
Testing for Renamability to Classes of Clause Sets

�

(Extended abstract)

Albert Brandl Christian G. Ferm�uller Gernot Salzer

y

Technische Universit�at Wien, Austria

Abstract

This paper investigates the problem of testing clause sets for membership in classes

known from literature. In particular, we are interested in classes de�ned via renaming:

Is it possible to rename the predicates in a way such that positive and negative literals

satisfy certain conditions? We show that for classes like Horn or OCC1N [5] the

existence of such renamings can be decided in polynomial time, whereas the same

problem is NP-complete for class PVD [5]. The decision procedures are based on

hyper-resolution; if a renaming exists, it can be extracted from the �nal saturated

clause set.

1 Introduction

Within the last decade the classical decision problem for predicate logic was revisited

in the frame of clause logic. Instead of deciding the validity of �rst order formulas in

prenex normal form|usually without function symbols|the aim was now to decide the

satis�ability of clause sets with a rich functional structure. Many classes of clause sets|

with and without equality|were shown to be e�ciently decidable using re�nements of

resolution, paramodulation and superposition [1, 5, 6, 8], subsuming most of the classical

results. For some classes it was possible to go even further: the output of the decision

procedure can be used to derive �nite representations of models [3, 4].

When implementing decision procedures one encounters an additional problem: before

actually submitting a clause set to the decision procedure for a class CL, one has to check

that the clause set satis�es all criteria characterizing CL. Applying a decision procedure

to clause sets outside of its scope might yield uninterpretable results or lead to non-

termination. For many classes this check is quite simple as the criteria can be tested

locally one literal or one clause at a time. However, some classes involve global conditions

like renaming;

1

a na��ve algorithm would consider all possible renamings, whose number is

exponential in the number of di�erent predicate symbols.

�

Supported by FWF grant P11624-MAT.

y

Communicating author. Address: Technische Universit�at, Karlsplatz 13/E185, A-1040 Wien/Austria.

E-mail: salzer@logic.at.

1

Renaming a predicate symbol P here means mirroring the polarity of P throughout the whole clause

set by replacing all occurrences of :P (� � �) by P (� � �) and all occurrences of P (� � �) by :P (� � �). The

renamed clause set is similar to the original one in many respects; e.g., they are equivalent with respect to

satis�ability.

34

Example 1 To �nd out whether a given clause set is Horn one has simply to check

that the number of positive literals per clause is zero or one. Obviously this test is

linear in the size of the clauses. However, it is more complex to check whether a clause

set can be made Horn by renaming some of its predicate symbols. E.g., the clause set

ffP (x); Q(x)g; f:P (y); :Q(y)gg is not Horn, but can be made Horn by renaming P (or

alternatively Q), yielding the set ff:P (x); Q(x)g; fP (y); :Q(y)gg.

In this paper we investigate three instances of the renamability problem. After �xing

some notions and notations in section 2, we describe in section 3 a technique|introduced

by Harry R. Lewis in [10]|for testing renamability to Horn.

2

In 4 we show that the

renamability problem for OCC1N can be decided by a related method in polynomial

time. Section 5 proves that the renamability problem for PVD is NP-complete. The �nal

section discusses how suitable renamings can be extracted from the information generated

by the decision procedures.

2 Basic Notions

For basic notions like clause, literal, etc. we refer the reader to textbooks like [2].

The dual of a literal L is denoted by L

d

and is de�ned by P (� � �)

d

= :P (� � �) and

(:P (� � �))

d

= P (� � �). The propositional skeleton of L is denoted by skel(L) and is de�ned

as skel(

(:)

P (� � �)) =

(:)

P , where the second occurrence of P is interpreted as propositional

variable. skel is extended to clauses and sets of clauses in the obvious way. The set of

variables occurring in a term, atom, literal or clause E is denoted by var(E). By occ(v;E)

we denote the number of occurrences of variable v in E. For a clause C, the subset of its

positive literals is denoted by C

+

, the subset of its negative literals by C

�

.

A renaming is a set of predicate symbols. The application of a renaming � to a

literal L, denoted by �(L), is L

d

if the predicate symbol of L occurs in �, and L otherwise.

The result of renaming a clause C = fL

1

; : : : ; L

n

g by � is �(C) = f�(L

1

); : : : ; �(L

n

)g.

Similarly, a clause set C = fC

1

; : : : ; C

n

g is renamed to �(C) = f�(C

1

); : : : ; �(C

n

)g. For

every modelM of a propositional clause set, �

M

denotes the set of propositional variables

that are true in M.

The depth �(t) of a term t is de�ned as �(t) = 0 if t is a constant or variable, and as

�(f(t

1

; : : : ; t

n

)) = 1+maxf�(t

i

) j 1�i�ng for a functional term. For an atom or literal we

de�ne �(

(:)

P (t

1

; : : : ; t

n

)) = maxf�(t

i

) j 1�i�ng. If C is a clause then �(C) is an abbrevi-

ation for maxf�(L) j L 2 Cg. The maximal depth of occurrence �

max

(v; t) of a variable v

in a term t is de�ned by �

max

(v; v) = 0 and �

max

(v; f(t

1

; : : : ; t

n

)) = 1 + maxf�

max

(v; t

i

) j

v 2 var(t

i

); 1�i�ng. Analogously, we de�ne the minimal depth of occurrence �

min

(v; t).

These de�nitions are extended to atoms and literals in the obvious way.

3 Testing for Renamability to Horn

De�nition 1 A clause set, C, is Horn i� each of its clauses contains at most one positive

literal. C is renamable to Horn if there is a renaming, �, such that �(C) is Horn.

2

We thank one of the referees for pointing out to us that there exists an impressive body of literature

on renamability to Horn. In particular, we learned that we re-discovered Lewis' proof. (We apologize for

not having done our homework.)

35

The importance of the Horn fragment of clause logic is well known. It is also well

known that clause sets that are not Horn can often be converted to Horn by systematically

renaming the predicate symbols (see example 1). The fact that renamability to Horn is

decidable in polynomial, even linear time is well documented in the literature (see e.g. [7, 9{

11]). However, since we feel that our proof technique is best explained for the case of

clause sets renamable to Horn we briey re-describe Lewis' idea [10] of converting the

renamability problem into a satis�ability problem for sets of propositional Krom clauses.

The signi�cance of the method lies in the fact that it can be adapted to many similar

problems; see e.g. section 4. We illustrate the method by an example.

Example 2 Let C be the set containing the clauses C

1

= fP (x); Q(x); R(x)g, C

2

=

f:P (y); Q(y)g, C

3

= f:R(x)g, and C

4

= f:P (x);:Q(x)g. Obviously C

1

is not Horn,

therefore C is not Horn. Of course C

1

can be renamed to Horn, e.g. by applying the

renaming � = fP;Qg. �(C

2

) and �(C

3

) are Horn, too, but �(C

4

) is not. Therefore we

have to `backtrack' and to try another candidate for a renaming to Horn. The question is

whether we can compute an appropriate renaming � without backtracking. Observe that

C

1

imposes the following restriction on � if �(C

1

) is to be Horn:

either P 2 � or Q 2 �; and either P 2 � or R 2 �; and either Q 2 � or R 2 �.

This just expresses the fact that for every pair of literals in a Horn clause at least one of

the two literals has to be negative. Similarly, we obtain the following condition for the

only pair of literals in C

2

:

either P =2 � or Q 2 �.

Since C

3

is singleton there is no corresponding condition: all singleton clauses are Horn

by de�nition. For C

4

we obtain:

either P =2 � or Q =2 �.

The conditions are simultaneously satis�able. This can easily be seen by representing

them as a set of propositional Krom

3

clauses. If we abbreviate the proposition `P 2 �'

by P and similarly `P =2 �' by :P (interpreting the predicate symbol as a propositional

variable) we obtain the clause set

�(C) = ffP;Qg; fP;Rg; fQ;Rg; f:P;Qg; f:P;:Qgg :

A model for �(C) is given by setting Q and R to true and P to false. It corresponds to

the renaming � = fQ;Rg. In fact, the set of models for �(C) represent all renamings �

for which �(C) is Horn.

For a clause C = fL

1

; : : : ; L

n

g, let �(C) be the set ffskel(L

i

); skel(L

j

)g j i 6= jg of

propositional Krom clauses. For a clause set C, let �(C) =

S

C2C

�(C).

Proposition 1 (Lewis [10]) For every clause set C, �

M

(C) is Horn i� M is a model

of �(C).

The satis�ability of propositional Krom clause sets can be tested in polynomial time

(e.g. by computing all resolvents). Moreover, �(C) is of at most quadratic size with respect

to the size of C and can easily be computed in polynomial time. Therefore renamability to

Horn can be tested in polynomial time. More importantly, the renamings can be e�ciently

computed by hyper-resolution and splitting (see section 6).

3

A Krom clause is a clause containing at most two literals.

36

4 Testing for Renamability to OCC1N

De�nition 2 A clause set, C, is in class OCC1N i� every clause C 2 C satis�es the

following conditions:

(OCC1) occ(v; C

+

) = 1 for all v 2 var(C

+

);

(OCC2) �

max

(v; C

+

) � �

min

(v; C

�

) for all v 2 var(C

�

) \ var(C

+

).

C is renamable to OCC1N if there is a renaming, �, such that �(C) is in OCC1N.

In [5] it is shown that the satis�ability of clause sets in OCC1N can be decided by

hyper-resolution. Therefore the class of clause sets which are renamable to OCC1N is

decidable, too: just apply the decision procedure to the renamed clause set.

Like in the case of renamability to Horn we encode the class membership conditions

for each candidate clause by propositional Krom clauses. For a clause C we de�ne three

corresponding sets of propositional Krom clauses:

{ �

1

(C) = ffskel(L)g j L 2 C; 9v: occ(v; L) > 1g,

{ �

2

(C) = ffskel(L); skel(M)g j L;M 2 C; L 6=M; var(L) \ var(M) 6= ;g,

{ �

3

(C) = ffskel(L); skel(M)

d

g j L;M 2 C; 9v: �

max

(v; L) > �

min

(v;M)g.

For a clause set C, let �(C) =

S

C2C

(�

1

(C) [�

2

(C) [�

3

(C)).

�

1

encodes the fact that all non-linear literals have to be negative in a clause belonging

to a clause set in OCC1N. More exactly, the sign of a literal L where occ(v; L) > 1 for

some variable v has to be renamed if L is positive and must remain unchanged if L

is negative. �

2

takes care of the fact that no two di�erent positive literals may share

variables. �

3

corresponds to condition OCC2.

One can show that �(C) is satis�able i� C is renamable to OCC1N. We even have:

Proposition 2 For every clause set C, �

M

(C) is in OCC1N i� M is a model of �(C).

Again, renamability to OCC1N can be decided in polynomial time due to the fact that

�(C) is a polynomially bounded set of propositional Krom clauses.

5 Testing for Renamability to PVD

De�nition 3 A clause set, C, is in class PVD i� every clause C 2 C and every vari-

able v 2 var(C

+

) satis�es the following condition:

(PVD1) v 2 var(C

�

), and �

max

(v; C

+

) � �

max

(v; C

�

).

C is renamable to PVD if there is a renaming, �, such that �(C) is in PVD.

In [5] it is shown that the satis�ability of clause sets in PVD can be decided by hyper-

resolution. Therefore the class of clause sets which are renamable to PVD is decidable,

too: just apply the decision procedure to the renamed clause set.

4

4

In fact, [5] de�nes OCC1N and PVD to include also the clause sets renamable to these classes, and

uses semantic clash resolution with settings as decision procedure. Finding a suitable setting corresponds

to choosing an appropriate renaming. Our view is justi�ed by practice as it is easier to use a single �xed

theorem prover for hyper-resolution and to do the renaming as a pre-processing.

37

We show that for a given clause set, condition PVD1 can be encoded by propositional

clauses, which are satis�able i� the clause set is renamable to PVD. We start by illustrating

the main idea by an example.

Example 3 Consider the clause C = fP (f(x); y); Q(f(x); f(y)); :R(x; f(y))g. C does

not satisfy condition PVD1 because of variable x which occurs at depth 1 in the positive

part and only at depth 0 in the negative part. To satisfy PVD1, at least one of the two

literals containing x at maximal depth, P (f(x); y) and Q(f(x); f(y)), has to be `moved'

to the negative part. This can be achieved by renaming either P or Q (or both). If we

abbreviate the proposition `predicate symbol P gets renamed' by just P (interpreting the

predicate symbol as a propositional variable), the renaming requirement for x reads P _Q,

or fP;Qg in set notation. A similar requirement can be stated for y: either Q has to be

renamed (making Q(f(x); f(y)) negative), or R is not renamed (retaining the negative

literal :R(x; f(y))), which corresponds to fQ;:Rg.

If we denote an interpretation by the set of all atoms true in it, the models of the

clause set ffP;Qg; fQ;:Rgg are given by fPg, fQg, fP;Qg, fQ;Rg, and fP;Q;Rg. Each

model describes a renaming which yields a clause in PVD when applied to C. E.g., the

model fQ;Rg corresponds to renaming Q and R and leaving P unchanged.

In general the clause set consists of several clauses. To encode all restrictions we have

to construct one propositional clause per variable and per clause.

For a variable v occurring in a clause C, let C

v

be the set of all literals in C containing

an occurrence of v of maximal depth, i.e., C

v

= fL 2 C j v 2 var(L); �

max

(v; L) =

�

max

(v; C)g. For a clause set C, let �(C) = fskel(C

v

) j C 2 C; v 2 var(C)g.

Proposition 3 For every clause set C, �

M

(C) is in PVD i� M is a model of �(C).

To determine the complexity of the renamability problem for PVD, observe that the

length of �(C) is polynomially related to the length of C. By proposition 3, the renamability

problem reduces to the satis�ability problem for propositional CNFs. On the other hand,

the satis�ability problem can also be reduced to the renamability problem for PVD: given

an arbitrary propositional CNF, interpret each propositional variable as a unary predicate

symbol and add some dummy variable x as argument. The resulting clause set is renamable

to PVD i� the CNF is satis�able. Therefore both problems are equivalent, and we conclude

that the renamability problem for PVD is NP-complete.

6 Extracting Suitable Renamings

In the last three sections we showed that the requirements for a clause set to be renamable

to Horn, OCC1N, or PVD, can be encoded as propositional clauses. The clause set is

renamable i� the propositional clauses are satis�able. Moreover, the propositional models

are exactly the admissible renamings.

One way to test the satis�ability of a propositional clause set C is to saturate C under

hyper-resolution; call the saturated set hyper(C). C is satis�able i� hyper(C) does not

contain the empty clause; in this case hyper(C) can be used to �nd all models of C.

Suppose for the moment that C itself is Horn. Then hyper(C) is just the set of (singleton

sets of) atoms that are true in any model of C (plus, of course, the initial negative clauses).

Thus, hyper(C) is a representation of a model of C.

If C is not Horn we can still compute such a representation by replacing some non-

singleton hyper-resolvent in hyper(C) by one of its literals and saturating the resulting

38

clause set again. By iterating this process of splitting and saturating we obtain an `atomic

representation' of a model of C. This procedure for building models is described for general

�rst order clauses in detail in [3, 4]. If C is Krom and propositional as in sections 3 and 4

there are only polynomially many di�erent (hyper-)resolvents of C, and the model building

procedure terminates in polynomial time.

Acknowledgments

We would like to thank the referees for drawing our attention to relevant literature as well

as for correcting some important typos.

References

[1] L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simpli�cation as

a decision procedure for the monadic class with equality. In G. Gottlob, A. Leitsch,

and D. Mundici, editors, Computational Logic and Proof Theory (Third Kurt G�odel

Colloquium 1993), LNCS 713, pages 83{96. Springer-Verlag, 1993.

[2] C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, 1973.

[3] C. G. Ferm�uller and A. Leitsch. Model building by resolution. In 6th Workshop on

Computer Science Logic (CSL'92), LNCS 702, pages 134{148. Springer-Verlag, 1993.

[4] C. G. Ferm�uller and A. Leitsch. Decision procedures and model building in equational

clause logic. Logic Journal of the Interest Group in Pure and Applied Logics (IGPL),

1998. To appear.

[5] C. G. Ferm�uller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods for the

Decision Problem. LNCS 679 (LNAI). Springer-Verlag, 1993.

[6] C. G. Ferm�uller and G. Salzer. Ordered paramodulation and resolution as decision

procedure. In A. Voronkov, editor, Logic Programming and Automated Reasoning

(LPAR'93), LNCS 698 (LNAI), pages 122{133. Springer, 1993.

[7] Jean-Jacque H�ebrard. A linear algorithm for renaming a set of clauses as a Horn set.

Theoretical Computer Science, 124:343{350, 1994.

[8] W. H. Joyner. Resolution strategies as decision procedures. JACM, 23(1):398{417,

1976.

[9] Hans Kleine B�uning. Existence of simple propositional formulas. Information Pro-

cessing Letters, 36:177{182, 1990.

[10] Harry R Lewis. Renaming a set of clauses as a Horn set. Journal of the ACM,

25(1):134{135, 1978.

[11] Heikki Mannila and Kurt Mehlhorn. A fast algorithm for renaming a set of clauses

as a Horn set. Information Processing Letters, 21:269{272, 1985.

39

