

the URL: http://www.mcs.anl.gov/home/mccune/ar/otter/#doc.

124

