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Abstract: It is widely recognized that equational logic is simple, (relatively) decidable,

and (relatively) easily mechanized. But it is also widely thought that equational logic

has limited applicability because it cannot handle subtypes or partial functions. We show

that a modest stretch of equational logic e�ectively handles these features. Space limits

preclude a full theoretical treatment, so we often sketch, motivate and exemplify.

1 Introduction

First order equational logic (EL) has signi�cant conceptual, theoretical and computational

advantages, to the extent that I suggest it should be used if it can be used for a given

application. But there are many applications where ordinary �rst order EL does not

seem su�ciently expressive. This paper describes an extension that greatly expands its

expressiveness and applicability, at little cost to its advantages.

EL was untyped at birth [3], but later extended to many sorts in various ways, of

which [1] was perhaps �rst and [5] notationally simplest; extensions to overloaded function

symbols and conditional equations were also important; see [10] for technical and historical

details. Section 2 quickly reviews many sorted EL, and Section 3 covers the next important

extension, order sorted EL [11], including an inductive proof for a typical partial function.

A �nal section discusses a further extension to hidden EL.

2 Many Subsorted Equational Logic

Overloaded many sorted EL (MSEL) permits overloaded operation symbols, which will

be important for the work of this paper. This is based on sorted sets [5]: Given a set S,

whose elements are called sorts, an S-sorted set A is a family of sets A

s

, one for each

s 2 S. Then an S-sorted signature � is an (S

�

� S)-sorted set f�

w;s

j hw; si 2 S

�

� Sg.

The elements of �

w;s

are called operation symbols of arity w, sort s, and rank hw; si;

in particular, � 2 �

[];s

is a constant symbol ([] denotes the empty string). � is a ground

signature i� �

[];s

\�

[];s

0
= ; whenever s 6= s

0

and �

w;s

= ; unless w = []. By convention,

j�j =

S

w;s

�

w;s

and �

0

� � means �

0

w;s

� �

w;s

for each w; s. Similarly, union is de�ned

by (�[�

0

)

w;s

= �

w;s

[�

0

w;s

. A common special case is union with a ground signature X,

for which we use the notation �(X) = � [X.

A �-algebra M consists of an S-sorted set also denoted M , plus an interpreta-

tion of � in M , which is a family of arrows i

s

1

:::s

n

;s

: �

s

1

:::s

n

;s

! [M

s

1

:::s

n

! M

s

] for

each rank hs

1

:::s

n

; si 2 S* � S, which interpret the operation symbols in � as actual

operations on M . For constant symbols, the interpretation is given by i

[];s

: �

[];s

! M

s

.

Usually we write just � for i

w;s

(�), but if we need to make the dependence on M ex-

plicit, we may write �

M

. M

s

is called the carrier of M of sort s. Given �-algebras

M;M

0

, a �-homomorphism h : M ! M

0

is an S-sorted arrow h : M !M

0

such that
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h

s

(�

M

(m

1

; :::;m

n

)) = �

M

0

(h

s

1

(m

1

); :::; h

s

n

(m

n

)) for each � 2 �

s

1

:::s

n

;s

and m

i

2 M

s

i

for

i = 1; :::; n, and such that h

s

(c

M

) = c

M

0

for each constant symbol c 2 �

[];s

.

Given an S-sorted signature �, the S-sorted set T

�

of (ground) �-terms is the

smallest set of lists of symbols that contains the constants, �

[];s

� T

�;s

, and such that

given � 2 �

s

1

:::s

n

;s

and t

i

2 T

�;s

i

then �(t

1

: : : t

n

) 2 T

�;s

. We view T

�

as a �-algebra by

interpreting � 2 �

[];s

as just �, and � 2 �

s

1

:::s

n

;s

as the operation sending t

1

; : : : ; t

n

to the

list �(t

1

: : : t

n

). Then T

�

is called the �-term algebra. Note that because of overloading,

terms do not always have a unique parse. The following is the key property of this algebra:

Theorem 1: (Initiality) Given any signature � and any �-algebra M , there

is a unique �-homomorphism T

�

!M .

Given � and a ground signature X disjoint from �, we can form the �(X)-algebra T

�(X)

and then view it as a �-algebra by forgetting the names of the new constants in X; let us

denote this �-algebra by T

�

(X). It has the following universal freeness property: Given

a �-algebra M and a : X ! M , there is a unique �-homomorphism a : T

�

(X) ! M

extending a, in the sense that a

s

(x) = a

s

(x) for each x 2 X

s

and s 2 S.

A �-equation consists of a ground signature X of variable symbols (disjoint from

�) plus two �(X)-terms of the same sort s 2 S; we may write such an equation abstractly

in the form (8X) t = t

0

and concretely in the form (8x; y; z) t = t

0

when jXj = fx; y; zg

and the sorts of x; y; z can be inferred from their uses in t and in t

0

. A speci�cation

P is a pair (�; A), consisting of a signature � and a set A of �-equations. Conditional

equations are similar, but we omit them here.

A �-algebra M satis�es a �-equation (8X) t = t

0

i� for any a : X ! M we have

a(t) = a(t

0

) in M , written M j=

�

(8X) t = t

0

. A �-algebra M satis�es a set A of �-

equations i� it satis�es each one, written M j=

�

A. The class of all algebras that satisfy

A is called the variety de�ned by A. Given sets A and A

0

of �-equations, let A j= A

0

mean M j= A

0

for all A-models M . Then we have the following:

Theorem 2: (Initiality) T

�;A

= T

�

=�

A

is an initial (�; A)-algebra, where

�

A

is the �-congruence generated by ground instances of equations in A.

And again we get the free algebras T

�;E

(X).

The word \abstract" in \abstract algebra" means \uniquely de�ned up to isomor-

phism" and initial algebras are easily shown abstract in this sense. Moreover, the word

\abstract" in \abstract data type" has exactly the same meaning, since an ADT is de�ned

to be the isomorphism class of initial algebras of a speci�cation [12]; this is no mere pun,

but a signi�cant fact about software engineering. Another sign we are on the right track

is that any computable algebra has an equational speci�cation, as �rst proved by Bergstra

and Tucker [2]; moreover, this speci�cation tends to be simple and intuitive in practice.

(M is reachable i� the unique �-homomorphism T

�

!M is surjective.)

Theorem 3: (Computability) Given a reachable computable �-algebra M

with � �nite, there is a �nite speci�cation P = (�

0

; A

0

) such that � � �

0

,

such that �

0

has the same sorts as �, and such that M is �-isomorphic to T

P

viewed as a �-algebra.

The following simple result is much used in equational theorem proving, but rarely stated:

Fact: (Theorem of Constants) Given a signature �, a ground signature X

disjoint from �, a set A of �-equations, and t; t

0

2 T

�(X)

, then A j=

�

(8X) t =

t

0

i� A j=

�[X

(8;) t = t

0

.

It says we can regard the universally variables as new constants instead.
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2.1 Basic OBJ Notation

OBJ gives a notation which has been implemented to permit proving things about such

speci�cations [8, 13]; this is su�ciently powerful that it can be used as a programming

language for small applications, and as a prototyping language for larger applications.

OBJ modules to be interpreted loosely, i.e., that are to have the whole variety as their

semantics, begin with the keyword theory (or th) and close with the keyword endth.

Between these two keywords come declarations for sorts and operations, plus variables

and equations. For example, the following OBJ code speci�es the theory of automata:

th AUTOM is

sorts Input State Output .

op s0 : -> State .

op f : Input State -> State .

op g : State -> Output .

endth

Any number of sorts can be declared following sorts (or equivalently, sort), and oper-

ations are declared with their arity between the : and the ->, and their sort following

the ->. The keyword pair obj...endo indicates that initial semantics is intended. For

example, the Peano natural numbers with addition are speci�ed by

obj NATP is

sort Nat .

op 0 : -> Nat .

op s_ : Nat -> Nat [prec 2].

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + N = N .

eq s M + N = s(M + N).

endo

In \mix�x" operator declarations, underbar characters the expression before the colon,

the are place holders showing where the operation's arguments should go; hence successor

is pre�x and addition is in�x above. The low number 2 in the annotation \[prec 2]"

indicates that successor is strongly binding.

2.2 Term Rewriting

Term rewriting is the most important implementation for EL. The rewrite relation of

a set of equations E is de�ned as follows: a term t rewrites to a term t

0

in one step,

written t ) t

0

, i� some subterm of t matches the left side of some equation in E and

t

0

is the result of replacing that subterm in t by the corresponding substitution instance

of the right side of the equation; this requires that no equation in E has variables in

its left side that are not in its right side. Then t rewrites to t

0

i� there exist rewrites

t ) t

1

) :::t

n

= t

0

, in which case we write t

�

) t

0

. OBJ implements term rewriting with

the command red t, the result of which is t

0

such that r

�

) t

0

with t

0

reduced, in the

sense that no equation applies to it; in general, there may be no such t

0

or many; OBJ

just produces one if it exists. A term rewriting system is canonical i� terminating and

Church-Rosser; this allows deciding equality of terms. But since every rewrite sequence

proves equality of its initial and �nal terms, canonicity need not shown before trying a

rewrite, despite the fact that some EL systems require such a check. Many systems have

been speci�ed, implemented and prototyped in OBJ3, and many proofs have also been

done [13].
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3 Partiality, Subsorts and Retracts

It seems little known that overloaded order sorted algebra with retracts gives a rigorous

theory for many kinds of partial function, and that reasoning about such functions can

be mechanized in OBJ3 [13]. This section sketches overloaded order sorted EL (OSEL),

including retracts [11, 6, 15] and their implementation and use in OBJ3, with examples.

Things are much the same as for MSEL, modulo some technicalities; therefore we shall be

rather informal. An OSEL signature adds an ordering relation to the sort set of a MSEL

signature, and an OSEL algebra M respects that relation, in that if s � s

0

then M

s

�M

s

0

,

and if � is in both �

w;s

and �

w

0

;s

0

with w � w

0

then the corresponding operations of

M agree on M

w

. OSEL homomorphisms must also respect the subsort relation in an

appropriate sense. Then the term algebra construction carries over and gives an initial

algebra. But we usually assume regular signatures, so that terms have a unique parse of

least sort [11]; otherwise subterms must be annotated with sort information. Adding the

mild technical condition of local �ltration yields coherent signatures, for which equations

and their satisfaction, as well as congruences and quotients, go much as before. We get

the analog of Theorem 2, so that both loose and initial speci�cations carry over, as do

free algebras and the Theorem of Constants; incoherent signatures do not seem to occur

in natural examples. The OBJ3 notation and implementation handle OSEL much the

same as MSEL, modulo some subtle points about order sorted rewriting that we omit

here [7, 14]. OSEL can specify not just computable functions, but also semi-computable

functions.

3.1 Retracts

Untyped logics are too permissive, allowing many expressions that make no sense. But

strongly typed logics like OSEL can be too strict. For example, given the following spec-

i�cation for stacks, (\pr Nat" indicates that OBJ3's module for builtin natural numbers

NAT is \protecting" imported, i.e., restricting the initial model of the whole spec to the

signature of NAT gives the initial model of NAT.)

obj STACK is sorts Stack NeStack .

pr NAT .

subsort NeStack < Stack .

op empty : -> Stack .

op push : Nat Stack -> NeStack .

op pop_ : NeStack -> Stack .

op top_ : NeStack -> Nat .

var N : Nat . var S : Stack .

eq pop push(N,S) = S .

eq top push(N,S) = N .

endo

then terms like

top pop push(7,push(3,empty))

do not parse, because pop delivers the wrong sort of argument to top, even though after

evaluation, top actually gets push(3,empty), which has sort NeStack.

Retracts solve this problem by transforming ill-formed terms over a signature � into

well-formed terms over a signature �




which extends � with some new operation symbols

called retracts and some new equations: whenever s � s

0

in �, then �




adds r

s

0

;s

: s

0

! s

to � and E




adds r

s

0

;s

(x) = x to E, where x has sort s. Parsing must also be extended to
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give the \bene�t of the doubt" to terms like that above which could potentially become

well formed after reduction, by �lling the gaps between actual sorts and required sorts

with retracts. For example, the above term is parsed as

top r:NeStack>Stack(pop push(7,push(3,empty)))

which OBJ3 indeed reduces to 3, using the retract equation as a rewrite rule. On the

other hand, reductions of truly erroneous terms contain retracts and serve as informative

error messages. OSEL with retracts combines the exibility of untyped logic with the

error checking of strong typing.

The following result, proved in [11], shows that adding retracts is \safe" in the sense

of not interfering with free models of the original speci�cation. Faithfulness is a very weak

condition that holds, for example, if (�; E) has no models where some carriers are empty

and others are not, or if E is Church-Rosser; all specs in this paper are faithful.

Theorem 4: (Conservative extension) If � is coherent and (�; E) is faith-

ful, then for each X, the natural homomorphism T

�;E

(X) ! T

�




;E



(X) is

injective.

Given a spec�ciation P = (�; E), we often add \error supersorts" s

0

for each old sort s;

then a partial operation of sort s is de�ned to have target sort s

0

. Adding retracts then

gives three layers, one for the original P , one for terms of old sorts with retracts, and the

third for supersort terms. Equations with a retract on the left side can \trap" retracts to

produce useful new behaviors; this is much used below.

3.2 Sort Constraints

Sort constraints are declarations that a certain term has (or should have) a certain sort,

under certain conditions. The theory is developed in [11, 14]; although sort constraints

would handle the problems of this paper, they have not yet been fully implemented.

3.3 A Partial Speci�cation and a Partial Proof

Subtraction on the natural numbers is a typical partial function, with x � y de�ned i�

y � x. We specify this as an operation to the error supersort ENat of Nat, using retract

equations to do the usual reductions on the domain y � x; note that each operation on

Nat is overloaded with a counterpart on ENat.

obj PNAT is sorts Nat ENat EBool .

subsort Nat < ENat .

subsort Bool < EBool .

op 0 : -> Nat .

op s_ : Nat -> Nat [prec 2].

op s_ : ENat -> ENat [prec 2].

op _+_ : Nat Nat -> Nat .

op _+_ : ENat ENat -> ENat .

op _*_ : Nat Nat -> Nat .

op _*_ : ENat ENat -> ENat .

op _<=_ : Nat Nat -> Bool .

op _<=_ : ENat ENat -> EBool .

op _-_ : Nat Nat -> ENat .

vars X Y : Nat . var E : ENat .

eq 0 + X = X .

eq (s X) + Y = s(X + Y) .

eq 0 * X = 0 .

eq (s X) * Y = (X * Y) + Y .
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eq X <= 0 = X == 0 .

eq 0 <= X = true .

eq (s X) <= (s Y) = X <= Y .

eq r:ENat>Nat(X - 0) = X .

cq r:ENat>Nat(s X - s Y) = X - Y if Y <= X .

endo

Now we do some calculations. Of course, +, * and <= behave just as expected. Since

subtraction has value sort ENAT, retracts can never be added to an expression involving

it unless it is parsed as sort NAT; this is the purpose of the operation [_] below. The

notation open indicates that material up to close is added to the current module (in this

case PNAT), and then forgotten.

open .

op [_] : Nat -> Nat .

var X : Nat . eq [X] = X .

red s 0 - s s 0 .

red 0 *(s 0 - s s 0) .

red [s s 0 - s 0] .

red [s 0 - s s 0] .

close

The �rst term is irreducible because its sort is ENAT and there are no equations of that sort;

the second is irreducible for the same reason. The third reduction gives s 0 as expected,

while the value of the fourth is r:ENat>Nat(s 0 - s s 0), since the term is forced to

the sort Nat. Because of the overloading and the retract equations, Theorem 4 does not

guarantee conservation here. However, we can check directly that these additions cannot

interfere with the free subalgebra T

�;E

.

Now we use induction to prove the equation

(8l;m; n) n� (l +m) = n� l �m ;

assuming its left side is de�ned, i.e., l +m � n, using an OBJ \proof score" in the style

of [8]. Theorem proving for partial functions is harder than calculation. The key point,

already seen in our calculations, is to represent terms of sort ENat that should have sort

Nat by retracts, and add equations to manipulate them.

The new constants l, m, n come from using the Theorem of Constants to handle

universal quanti�ers. As usual for non-trivial proofs, some \lemmas" are needed; the �rst

equation below is a simple result about the natural numbers, easily proved separately by

induction. The second equation is more interesting because it involves subtraction, but it

too is easy. The third equation is the most interesting, since it involves a retract. In fact,

it involves a retract on each side, and therefore cannot violate conservation; its purpose

is to get a useful normal form for retract expressions. The problem is that OBJ does not

know, and cannot be told, that a symbolic expression like n� l has sort Nat. Of course we

can tell it that l � n, but this is not enough to lower the sort. Therefore we use expressions

with retracts, like r

ENat;Nat

(n� l). (openr below indicates that the following material will

be added to the previous module and retained.)

openr . *** constants plus lemmas

ops l m n : -> Nat .

vars L M N : Nat .

cq N <= s M = true if N <= M .

cq s N - M = s(N - M) if M <= s N .

eq r:ENat>Nat(s E) = s r:ENat>Nat(E) .

close

Now we do the base case. The assertions l = 0 and m = 0 are again just facts about the

naturals, proved from the assumption l +m � n = 0. The operator == checks whether or

not the reduced forms of its two argument terms are syntactically identical; if they are,

then it returns true, and we know it has proved the terms equal.
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open . *** base case

eq n = 0 .

*** now since l + m <= 0 = true

eq l = 0 .

eq m = 0 .

red n -(l + m) == (n - l) - m .

close

For the induction step, we �rst state the induction hypothesis, and then two consequences

of it. The second, m � n� l, follows from the domain constraint in the hypothesis, that

l +m � n, but must be expressed with a sort constraint, for reasons described above.

open . *** induction step

*** induction hypothesis

eq n -(l + m) = (n - l) - m .

eq l + m <= n = true .

*** thus

eq l <= n = true .

eq m <= r:ENat>Nat(n - l) = true .

red s n - (l + m) == (s n - l) - m .

close

All this code has been executed, and the two reductions above indeed give true; therefore

our result is proved (modulo the lemmata). We have also speci�ed category theory, where

the composition operation is partial, and done some proofs using retracts. It would not

be hard to support this style of reasoning with a preprocesser for OBJ.

4 Further Hidden Research

The quest to stretch equational logic in other useful ways continues. The way with which

I am most familiar is called \hidden equational logic" or \hidden algebra." It handles

states along with associated features of current interest in computer science, including

concurrency, nondeterminism, distribution and inheritance. This adventure is still at an

early stage, but some promising results can be found in [9] with further references. Many

related adventures are under way, including a dual adventure called coalgebra [16], and the

new CafeOBJ industrial strength OBJ implementation, which directly implements hidden

algebra and includes a powerful support environment [4].
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