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Abstract

By a hybrid theory we mean a theory which is combined from di�erent sub-theories.

We present an approach to build-in hybrid theories into theorem provers. Our aim is

to obtain a reasoner for a hybrid theory by a possibly simple combination of reasoners

dedicated for its constituents. For this purpose we formulate su�cient criterions.

This more detailed view on building-in theories is not covered by other general results

[2, 3, 4, 7]. The technique described in [7] had to be re�ned. The method applies

to di�erent calculi. As an application we discuss the target language of the algebraic

translation of multi-modal logic and extended multi-modal logic [5].

1 Introduction

Hybrid reasoning is usually understood as the cooperation of a foreground reasoner with a

background reasoner. The foreground reasoner takes care of the general logical structure

of a formula to be proved or refuted. The background reasoner is consulted whenever

the meaning of special built-ins has to be considered. Many instances of this general

scheme are known (see [9, 7, 2] for overviews). A number of general results [2, 3, 4, 7]

form a framework for building-in theories into quit di�erent theorem proving procedures.

However, those approaches consider the built-in theory as homogeneous.

Nevertheless, in certain applications we have to take care of the internal structure of

the built-in theory. Interesting case studies for this phenomenon are the translations of

multi-modal logic (MML) or extended multi-modal logic (EML) into certain fragments

of �rst-order logic with built-in theories following [5]. The obtained built-in theories are

hybrids combining two sub-theories. One sub-theory is a de�nite theory which may, in the

case of EML, contain equality. The other sub-theory is an equational theory. Each of the

sub-theories is related to certain sublanguages of the target language of the translation.

Using a general technique outlined in [7] for each of the sub-theories may be constructed

theory reasoners that are complete for the related sublanguages. But the question was

open whether a certain combination of the reasoners for the components of a hybrid

theory is complete with respect to the whole target language. In this paper we present

two su�cient criteria which generalise the both mentioned case studies.

Following this approach a reasoner for MML has been implemented. The prototypical

implementation based on the connection method provides an automatic translation of a
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T <

(X � Y ) � Z = X � (Y � Z)(1)

1 �X = X (2)

X � 1 = X (3)

!!(X � Y ) = (!!X)!Y (4)

!!1 = ! (5)

:k(a;X); k(a; f("!X)) (6)

k(a; g(")) (7)

Figure 1: A hybrid theory

given multi-modal formula into �rst-order clause logic and the construction of the cor-

responding hybrid theory. This paper is organised as follows. In section 2 we discuss a

running example and merely illustrate and motivate some general notions. The algebraic

translation of multi-modal logic to �rst-order logic and the resulting target language and

theory give the background for this example. Section 3 is devoted to certain su�cient cri-

teria for combining theories. Finally, in section 4 we suggest directions of further research

and discuss related work. A long version of this paper will be available via the author's

home page http://www.imn.htwk-leipzig.de/ uwe.

2 An example motivating hybrid theories

The idea of reasoning in hybrid theories will be illustrated by an example. Due to space

restrictions the example is very simple. Nevertheless, it allows us to discuss characteristic

properties of a wider class of examples. Let us consider the matrix M consisting of two

clauses displayed 2. M is unsatis�able in the theory displayed in �gure 1.

The considered theory con-

:w("!X !Y !Z; a)

w("!W !f("!W ); a)

fX 7! e; Y;W 7! g("); Z 7! f("!g("))g

:k(a; Z)

:k(a;W )
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Figure 2: A matrixwith spanning hybrid theory mating

and simultaneous uni�er

sists of two theories T and <.

The union T [< is the hybrid

theory we would like to build-in

into a theorem prover. The set

of clauses M is written in matrix

form, each clause forms a row

consisting of two literals. Lower

case letters denote predicate sym-

bols (like w and k) or constants

(like " and e) and function sym-

bols (like f and g). Some binary

function symbols have been used in in�x notation (i.g. ? and !). Capital letters represent

variables (here: X , Y , Z and W ). A clause represents the universally closed disjunction

of its literals, a matrix the conjunction of its clauses. What is the general procedure for

proving the theory unsatis�ability of a matrix? It is su�cient to �nd a ground instance of

a set of copies of clauses of the matrix (of a so called ampli�cation of M) which is unsatis-

�able in the considered theory. For open (i.e. quanti�er free) theories this condition is also

necessary due the theory version of the Herbrand theorem which holds for those theories.

Such an instantiation may be given by a substitution like that in the lower half of �gure

2. The ampli�cation used in this �gure is trivial. Just one copy occurs for each clause.
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How the theory unsatis�ability of a ground instance of the ampli�cation of a matrix may

be proved? For this purpose it would be helpful to imagine the disjunctive normal form of

the ground instance. Every disjunct of this normal form is the conjunction of its literals

and must be theory unsatis�able. In order to prove this we just have to make sure that

each of those conjunctions contains a theory unsatis�able subset of literals, a so called

theory connection. For e�ciency reasons we are interested in indicating minimal theory

connections. A set of theory connections with this property is called spanning theory

mating. The property to be proved is that there is a spanning theory mating which has

a simultaneous theory uni�er. In �gure 2 the elements of a spanning theory mating are

indicated by arcs.

There are di�erent procedures checking su�cient conditions for the existence of such a

theory mating - saturation based (like theory resolution) as well goal oriented (like di�erent

theory connection calculi). The key capabilities needed in any case are �rst of all to supply

su�ciently many theory connections in order to �nd all necessary spanning theory matings

and at second to construct algorithms for �nding su�ciently many theory uni�ers. Here

is important to take in account the set of formulas which may appear as input for the

theorem proving procedure. This set will be called a query language. The �rst property

has been formalised by the notion of a set of theory connections complete with respect to a

certain query language. The second notion is that of a solvable uni�cation problem within

a set of theory connections (see [7]). Returning to our running example: if we assume that

equality does not appear in queries and that the predicate symbols of the sub-theory < will

occur only in negative literals then we get the following simple situation: either we have

to consider a pair of literals w(t

1

; t

2

);:w(r

1

; r

2

) such that the terms w(t

1

; t

2

) w(r

1

; r

2

)

are T -uni�able or we have a literal :k(t

1

; k

2

) which is <-uni�able. If in the running

example the equality sign would be admitted in queries then T -connections would be of

a much more di�cult form. They could contain unpredictably many equality literals and

the simultaneous uni�cation problem became undecidable (see [6] for a dicussion).

3 Combining theories

In section 2 we have discussed an example motivating the treatment of the background

reasoner as a hybrid system. Let us now forge precise notions from the observations made

for the target logic of the algebraic translation of multi-modal reasoning. Our goal is to

be able to construct a T [<-reasoner from given T - and <-reasoners. To be more precise.

A formula will be considered as consisting of a T -layer and an <-layer. There sets of

theory connections U

T

and U

<

for the sublanguages. The intended T -reasoner should try

to �nd an U

T

-connection if the current goal is in the T -layer and an U

<

-connection if the

current goal is in the <-layer. Under which circumstances U

T

[ U

<

is a complete set of

T [ <-connections for Q if so are U

T

for Q

T

and U

<

for Q

<

? Will the theory uni�cation

problems in U

T

and U

<

interfere or not. The last alternative would us allows to use the

uni�cation algorithms for the connections belonging to one of both layers without change.

De�nition 3.1 Let the theories T and < form a hybrid theory in the union � [� of

their signatures and let Q be a query language formulated in the signature � [�.

Then every clause C in a matrixM 2 Q contains two sub-clauses C

T

and C

<

consisting

of literals L expressed in signature � (respectively L

0

expressed in signature �). The set

of nonempty sub-clauses C

T

of M will be called the T -layer of M . Analogously will be

de�ned the <-layer of M . By Q

T

(analogouslyQ

<

) will be denoted the set of all matrices
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being the T -layer (respectively the <-layer) of a query from Q. Q

T

(analogously Q

<

)

will be called the T -layer (respectively the <-layer) of Q.

If for a matrix M 2 Q every of its clauses is the union of its T - and <-layers then M

will be said to be covered by its T - and <-layers. If every matrix M 2 Q is covered by

its T - and <-layers then query language Q is said to be covered by its T - and <-layers.

2

De�nition 3.2 Let T and < form a hybrid theory in the union � [ � of signatures.

Let Q be a query language formulated in a signature containing both signatures � and

�. Moreover, let U

T

and U

<

be sets of T -connections and of <-connections.

We say that U

T

and U

<

are separated w.r.t. Q if and only if there does not exist

connections u 2 U

T

and u

0

2 U

<

with L 2 u \ u

0

. 2

The following propositions 3.1 and 3.2 give su�cient criteria for the theory completeness

of the union of sets of theory connections that are theory complete with respect to the

constituent sub-theories of a hybrid theory. The more restricted case of the target logic

of the multi-modal logic will be covered by proposition 3.1. The other criterion covers the

case of the target logic of the algebraic translation of extended multi-modal logic. Finally

we have to formalise a property saying that the uni�cation problems in the sub-theories

do not interfere. Due to lack of space we omit this here.

Proposition 3.1 Let theories T and < expressed in the signatures � and � respectively

form a hybrid theory such that T [< is consistent. The query language Q is formulated in

the union �[� of signatures. Moreover, suppose that: (1) The sets of T -connections U

T

and of <-connections U

<

are complete w.r.t. Q

T

and Q

<

respectively. (2) In Q equality

literals occur only negative. (3) In both theories positive equality literals may occur only

within conditional equations

1

. (4) The sets of predicate symbols occurring in T [Q

T

and

<[Q

<

are disjoint. (5) If equality occurs in T [< then let T

1

be that of the sub-theories

T and < that does not contain equality and U

1

be the set of theory connections for that

sub-theory. Moreover let E be the set of equational axioms in T [<. For every u 2 U

1

and substitution � holds E [ T

1

j= �(

W

�u) if and only if T

1

j= �(

W

�u). Then the sets of

T -connections U

T

and of <-connections U

<

are separated with respect to Q. Moreover,

U

T

[ U

<

is T ;<-complete with respect to Q.

Proposition 3.2 Let theories T and < expressed in the signatures � and � respectively

form a hybrid theory such that T [< is consistent. The query language Q is formulated in

the union �[� of signatures. Moreover, suppose that: (1) The sets of T -connections U

T

and of <-connections U

<

are complete w.r.t. Q

T

and Q

<

respectively. (2) In Q equality

literals occur only negative. (3) In both theories positive equality literals may occur only

within conditional equations. (4) The sets of non-equational predicate symbols occurring

in T [Q

T

and < [ Q

<

are disjoint. (5) If T

=+

and <

=+

are the sets of non-negative

equational clauses

2

in T (and < respectively) then hold T j= <

=+

and < j= T

=+

. Then

U

T

[ U

<

is T ;<-complete with respect to Q.

4 Further and related work

Directions of further work. The algebraic translation of (extended) multi-modal

logic into fragments of �rst-order logic gave the motivation to study reasoning in hybrid

1

De�nite clauses not containing predicate symbols di�erent from equality.

2

Clauses not containing predicate symbols di�erent from equality.
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theories. We formulated criteria for obtaining complete reasoners for a hybrid theory from

complete reasoners for its components. The considered theories are given syntactically.

It would be interesting to apply analogous investigations to theories given semantically,

i.e. by classes of models. A recent case study [8] points out that theorem proving in large

theories is a hard task for theorem provers. Perhaps the view of hybrid theories may help

to make proving in those theories easier. Further question is, what can we learn for proving

in hybrid theories from combination techniques for uni�cation algorithms (see [1]).

Related work. M. Stickel extended resolution to theory resolution and showed

many improvements of resolution as special kinds of theory resolution [9]. [2] presents

an alternative view exploring possibilities of computing sets of theory connections. An

approach to theories given by classes of models has been presented by H.-J. B�urckert [4].
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