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Abstract

We prove the refutational completeness of P

mep

by proof techniques employed in

establishing the completeness of weak superposition [9]. By giving a counter-example

we show that the same approach is impossible wrt. P

eqf

. Hence, this result shows

a semantic di�erences between P

mep

and P

eqf

. We apply the result to Automated

Model Building.

1 Introduction

We study the relationship between two possible instances of the superposition calculus

[1], the equality factoring fragment, denoted by P

eqf

, and the merging paramodulation

fragment, P

mep

. We establish refutational completeness for P

mep

by methods extending

the techniques used in the completeness proof for weak superposition [9].

From this result we conclude that the model I

H

generated from the initial clause set C in

the completeness proof for superposition [1] coincides exactly with the model I

P

described

by the (in�nite) right-most maximal path P in a trans�nite E-semantic tree corresponding

to C, where C is a saturated and consistent set of clauses. On the other hand, concerning

P

eqf

we give a counter-example showing that the models I

H

and I

P

are di�erent. Moreover,

we argue that the (counter-)model I

P

is more intuitive and is therefore better suited for

the methods used in Automated Model Building.

We are interested in enlarging the known decidable fragments of equational logic. The

use of standard theorem proving calculi to decide fragments of �rst-order logic has been

rather successful. Wrt. �rst-order logic with equality, e.g. the decidability of the monadic

class with equality [2] and the Ackermann class with equality [4] could be established.

(See [7] for an overview.) In an attempt to overcome the technical di�culties connected

with equational logic it is an interesting questions how di�erent paramodulation calculi

are related. Our result provides us with an interesting distinction between the merging

paramodulation and the equality factoring fragment.

However, assume we have accomplished a decision procedure I for a certain class F of

equational logic. Suppose, we employ I on a set of input clauses C and I halts with a

saturated set of clauses C' not containing the empty clause. Provided I(C) is complete,

C' is consistent. Hence, the set C represents a (possibly in�nite) class of counter-models,

�
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but it is not possible to recognize one of these models directly: The information gained

is somehow incomplete. The aim of Automated Model Building is to provide algorithms

to overcome this incompleteness. Recently, remarkable results in this �eld have been

accomplished; c.f. R. Caferra, N. Peltier, and N. Zabel, C. Ferm�uller and A. Leitsch, or

T. Tammet. See [5] for a comprehensive overview on Automated Model Building. A better

understanding of the distinction between P

eqf

and P

mep

, respectively, provides insights

in the structure of the class of models represented by a clause set saturated wrt. one of

these inference operators. On the basis of this information it is easier to come-up with

techniques suited to represent a speci�c counter-model in human-readable form.

The second motivation stems from implementation issues. Let C be a fragment of clause

logic, s.t. all positive clauses are decomposed

1

. Suppose the inference system I decides C.

Extending I by a splitting rule directly yields a model building procedure for C, provided

all negative literals are selected by I. Although such a procedure would use back-tracking,

computational experiments provide evidence that back-tracking algorithms can|in some

cases|do better than back-tracking free procedures. Recently, there have been very e�-

cient implementation of the superposition calculus (SATURATE by H. Ganzinger/L. Bach-

mair and R. Nieuwenhuis/P. Nivela; SPASS by C. Weidenbach and others). Although this

approach seems rather elegant, it has the disadvantage that the counter-model constructed

depends directly on the inference operator employed.

2 Notions and Results

We assume familiarity with the concept of semantic trees, especially trans�nite E-semantic

trees, and maximal consistent trees mct(C), c.f. [8, 6, 9]. To simplify notation, we assume a

�xed set of input clauses C. We write I(C) to denote the closure of all inference I 2 I. We

assume that tautologies are deleted wrt. I and that the redundancy criteria embodied in

I is a semantic, contrary to a proof-theoretic one

2

. Either P

eqf

or P

mep

are employed as

inference operators. Whenever C is closed under I, C is called saturated. We write mct(C)

to denote the maximal consistent E-semantic tree associated with I(C). Sometimes we

write

^

T for mct(C). Every node I in a trans�nite E-semantic tree uniquely speci�es a spe-

ci�c path P . By collecting all literals adjoined to the edges in P a partial E-interpretation

is de�ned. To simplify notion we denote this partial interpretation by I; no confusion

can arise from this simpli�cation. In the rest of the abstract we assume � to indicate a

complete simpli�cation ordering (CSO), for a precise de�nition please see [3].

Paramodulation calculi are best classi�ed by regarding the restrictions posed on the

paramodulation inference rule:

C

1

_ s�t D

1

_ u[s]�v

C

1

_D

1

_ u[t]�v

If (S1) s � t and (S2.a) (s�t) � L for all literals L in C

1

, then the clause C = C

1

_s�t may

be viewed as conditional rewrite rule with positive and negative conditions. Additionally

one might require (S2.b) s � w for all terms w in (C)

�

. To optimize the e�ect a rule

1

Literals L

1

; L

2

are called decomposed if L

1

; L

2

are variable-disjoint.

2

By a semantic redundancy criteria we simply refer to a redundancy criteria embodying the classical

simpli�cation operators as subsumption deletion, demodulation, deletion of tautologies, etc.. L. Bachmair's

spoke at the KGC'97 (held from August 25{29, in Vienna) about a more technical redundancy criteria

that makes the inclusion of either merging paramodulation or equality factoring, super
uous.
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should only be applied to a maximal atom: (S3) (u[s]�v) � L for all literals L in D

1

or

even to the maximal term thereof (S4) u[s] � v. Paramodulation calculi which ful�ll all

four conditions (S1){(S4) are called superposition calculi. The ordered literal strategy [6]

imposes only restrictions (S1), (S2.a), and (S3).

M. Rusinowitch established refutational completeness for a paramodulation rule satisfying

(S1), (S3), and (S4) called weak superposition. The proof method used is an extension of

the ordinary completeness proof by semantic trees to trans�nite E-semantic trees. As �

can be of order type larger than ! it is necessary to use trans�nite induction to establish

completeness. The proof method is based on reductio ad absurdum. The existence of a

non-void maximal consistent E-semantic tree is shown to be impossible for an unsatis�able

set of clauses C. The contradiction is derived by a case analysis on the possible extensions

of an assumed maximal consistent path � in

^

T .

It is well-known that superposition without further inference rules is incomplete when tau-

tologies are deleted, cf. [1]. Therefore two additional rules were introduced by L. Bachmair

and H. Ganzinger:

De�nition 2.1 (Equality Factoring).

C

1

_ s�t _ u�v

C

1

� _ t� 6�v� _ u��v�

where � is a m.g.u. of s and u, and (i) t� 6� s�, and (ii) s��t� is maximal in C

1

� _

s��t� _ u��v�.

De�nition 2.2 (Merging Paramodulation).

C

1

_ s�t D

1

_ w�z _ u�v[l]

C

1

� _D

1

� _ u��z� _ u��v[t]�

where � is the composition �� of the m.g.u. � of s and l and � = mgu(u�;w�). Moreover

(i)s��t� is strictly maximal in C

1

� _ s��t�, (ii)u��v[l]� is strict maximal in D

1

� _

w��z� _ u��v[l]�, and (iii) u� � z�, and v[l]� 6� z�, (iv) l is not a variable.

To restore completeness it is necessary to add either merging paramodulation or equality

factoring to the inference system. We denote the instance of superposition calculus includ-

ing equality factoring by P

eqf

. Equality factoring is mainly an extension of factoring to

equations, though in a quite clever way. This rule has less expressive power than merging

paramodulation. Merging Paramodulation is best seen as an inference step that merges a

set of di�erent equations fs�t

i

: 1 � i � kg to one equation s�t that expresses the meaning

of this set The fragment including merging paramodulation is denoted by P

mep

.

To deal with the restriction (S4) M. Rusinowitch introduced the notion of quasi-failure

nodes, i.e. an extension of failure nodes. Let R be an extension node of

^

T . Equations true

in R can be used to rewrite a clause C 2 C to some clause C

0

. R is a quasi-failure node if

R(C

0

) = F. Contrary to this approach, L. Bachmair and H. Ganzinger use induction on

the clause ordering �

C

to generate a Herbrand interpretation I

H

that serves as a model of

C, whenever C is consistent: Suppose E

C

0

is de�ned for all ground instances C

0

�

C

C. Let

R

C

be the set

S

C�

C

C

0

E

0

C

, and I

H

= R

�

C

where R

�

is the smallest congruence containing

R. If A is the maximal atomic formula in C and C is false in I

C

, then E

C

= fAg.

Otherwise E

C

is the empty set. We say that C generates A, if E

C

= fAg.
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The structure of a clause falsi�ed by a quasi-failure node R has the following form:

(�) C

1

_ s�u

1

_ � � � _ s�u

m

_ s�u

m+1

� � � _ s�u

k

where s�u

i

!

I

s�t, for 1 � i � m and s�u

i

!

I

s�v

i

, m < i � k, and s does not occur in

C

1

. I denotes the partial E-interpretation de�ned by the right-most maximal path � in

^

T up-to R. We say that (*) produces the equation s�t.

Suppose I is the only extension node of the maximal path � in

^

T and D be the clause

falsi�ed by I. One step in the completeness proof for weak superposition consists in the

simulation of a sequence of paramodulation steps starting with D and (�). In construction

this sequence it is necessary to use non-maximal equations in (*) for paramodulation steps,

otherwise it wouldn't be possible that the conclusion E is smaller and has the same truth

value as D. Hence, there is no hope to meet restriction (S3).

In the presence of merging paramodulation we can deduce the following clause from (*):

(��) C

1

_ s�t _ s�u

m+1

� � � _ s�u

k

Now the dropping of restriction (S3) is no longer necessary.

Theorem 2.3 P

mep

is provable complete via proof techniques that employ trans�nite E-

semantic trees.

Corollary 2.4. Suppose a saturated and consistent set of clauses C,

^

T is the maximal

consistent trans�nite E-semantic tree associated with C. Then the Herbrand model I

H

generated by the model generation process (concerning C), is exactly representable by the

I

P

, the model obtained from an (in�nite) right-most maximal path in

^

T .

The corollary follows as the notions of generated and produced clauses coincide. In the

sequel we show that the approach that was successful wrt. P

mep

is doomed to fail wrt. P

eqf

.

We give a counter-example that shows that I

P

and I

H

are di�erent in this context. For

the rest of this abstract we assume C to be a consistent and saturated clause set.

Example 2.5. We interpret � as LPO with precedence h �

f

g �

f

f �

f

c �

f

a �

f

b.

The literals in C are ordered as h(c) � g(a) � g(b) � f(a) � f(b) � c � a � b. Let

C = ff(a)�a; g(b)�b; h(c)�f(a) _ h(c)�g(b); g(b)6�f(a) _ h(c)�f(a); : : :g be a part of a

saturated set of clauses

3

The model-generation algorithm gives us the rules R = ff(a)�a; g(b)�b; h(c)�g(b); : : :g

and therefore the partial E-interpretation I

H

= ff(a)�a; g(b)�b; h(c)�b; h(c)�g(b); : : :g.

Note that C = f(a)6�g(b) _ h(c)�f(a) does not generate h(c)�f(a), as C is true in I

C

.

The corresponding part of the right-most path P in mct(C) can best be represented by a

small �gure.

3

Although we can superpose h(c)�f(a) _ h(c)�g(b) on g(b)6�f(a) _ h(c)�f(a), we can derive no other

clause than the tautology g(b)6�f(a) _ g(b)�f(a) _ h(c)�f(a)
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�

� �

�

�

�

�

�

h(c)�a

P

P

P

P

P

h(c)6�a

K

(

(

(

(

(

(

(

(

(

(

h(c)�b

P

P

P

P

P

h(c)6�b

J

ff(a)�a; g(b)�bg

Remark, the right successor of J is not a quasi-failure node. Although h(c)�g(b)!

J

h(c)�b

and h(c)�f(a)!

J

h(c)�a, J does not know whether h(c)�a is true or false.

Now suppose there exists an literal A (below �) reducible by h(c)�a. We cannot use D =

h(c)�g(b) _ h(c)�f(a) to simulate this reducibility by a superposition step, as h(c)�f(a)

is not strict maximal wrt. C. Therefore the induction step of the completeness proof is

blocked by this situation. In the presence of merging paramodulation it would be possible

to rewrite the clause h(c)�g(b) _ h(c)�f(a) to h(c)�a _ h(c)�b. Then the completeness

proof could be carried out as usual.

The example shows that the models I

H

and I

P

are signi�cantely di�erent. This di�erence

stems from the fact that we use quasi-labelings to de�ne mct(C). On the other hand it is

impossible to drop the notion of quasi-failure nodes when one wishes to satisfy condition

(S4). However, an other way to overcome the obstacle would be to one re�ne the notion

of E-interpretations de�ned by a path P s.t. P assigns a truth value to h(c)�a. But an

attempt to re�ne E-interpretations must lead to an unintuitive notion of semantic trees: A

clause C investigated at a node higher in

^

T , can transform a failure-node to a non-failure

node, hence back-tracking on the semantic tree can be necessary. It follows that it is

impossible to prove the completeness of P

eqf

by transitive E-semantic trees.

In the introduction we have brie
y described an ad-hoc method to extend any paramod-

ulation inference rule system to a back-tracking model building procedure for a class F of

clause logic. Suppose, F meets the restriction already given. Then, our results recommend

that if one is tempted to use this ad-hoc approach P

eqf

is not a good choice. By the above

example we have seen that the clause set C (saturated wrt. P

eqf

) can represent a model I

that we would conceive as unnatural: I is generated by literals L that are maximal on the

term level, though not maximal on the semantic level, where term equivalences are taken

into account

Proposition 2.6. Whenever one wishes to use superposition as underlying inference sys-

tem for a back-tracking model building procedure, choose P

mep

to saturate the initial clause

set C.

Although we have given an example that shows the distinction between the Herbrand

models generated wrt. P

eqf

and P

mep

, respectively, it remains to establish an elusive

characterization of the semantic distinction between those fragments. We are con�dent to

come up with a result in this direction soon.
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