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1 Introduction

Over the years, interactive theorem provers have built a large body of veri�ed computer

mathematics. The ILF Mathematical Library aims to make this knowledge available

to other systems.

There are several reasons for such a project. One of them is economy. Veri�cation of

software and hardware frequently requires the proof of purely mathematical theorems. It

is obviously ine�cient, to use the time of experts in the design of software or hardware

systems to prove such theorems. This should be handed over to mathematicians.

Currently, each interactive theorem prover has its own library of mathematical theo-

rems. And in each of these systems, all theorems are proved from scratch. Again, this is

obviously ine�cient. Another reason for presenting a collection of mathematical theorems

in a uni�ed framework is safety. It should facilitate the veri�cation of theorems in the

library of one system by other systems.

A third reason is dynamics of research. New interactive theorem provers should obtain

the possibility to show their usability for real-world problems without having to reprove

elementary mathematical facts.

Last but not least it is hoped that reproving theorems in a uniform mathematical

library will be considered as a challenge to the development of automated theorem provers.

The combination of theorems from di�erent sources will pose some foundational prob-

lems. We shall not address these problems here.

The ILF Mathematical Library is clearly related with the QED project [1]. How-

ever | in contrast with this project | no proof checking is intended. Instead, emphasis

is given to proof presentation, proof documentation and to the retrieval of formulas.

2 Representation of the Mizar Mathematical Library

The �rst library of theorems to be connected with the ILF system is the Mizar Mathe-

matical Library. The Mizar Project [8] is a long-term e�ort lead by Andrzej Trybulec at

the Bialystok Branch of Warsaw University with the goal of providing software to support

a working mathematician in proving theorems. Its kernel is a proof veri�er for a high-level
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logic language. It is used to verify the Mizar library, a collection of mathematical papers,

articles, written in the Mizar Language. This library has evolved over more than 10 years

and consists of more than 20.000 theorems. It can be accessed through WWW servers

in Poland and Canada. The ILF Mathematical Library augments these servers with

extended search functions and | above all | with the possibility to deliver selected parts

of the Mizar Mathematical Library in a format which is easy to parse. Its address is

http://www-irm.mathematik.hu-berlin.de/~ilf/mathlib.html.

Parsing an original Mizar article requires parsing the whole part of the library on

which it is based. Reservation of variables, rede�nition of concepts and hidden parameters

are powerful tools that facilitate writing and reading of Mizar articles. The ILF Mathe-

matical Library preserves these tools for the selection of theorems from the library but

resolves them in the internal presentation. Hence, parsers for other systems can analyze

Mizar theorems obtained from ILF in a formula-by-formula way.

This is possible because formulas in the ILF Mathematical Library have been

obtained from a format which is used internally by the Mizar system when an article

is checked. This internal format has been made accessible by Czeslaw Bylinski from the

Mizar group. It distinguishes between di�erent uses of the same symbol and adds hidden

parameters. Moreover it contains intermediate proof steps which have been generated by

the Mizar system. However, it does not preserve the formulas as written by the author.

ILF tries to recover these original formulas by reversing the transformations performed

by Mizar and by matching the results against the formulas in the Mizar article.

3 Extracting Proof Problems

In order to select theorems from the Mizar Mathematical Library, predicates and

functors must be classi�ed as either "well known", "interesting" or "out of scope". Only

de�nitions and theorems containing at least one interesting concept and no concept which

is out of scope will be presented initially. Also the level of detail of proof presentation can

be determined.

Selected parts of the library can be restricted at will. It is also possible to add all

lemmas and de�nitions needed to prove a certain theorem or all theorems which make use

of a given theorem in their proof. E.g. a certain theorem can be selected together with all

those formulas which are referred to in its proof. Then | in principle | other theorem

provers can reprove the selected theorems from the quoted assumptions.

The contents of the web page with the selected de�nitions, theorems and proofs can be

delivered as a L

A

T

E

X source �le. In the same way, the data structure from which that page

was produced can be obtained. So far it will be send in a format that should be understood

by most Prolog and Lisp parsers. This data structure describes a block structured proof

in the ILF standard proof format [5]. This format is also used by the ILF Mail Server.

It is described in the documentation of this server

1

. Other formats may be supported in

the future.

1

http://www-irm.mathematik.hu-berlin.de/~ilf-serv
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4 Set-theoretic Proof Problems

Since current automated theorem provers do not permit the declaration of types, we

extracted proof problems only from the Mizar article Boolean Properties of Sets [9]. In

this article, set is the only type which is used, hence the resulting proof problems can be

considered as �rst order problems by ignoring the type information.

This article contains 97 theorems. The Boolean operators on sets are de�ned and their

basic properties are proved. The proofs use axioms of Grothendieck-Tarski set theory

and other theorems proved in this article. For each of these 97 theorems in the article a

theory was built consisting of the de�nitions and theorems which have been referenced in

its proof.

When a functor or predicate is de�ned in a Mizar article, it is checked whether some

standard properties (like commutativity or associativity) are immediate consequences of

the de�nitions. Henceforth, these properties can be used inMizar articles without explicit

reference | even without reference to the de�nition itself. Also the de�nition of the empty

set is not explicit in the Mizar Mathematical Library. Therefore, it was necessary

to augment the set of used formulas by these properties of the occurring functors and

predicates which may have been used tacitly. Consequently, there can be also axioms in

the proof problems which are not necessary for the proof.

5 Reproving Mizar Theorems with Automated Theorem

Provers

The ILF System (\Integrating Logical Functions") [4] is a Prolog based environment that

integrates an interactive proving system with the control of automated provers like Setheo

[6], Spass [10] Otter [7] and Protein [2] and a natural language presentation of proofs

as L

A

T

E

X or HTML documents.

ILF translated the proof problems into input �les for the provers CM

2

, Gandalf

3

,

Otter, Setheo and Spass. If necessary, �rst order formulas were transformed into

clauses and equality axioms were added.

Then each of the provers was launched with a CPU limit of 15 seconds on a Sparc

20 workstation

4

. Without special tuning, they solved between 47 and 76 of the proof

problems. The total number of proof problems solved by any of the prover is 81. Most of

these have been solved within the �rst few seconds of the prover run.

Two of the 97 proof problems were known unsolvable because their axiomatization

according to the theorems and de�nitions referenced in theMizar proof was not complete.

As it later turned out, under certain circumstancesMizar allows the tacit use of de�nition

expansion in proofs.

Since conventional clausal normal form

5

was used in the experiments, proving theorems

with a complex logical structure | e.g. logical equivalences | was most di�cult. In some

cases, the inherent logical complexity was hidden in term structures. E. g. simple equalities

involving the symmetric di�erence operation can require complex resolution proofs when

they have to be proved using the axiom of extensionality and the de�nition of symmetric

di�erence.

2

A PTTP/Setheo-like prover implemented and integrated in Prolog

3

A winner in the CADE-14 system competition

4

Setheo ran distributed on a number of machines of which the Sparc 20 was the fastest

5

As opposed to de�nitional or nested normal forms
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Most of the problems considered become easy for the automated theorem provers, when

involved concepts are �rst expanded using their de�nitions. Some \di�cult" problems are

then even proved by the usual simpli�cations performed at normal form translation. A

similar experience, with the suggestion of a strategy | controlled de�nition instantiation

| is discussed in [3]. This emphasizes that the use of automated theorem provers should

be preceded by a domain speci�c preprocessing of the input theory.

Another experiment distributed the proof problems over the local network. It used

several provers in a competitive way. However, in most cases were a proof was found

the run time of the prover was so short compared with the time needed for preprocessing

and scheduling that the launch sequence of the provers determined the winner of the

competition.

6 Proving More Theorems

Mizar has built-in arithmetic of integers. Hence, in order to reprove theorems on numbers,

sequences etc. it will be necessary to extend automated theorem provers with the ability

to evaluate arithmetic expressions.

However, the main obstacle to reprove more theorems from theMizar Mathematical

Library will be the type system. This type system is order-sorted and polymorphic.

There is a largest type called set. Given a type t, a variable x of this type and a

predicate p(x), the types of all x satisfying p can be formed as a subtype of t. Thus,

each type could be described as a �nite collection of predicates which select objects of this

type from the most general type set. It should be noted, that p may contain other object

variables beside x. There are no type variables. Types must be proved to be non-empty

in order to make use of their de�ning properties.

In terms of set theoretical concepts, types denote classes. Some of these classes denote

sets. In fact, by the collection principle, if all objects of type t are members of some object

set a, then there is some set b such that

8 (x : set) (x 2 b$ 9 (y : t) (x = y)) .

We call such a t a small type with extension b. For most real-world applications small types

are su�cient. Especially, when t

1

; t

2

are small types with extensions b

1

; b

2

respectively,

then there is a small type function (b

1

; b

2

) consisting of all functions from b

1

into b

2

. On

the other hand, there are important mathematical concepts which cannot be described by

small types. Examples are the class of all functions or the class of all groups.

Equality is built-in as a predicate with arguments of type set. Since each type is

a subtype of set, arguments of arbitrary di�erent types can occur on both sides of the

equality sign.

7 Typed Problems for First Order Provers

The naive transformation of Mizar proof problems into �rst order problems, replacing

quanti�cation of typed variables by relativizations of quanti�ers, leads to the use of proof

search to check type correctness. But for the Mizar type system, there is an algorithm

to determine the least type of a term. Given this least type, it is straightforward to

check whether it is legal to instantiate a typed variable with this term. The restriction to

legal variable instantiations can reduce the search space for automated theorem provers
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considerably. We mention that the Spass theorem prover treats unary predicates as

types. Other �rst order theorem provers can be used successfully for problems formulated

in a typed language by encoding type information into terms so that only well-typed

uni�cations can be performed during the proof process. But the full bene�t of search

space reduction cannot be realized unless the terms used to encode type information, are

treated in a speci�c way by the prover.

InMizar, the smallest type of a term can depend on the types of the arguments. E.g.

when R

1

; R

2

are relations, the intersection R

1

\ R

2

has the type relation, though \ is

declared as an operator with values of type set only. It is an open problem to modify �rst

order theorem provers in order to deal with this kind of type checking.

8 Conclusion

The reported experiments show, that most theorems proved interactively in [9] can be

proved automatically by state-of-the-art theorem provers in a very short time. This in-

dicates, that automated theorem provers can be a useful support for interactive theorem

proving. On the other hand, we described some limitations of current automated provers

which have to be overcome in order to facilitate their application to more complex prob-

lems.
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