
Structured Formal Veri�cation of a Fragment

of the IBM 390 Clock Chip (Extended Abstract)

Alfons GESER

�

WSI, U T�ubingen

Wolfgang K

�

UCHLIN

�

WSI, U T�ubingen

We present a simple and powerful method for formal veri�cation of hardware, with

stress on the use of symmetries. We focus on gate-level descriptions of hardware which are

given in the form of a netlist. Signals are modelled by propositional logic. In our approach

the veri�cation problem breaks down in three steps:

1. Compilation of the netlist into modules of a typed term graph rewriting system.

Sequential behaviour is modelled by deterministic Mealy automata.

2. The formal requirements are rewritten into a unique normal form, which is a term

graph representing a propositional formula.

3. The propositional formula is evaluated as a functional decision diagram [8, 7]. If

the result represents 1 then the answer is \yes", else a counterexample may be

constructed mechanically on request.

We illustrate these steps at a case study: a fragment of the IBM 390 Clock Chip [11,

Section 2.8].

1 Netlists and Their Compilation to Term Graph Rewriting

Systems

It pays to have at one's disposal a language wider than propositional logic in order to

express hardware behaviour. We chose term graph rewriting [10, 5] for two reasons: Like

term rewriting [6] it is expressive and easy to use, moreover the structure of hardware can

be mapped faithfully into term graphs.

Recall that a term graph structure is a set of nodes, a set of arrows between nodes,

and a set of function symbols, such that the following properties hold. Each function

symbol is assigned a �xed nonnegative integer, its arity. A node may be labelled by a

function symbol, otherwise it is called a variable node. The number of incoming arrows to

a node must equal 0 for a variable node, and must equal the arity of the label of the node

otherwise.

A term graph now is a node together with a term graph structure; a term graph

rewriting rule is a pair of nodes together with a term graph structure.

The fact that a node o is labelled by f and has incoming arrows from nodes i

1

; : : : ; i

n

may be expressed by an assignment o = f(i

1

; : : : ; i

n

). So a set of assignments forms a

term graph structure.

�

Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingen, Sand 13, D-72076 T�ubingen,

fgeser,kuechling@informatik.uni-tuebingen.de

73



The translation from netlists to term graphs is quite natural: A net (i.e. a point that

carries a signal) in the hardware translates to a node in the term graph; an output net o

of a box (i.e. a primitive component) whose inputs are the nodes i

1

; : : : ; i

n

translates to

an assignment o = f(i

1

; : : : ; i

n

) where f is a symbol for the Boolean function realized by

the box output.

For instance assume that one wants to model the AND by two NANDs. The meaning

of and(x; y) is adequately given by the term graph rewriting rule

and(x; y)! nand(z; z) where z = nand(x; y);

as opposed to the term rewriting rule and(x; y)! nand(nand(x; y); nand(x; y)) which may

also be viewed as a term graph rewriting rule but which needs 3 nodes labelled by \nand"

rather than 2.

As one assignment is created per box output, the size of the created term graph is

obviously linear in the size of the hardware. This is in contrast to proper term rewriting

where the created term may be of exponential size. Linearity is most important in view

of big circuits. For instance our fragment has approximately 580 nets and 170 
ip
ops.

2 Compilation of Combinatorial and Sequential Hardware

Combinatorial hardware is modelled as usual by Boolean vector functions which are spec-

i�ed by constructor based, explicit term graph rewriting rules. \Explicit" here says that

0; 1 must not occur at the left hand side of a rewrite rule. Explicitness preserves expressive

power since every propositional function can be represented by a propositional formula.

To model sequential behaviour of hardware, one has to introduce a form of discrete

timing. We stick to the well-known concept of deterministic �nite-state machine, more

accurately itsMealy automaton variant, to model sequential behaviour of hardware. Recall

that a Mealy automaton is given by three �nite sets, S ; I ;O , whose elements are called

states, inputs, and outputs, respectively; an element s

init

2 S called the initial state; a

function � : S � I ! S , the step function; and a function � : S � I ! O , the output

function.

We encode states, inputs, and outputs each as Boolean vectors. The pins of the chip

become the inputs and outputs of the state machine. The storing elements of the chip are

D-type 
ip
ops. Assuming all 
ip
ops numbered consecutively, the present state of the

chip is given by the enumeration of all nets incident with 
ip
op Q outputs; the subsequent

state by the enumeration of their D inputs. So the state transition function is virtually

just another name for the combinatorial part of the state machine, and so easily speci�ed

as a term graph rewriting rule.

For instance a two-bit counter (with no inputs) is speci�ed as follows:

�(mk

S

(q

1

; q

0

); mk

I

)! mk

S

(d

1

; d

0

)

where d

0

= sum(q

0

; 0; 1); c

1

= carry(q

0

; 1; 0); d

1

= sum(q

1

; 0; c

1

)

Here mk

S

; mk

I

are the function symbols that construct Boolean vectors for states, inputs,

respectively. sum; carry denote auxiliary functions for the sum and carry bits, respectively,

of a full adder circuit that may be de�ned by appropriate rewriting rules.

74



3 FDD evaluation

A requirement is formalized as a Boolean valued term graph which contains no free vari-

ables but of type Boolean. Auxiliary function symbols of any type may be introduced by

rewriting rules, and used freely within formal requirements. In a �rst pass, the require-

ment is rewritten by the given term graph rewriting rules to a normal form, i.e. a term

graph that cannot be rewritten further.

By the explicit form of rewrite rules, the normal form is a term that consists only of

propositional variables and functions. Thus the problem has shrunk to a propositional

validity problem, which is solved in the second pass of the procedure. Numerous methods

that solve the validity problem are known, e.g. Davis-Putnam (see e.g. [13]) or binary

decision diagrams [2]. We use a naive implementation of functional decision diagrams [8,

7]. As term rewriting, when applied to Boolean connectives, performs much worse than

propositional solvers, we exclude the respective term rewriting rules from the rewriting

process.

4 Case Study

The fragment of the chip that we veri�ed is concerned with the collection of set and reset

pulses in order to get a synchronized stop signal for a set of chips that constitute the 390

microprocessor.

We are given an informal requirement stating that after a pulse of length one on any

of some 22 lines, each of some 30 output lines goes HIGH; after a pulse of length two it

goes LOW.

A netlist of the chip fragment is given in IBM's netlist language VIM, by means of the

usual propositional connectives and D-type 
ip
ops. In the given netlist there are moreover

multiple clocks and bi-directional lines which we drop to simplify our presentation.

Inspection of the chip fragment shows that for each input there is an identical stage

that determines whether a pulse of length one or two has been issued at this input. The

results are OR-ed for all inputs; they yield set and reset signals, respectively, for a RS

type 
ip
op. Each output of the fragment is preceded by a separate 
ip
op that bu�ers

the output of the RS type 
ip
op.

Intuitively it is fairly clear that the speci�cation should hold. The main problem with

the veri�cation is complexity caused by repetition. Let us now brie
y discuss how the

requirements can be formalized in our framework.

For instance one may claim that each of the 30 outputs of the chip carries the same

signal. Then by symmetry the remaining propositions need only speak about one such

output.

In fact the proposition is not true for all states: If the bu�ering 
ip
ops for the various

outputs carry di�erent values then the proposition is violated. Note that the common

signal must pass through the bu�ering 
ip
op before it arrives at the corresponding output.

But the proposition is true for all states that are reachable by transitions from the initial

state.

It is known that reachability can be expressed as a �xpoint. But how can one quantify

over all reachable states in a logic as poor as ours? We prove the proposition for the initial

state and show that its validity for an arbitrary state entails its validity for the next state.

75



Given that P is a proposition on states these can be encoded as

P (s

init

) � (P (s)) P (�(s; i))) where

s = mk

S

(s

n�1

; s

n�2

; : : : ; s

0

); i = mk

I

(i

m�1

; i

m�2

; : : : ; i

0

)

where � is the in�x symbol for AND.

It is more di�cult to prove symmetry in the inputs since there is only equivalence up to

renaming of inputs. We pursued the following way. First we specify for each input number

1 � k � m� 1 a map �

k

: S ! S which we intend to describe a bisimulation of the given

machine with the machine where the �rst and the k-th input are exchanged. Intuitively,

to each 
ip
op a�ected at some moment by the �rst input we assign the 
ip
op a�ected

at that moment by the k-th input. Admittedly this requires some inspection. With that

we claim bisimulation and equality of outputs:

(s

init

=

S

�

k

(s

init

)) � (�

k

(�(s; i)) =

S

�(�

k

(s); i

0

)) � (�(s; i) =

O

�(�

k

(s); i

0

))

where

s = mk

S

(s

n�1

; s

n�2

; : : : ; s

0

); i = mk

I

(i

m�1

; i

m�2

; : : : ; i

0

);

i

0

= mk

I

(i

m�1

; : : : ; i

k+1

; i

0

; i

k�1

; : : : ; i

1

; i

k

)

Here bitwise equality of states and of outputs are assumed speci�ed as Boolean functions

=

S

;=

O

, respectively, in the usual way.

In the same spirit one may design the claim that the sequence 010 (011) on the �rst

input yields a set (reset) signal, and the claim that the absence of such a sequence on each

input yields no set (reset) signal.

We have made tests for each proposition and obtained results in the order of mag-

nitude of a minute on a SPARC 10 workstation. It turned out that for a realistic FDD

computation one needs plenty of RAM.

5 Conclusion and Related Work

Our approach to hardware veri�cation requires only standard knowledge in term graph

rewriting, propositional reasoning, and automata theory. In particular, no knowledge in

temporal logic is needed. We have shown that in spite of its weak expressive power this

framework supports symmetry reasoning and safety properties.

The work reported here is an extension of B�undgen/K�uchlin's method to verify the

Sparrow processor [3, 4], and its application to industrial hardware. We carry over the

spirit, the plan, and much of the experience of this work. The following are new:

1. the rigorous use of term graph rewriting,

2. the encoding of sequential behaviour by a state transition function,

3. the two-step rewriting/evaluation approach.

Among the implemented systems that also combine rewriting with built-in proposi-

tional reasoning we are aware of PVS [9] and NQTHM [1].

76



References

[1] Robert S. Boyer and J. Strother Moore. Proof-checking, theorem-proving, and pro-

gram veri�cation. Contemporary Mathematics, 29:119{132, 1984.

[2] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Dia-

grams. ACM Comp. Surveys, 24(3), Sept. 1992.

[3] Reinhard B�undgen and Wolfgang K�uchlin. Term rewriting as a tool for hardware and

software codesign. In Jerzy Rosenblit and Klaus Buchenrieder, editors, Codesign |

Computer-Aided Software/Hardware Engineering, pages 19{40. IEEE Press, 1995.

[4] Reinhard B�undgen and Wolfgang K�uchlin. Veri�cation of the Sparrow processor. In

ECBS'96. IEEE Press, 1996.

[5] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In van Leeuwen

[12], chapter 5, pages 193{242.

[6] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In van Leeuwen

[12], chapter 6, pages 243{320.

[7] Udo Kebschull. Verhaltensbasierte und spektrale Logiksynthese mehrstu�ger Schalt-

netze unter Verwendung von Bin�arb�aumen. PhD thesis, Universit�at T�ubingen, D,

June 1994.

[8] Udo Kebschull, Endric Schubert, and Wolfgang Rosenstiel. Multilevel logic synthe-

sis based on functional decision diagrams. In Proc. European Design Automation

Conference (EURO-DAC), 1992.

[9] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining

speci�cation, proof checking, and model checking. In Rajeev Alur and Thomas A.

Henzinger, editors, Proc. 8th Conf. Computer Aided Veri�cation (CAV), LNCS 1102,

pages 411{414. Springer, 1996.

[10] M. Ronan Sleep, M. J. Plasmeijer, and Marko C. J. D. van Eekelen, editors. Term

Graph Rewriting: Theory and Practice. John Wiley & Sons, 1993.

[11] Wilhelm G. Spruth. The design of a microprocessor. Springer, 1989.

[12] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B

(Formal Models and Semantics). Elsevier - The MIT Press, paperback edition, 1994.

[13] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a distributed propo-

sitional prover and its application to quasigroup problems. J. Symbolic Computation,

21:543{560, 1996.

77


