
On the representation of parallel search in theorem proving

Maria Paola Bonacina

�

Department of Computer Science { The University of Iowa

Abstract

This extended abstract summarizes two contributions from ongoing work on pa-

rallel search in theorem proving. First, we give a framework of de�nitions for parallel

theorem proving, including inference system, communication operators, parallel search

plan, subdivision function, parallel strategy, parallel derivation, fairness and propaga-

tion of redundancy for parallel derivations. A notion of a parallel strategy being a

parallelization of a sequential strategy, and a theorem establishing a general relation

between sequential fairness and parallel fairness are also given. Second, we extend our

approach to the modelling of search to parallel search, covering inferences (expansion

and contraction), behaviour of the search plan, subdivision of the search space and

communication among the processes. This model allows us to study the behavior of

many search processes on a single marked search graph. In the full paper, we plan to

extend our methodology for the measure of the complexity of search in in�nite spaces

to parallel search, and apply it to obtain results in the comparison of strategies.

Introduction

Various approaches to parallel/distributed theorem proving have been proposed (e.g.,

[4, 10]). In order to evaluate how promising they may be, many of these methods have

been implemented, and experiments have been reported. Empirical evaluation based on

experiments, however, evaluates the implementations, rather than the theorem-proving

strategies, so that it would be desirable to complement it with a machine-independent

evaluation of the strategies. A main obstacle for this is represented by the in�nite search

spaces of theorem-proving problems, and the lack of mathematical tools to analyze strate-

gies applied to in�nite problems. In recent work [6], we began exploring an approach to the

modelling of search and the measurement of the complexity of search in theorem proving.

This extended abstract reports preliminary results on the extension of this approach to

parallel theorem proving.

We are interested primarily in forward-reasoning, contraction-based strategies, such

as those originated from rewriting-based methods on one hand, and the resolution-para-

modulation paradigm on the other. In previous work [4], we analyzed how coarse-grain

parallelism, that is, parallel search, seems to be most suitable for these strategies. Parallel

search means that multiple deductive processes search in parallel the space of the problem.

Approaches to parallel search di�er in how they di�erentiate and compose the activities of

the processes. Some subdivide the search space among them (e.g., Clause-Di�usion [5, 3]),

others assign them di�erent search plans (e.g., Team-Work [9] and [7]), and these two can

also be combined. In all approaches, communication is needed to preserve completeness

�

Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419, USA,

bonacina@cs.uiowa.edu. Supported in part by the NSF with grants CCR-94-08667 and CCR-97-01508.

22

and combine the results of the searches. We consider parallel search with subdivision,

although most notions can be generalized to using di�erent search plans.

In the following, �rst we de�ne precisely what are a parallel search plan, a parallel

strategy and a parallel derivation. Since most previous works in parallel deduction were

concerned with the description and implementation of speci�c methods, these de�nitions

seem largely new. Then, we extend the model of [6] with communication and the subdivi-

sion of the search space. A key feature of [6] is the modelling of contraction. Similar to

contraction, communication and subdivision make the search space dynamic. Thus, this

extension reinforces the e�cacy of our approach for modelling dynamic search spaces.

Parallel strategy: inference, communication, parallel search plan

The �rst component of a theorem-proving strategy is its inference system. Following [6],

we characterize an inference rule as a function f

n

, which takes an n-tuple of premises

and returns a set of clauses to be added and a set of clauses to be deleted: f

n

:L

n

�

!

P(L

�

) � P(L

�

), where � is a signature, L

�

the language of clauses on �, and P(L

�

)

its powerset. An inference rule f

n

is an expansion inference rule (e.g., resolution) if it

generates new clauses with no deletions

1

: for all �x 2 L

n

�

, �

2

(f

n

(�x)) = ;. Given a well-

founded ordering on clauses (L

�

;�), an inference rule f

n

is a contraction inference rule

(e.g., simpli�cation by equations) if it delete clauses and possibly replace them by smaller

ones: for some �x, �

2

(f

n

(�x)) 6= ;, and whenever �

1

(f

n

(�x)) 6= ;, for all ' 2 �

1

(f

n

(�x)) there

is a 2 �

2

(f

n

(�x)) such that � '. A typical choice for � is the multiset extension of a

complete simpli�cation ordering on the atoms. If f

n

does not apply to �x, f

n

(�x) = (;; ;).

The inference system I and the set of clauses S de�ning the problem, determine the

set of all clauses derivable from S by I: S

�

I

=

S

k�0

I

k

(S), where I

0

(S) = S, I(S) =

S [f'j ' 2 �

1

(f('

1

; : : : ; '

n

)) for f 2 I; '

1

; : : : ; '

n

2 Sg, and I

k

(S) = I(I

k�1

(S)) for all

k � 1. This set is called the closure of S with respect to I.

In addition to an inference system I, a parallel strategy features a systemM of commu-

nication operators. The basic communication operators are send and receive. We de�ne

them in such a way that communication steps are homogeneous with inference steps, and

can be included explicitly in the derivation. Therefore, send and receive are functions,

which take as argument the tuple of clauses being communicated, and return a set of

clauses to be added and a set of clauses to be deleted: send:L

�

�

! P(L

�

) � P(L

�

)

and receive:L

�

�

! P(L

�

) � P(L

�

), such that for all �x 2 L

�

�

, send(�x) = (;; ;) and

receive(�x) = (�x; ;). These properties describe the e�ect of send/receive on the database

of the process that executes the operation: receive adds the clauses to the database of the

receiver, send does not modify the database of the sender.

The other major component of a strategy is the search plan, which chooses the inference

rule and the premises at each step of a derivation. A parallel search plan also controls

the communication and the subdivision of the search space among the deductive processes.

The state of a derivation is usually the set (or multiset) of generated and retained clauses.

Depending on the strategy, the state can be a tuple of sets. Thus, we use States for the

set of possible states and States

�

for sequences of states.

For the selection of the next step, the search plan features a rule-selecting function

and a premise-selecting function. In order to account for communication, a parallel search

plan may select a communication operator, rather than an inference rule. The selections

are made based on the partial history of the derivation, the number of processes, and

1

In the following �

1

(x; y) = x and �

2

(x; y) = y are the projection functions.

23

the identi�er of the process that is executing the selection. Therefore, the domain

2

is

States

�

� IN � IN. The rule-selecting function is a function �:States

�

� IN � IN ! I [

M . The premise-selecting function is a function �:States

�

� IN � IN � (I [M) ! L

�

�

,

with the inference rule or operator chosen by � as additional argument, and such that

�((S

0

; S

1

; : : : ; S

i

); n; k; f

m

) 2 S

m

i

(i.e., it selects clauses in the current state). If � selects

an inference rule f and � selects a tuple of premises �x, the inference step consists of

applying f to �x. If � selects send, the clauses chosen by � will be sent. If � selects receive,

there is no selection of clauses, because clauses will be received from another process.

A subdivision of the search space is a subdivision of the inferences in the closure S

�

I

.

Since S

�

I

is in�nite and unknown, at each stage S

i

of a derivation the search plan subdivides

the inferences that can be done in S

i

. Thus, the subdivision happens dynamically during

the derivation. We reason that from the point of view of each process p

k

, an inference is

either allowed (assigned to p

k

), or forbidden (assigned to others). Therefore, we model the

subdivision of the search space by distinguishing between allowed and forbidden steps. For

this purpose, a parallel search plan includes a subdivision function �:States

�

� IN� IN�

(I [M) � L

�

�

! Bool, which takes the same arguments as �, and, in addition, the tuple

of premises chosen by �. The subdivision function is partial: where de�ned, � returns

true if the process is allowed to perform the step, and false otherwise. (Communication

steps may be always allowed.) A termination-detecting function !:States ! Bool, such

that !(S) = true if and only if S contains the empty clause, completes the de�nition of

search plan: a parallel search plan � is a 4-tuple � = h�; �; �; !i with components de�ned

as above.

A parallel search plan needs to be designed in such a way that when � and � se-

lect a certain f and �x, � is de�ned on their selection. Furthermore, it is desirable that

the subdivision function � is monotonic, in the sense of not changing inde�nitely the

status of a step: for all n, k, f , �x, there exists an i � 0, such that for all j � i,

�((S

0

; : : : ; S

j

); f; �x; n; k) = �((S

0

; : : : ; S

j+1

); f; �x; n; k) (e.g., it is easy to prove that the

subdivision criteria used in Clause-Di�usion are partial monotonic functions).

A sequential search plan has only the components �, � and !, with �:States

�

! I and

�:States

�

� I ! L

�

�

[6]. A parallel search plan �

0

= h�

0

; �

0

; �; !i is a parallelization by

subdivision of a sequential search plan � = h�; �; !i, if �

0

selects inferences in the same way

as �, so that the only cause of di�erent behaviour is the subdivision of the space. Formally,

for all sequence (S

0

; S

1

; : : : ; S

i

), if �

0

chooses an inference rule f , it chooses the same rule

that � would choose if given (S

0

; S

1

; : : : ; S

i

). Similarly, �

0

chooses the same premises that

� would choose if given (S

0

; S

1

; : : : ; S

i

) and f . A parallel strategy C

0

= hI;M;�

0

i is a

parallelization of a sequential strategy C = hI;�i, if �

0

is a parallelization of �.

The parallel derivations generated for processes p

0

; : : : ; p

n�1

by �

0

will di�er from the

sequential derivation generated by �: the di�erence is made by the subdivision function,

which for every process forbids some choices, forcing the process to choose something

else. Furthermore, �

0

will also insert in its derivations communication steps, that � does

not have. Since communication is made necessary by subdivision, the subdivision is the

principle that di�erentiates the parallel searches from the sequential search. There is

no requirement that the parallel search \simulates" the sequential search or is otherwise

related to it. Such requirements may apply to parallelizations of algorithms (e.g., the

Buchberger algorithm [1]) or to �ne-grain parallelizations of theorem-proving strategies

(e.g., [8]). In coarse-grain parallelizations such as those we are modelling here, the only

2

We assume that if there are n processes, they are identi�ed by the numbers 0; : : : n� 1.

24

requirement of similarity is the one stated above for h�; �i and h�

0

; �

0

i. Thus, the parallel

derivations may become very di�erent from their sequential counterpart, as the e�ects of

the subdivision of the space accumulate over time.

Parallel derivations

Given a theorem-proving problem S, the parallel derivation generated by a parallel stra-

tegy C = hI;M;�i, for n processes p

0

; : : : p

n�1

is a collection of n sequences

S = S

k

0

`

C

S

k

1

`

C

: : :`

C

S

k

i

`

C

: : :, for k 2 [0; n� 1].

For all k and i, if (1) !(S

k

i

) = false (proof not found), (2) �((S

k

0

; S

k

1

; : : : S

k

i

); n; k) = f (� se-

lects f), (3) either f = receive and �x is received, or f 6= receive and �((S

k

0

; S

k

1

; : : : S

k

i

); n; k;

f) = �x (� selects �x), and (4) �((S

k

0

; S

k

1

; : : : S

k

i

); n; k; f; �x) = true (the step is allowed), then

S

k

i+1

= S

k

i

[�

1

(f(�x)) � �

2

(f(�x)) (add generated/received clauses and delete contracted

ones).

In this notion of derivation, all choices are made locally: in this sense, the processes are

loosely coupled. The local derivations are asynchronous in general: any two processes p

j

and p

k

are not expected to be in stage i simultaneously, and the subscripts of the deriva-

tions are independent. The de�nition of derivation makes no assumption on when events

occur. It depends on the strategy whether the processes synchronize for communication

(e.g., Team-Work), or communicate asynchronously (e.g., Clause-Di�usion).

A strategy is complete if it succeeds (!(S

k

i

) = true for some k and i) whenever the input

set is inconsistent. Completeness reduces to refutational completeness of the inference

system, and fairness of the search plan. A su�cient condition for fairness is uniform

fairness: a derivation S

0

` S

1

` : : : S

i

` : : : is uniformly fair with respect to an inference

system I and a redundancy criterion

3

R if I(S

1

� R(S

1

)) �

S

j�0

S

j

, where S

1

=

S

j�0

T

i�j

S

i

is the set of persistent clauses [2].

For a parallel derivation, assume S

k

1

=

S

j�0

T

i�j

S

k

i

and S

1

=

S

n�1

k=0

S

k

1

. We need to

require that for all f

m

2 I, for all tuple �x 2 (S

1

�R(S

1

))

m

of persistent non-redundant

premises, such that f

m

(�x) 6= (;; ;), there are a process p

k

and a stage i, such that:

�x 2 (S

k

1

� R(S

1

))

m

(all elements of �x are together in the memory of p

k

at some point:

fairness of communication), and 8j � i, �((S

k

0

; : : : ; S

k

j

); n; k; f

m

; �x) = true (p

k

is allowed

to perform the inference on �x: fairness of the subdivision function). Since the subdivision

function is monotonic, we may require that the step is persistently allowed beyond stage

i. Finally, the local derivations need to be fair (local fairness).

Theorem: If a parallel derivation satis�es fairness of communication, fairness of the

subdivision function and local fairness, then it is uniformly fair. (The proof is given in

the full paper.)

A parallel derivation propagates redundancy, if for all clauses ', if ' is redundant at

stage i for some process p

k

, then for all processes there is a stage at which ' is redundant.

This is not necessary for completeness: uniform fairness with respect to the expansion

rules is su�cient for completeness. On the other hand, maximal contraction, and there-

fore propagation of redundancy, is important in practice (e.g., see various approaches to

distributed global contraction in [5]).

3

For reasons of space we refer to [2, 6] for the de�nition and explanation of redundancy criterion.

25

Marked search graphs for parallel search

This model is based on representing both the search space and the search process in a

marked search graph: the structure of the graph represents the static space of all possible

inferences, while the marking represents the dynamics of the search. In a sequential

derivation, the dynamic part consists of the selections by the search plan and the deletions

by contraction. In a parallel derivation, it also includes the subdivision of the space and

the communication.

The static structure of the search space depends on the problem and the inference

system, so that it is the same regardless of whether the space is searched in parallel or

sequentially. Given an input set S and an inference system I, the search space induced by S

and I is represented by the search (hyper)graph G(S

�

I

) = (V;E; l; h), where the vertices in

V represent the clauses in the closure S

�

I

, and the hyperarcs in E represent the inferences.

The l is a vertex-labelling function l:V ! L

�

=

�

=, which associates to each vertex the

equivalence class of all variants of a clause (

�

= is equivalence up to variable renaming).

The h is an arc-labelling function h:E ! I from hyperarcs to inference rules. If there

is an inference f('

1

; : : : ; '

n

) = (f

1

; : : : ;

m

g; f�

1

; : : : ; �

p

g) for f 2 I, then E contains

a hyperarc e = (v

1

; : : : ; v

k

;w

1

; : : : ; w

p

;u

1

; : : : ; u

m

) where (1) h(e) = f , (2) v

1

; : : : ; v

k

are

the vertices labelled by the premises that are not deleted (i.e., l(v

j

) = '

j

and '

j

62

f�

1

; : : : ; �

p

g, for all j, 1 � j � k, where k = n�p), (3) w

1

; : : : ; w

p

are the vertices labelled

by the deleted clauses (i.e., l(w

j

) = �

j

, for all j, 1 � j � p), and (4) u

1

; : : : ; u

m

are the

vertices labelled by the generated clauses (i.e., l(u

j

) =

j

, for all j, 1 � j � m).

In most cases, we only need hyperarcs where at most one clause is added or deleted. For

instance, a resolution arc has the form (v

1

; : : : ; v

n

;u), where u is the resolvent of v

1

; : : : ; v

n

;

a simpli�cation arc has the form (v;w;u), where v reduces w to u; and a normalization

arc has the form (v

1

; : : : ; v

n

;w;u), where u is a normal form of w with respect to the

simpli�ers v

1

; : : : ; v

n

. Contraction inferences that purely delete clauses are represented as

replacement by true, where true is a dummy clause, such that true � ' for all '. A

special vertex T in the search graph is labelled by true.

Given the search graph G(S

�

I

) = (V;E; l; h), the representation of the search process

during a derivation needs to cover: (1) the selections by the search plan, (2) the deletions

by contraction, (3) the subdivision of the search space, (4) the e�ect of communication.

Note that these four aspects are all intertwined, because it is the search plan that decides

contractions, subdivision and communications, and these in turn a�ect the successive

choices of the search plan. The search process is captured by marking functions for vertices

and arcs. For each process p

k

there is a vertex-marking function s

k

:V ! Z such that:

s

k

(v) = m, ifm variants of l(v) are present for process p

k

, s

k

(v) = �1, if all variants of l(v)

have been deleted by p

k

, and s

k

(v) = 0 otherwise. The vertex-marking function represents

the dynamic deletions by contraction (2) and the consequences of the communication

steps (4): if a clause is deleted, its marking becomes negative; if a clause is received, its

marking is incremented. For the arcs, for each process p

k

there is an arc-marking function

c

k

:E ! IN � Bool de�ned as follows

4

: �

1

(c

k

(e)) = m, if p

k

executed arc e m times,

�

2

(c

k

(e)) = true=false, if p

k

is allowed/forbidden to execute e. The �rst component of

the arc-marking function represents the selections done by the search plan (1); the second

component, called permission marking, represents the subdivision of the space (3).

By using multiple marking functions we can represent the e�ects of all the processes

on the same search graph: a parallel marked search-graph (V;E; l; h; �s; �c) is given by a

4

Bool also contains ?, so that the permission marking of an arc can be unde�ned.

26

search graph, an n-tuple �s of vertex-marking functions, and an n-tuple �c of arc-marking

functions.

The next goal is to represent the evolution of the search space during a derivation.

For this purpose, we de�ne the pre-conditions and post-conditions of a step: a hyperarc

e = (v

1

; : : : ; v

n

; v

n+1

; v

n+2

) is enabled at process p

k

, if (1) s

k

(v

j

) > 0 for all j � n + 1

(all premises are present), and (2) �

2

(c

k

(e)) = true (the step is allowed). An operation

send(�x), where �x = ('

1

; : : : '

n

), is enabled at p

k

if s

k

(v

j

) > 0 for all j, l(v

j

) = '

j

,

0 � j � n. An operation receive(�x) is enabled without conditions.

For the post-conditions, if p

k

executes an enabled hyperarc e = (v

1

; : : : ; v

n

; v

n+1

; v

n+2

)

the e�ect is to decrement the marking of the deleted clause (vertex v

n+1

: if the marking

is 1, it goes to �1, denoting that the last variant has been deleted), and to increment

the marking of the generated clause (vertex v

n+2

: if the marking is �1, it becomes 1,

denoting that a deleted clause has been regenerated). There is no post-condition for

sending clauses, while the post-condition of receiving clauses is to increment their markings

like for generation.

Then, we associate to a parallel derivation n successions of vertex-marking functions

fs

k

i

g

i�0

, one for each process p

k

, and n successions of arc-marking functions fc

k

i

g

i�0

, one

for each process p

k

. In the initial state, s

k

0

(v) is 1 for all p

k

if ' = l(v) is an input clause,

0 otherwise. Alternatively, input clauses may be given marking 1 only at one process,

say p

0

, which is responsible for pre-processing and broadcasting them. For all successive

stages i � 0, s

k

i+1

(v) is modi�ed as described above, if p

k

executes an enabled hyperarc

which includes v, or the clause of v is received, and it is left unchanged otherwise. For the

arc-markings, at the initial stage, for all a 2 E, �

1

(c

k

0

(a)) = 0. At all subsequent stages

i � 0, �

1

(c

k

i+1

(a)) = �

1

(c

k

i

(a)) + 1 if a is enabled at stage i and p

k

executes it, and it

is unchanged otherwise. For the second component, �

2

(c

k

i

(a)) = �((S

0

; : : : S

i

); n; k; f; �x),

where f and �x are the inference rule and the premises of arc a. Since � is monotonic, the

permission marking of the arcs is also monotonic, that is, it stabilizes eventually.

Note that inference steps performed by p

k

a�ect only the markings s

k

and c

k

: this

property mirrors the fact that the databases of the deductive processes are separate. The

generated search space up to stage i is determined by the vertices with non-zero marking.

Discussion

A key feature of this approach to the modelling of search is the ability to represent search

spaces made dynamic by the contraction inferences, the subdivision of the space, and

the communication steps. All three these aspects cannot be represented by structural

modi�cations of the graph (e.g., deletions for contraction and subdivision, and additions

for communication). Such an approach would make the structure of the search space

dependent on the search plan, and it would make impossible to represent the parallel

search processes on the same graph.

This work will continue with the extension of the measurement of search complexity

in [6] to capture both the advantages and the overhead of parallelism, and with results in

the comparison of strategies.

References

[1] G. Attardi and C. Traverso. A strategy-accurate parallel Buchberger algorithm. In

Hoon Hong, editor, Proc. of the 1st PASCO Symposium, volume 5 of Lecture Notes

27

Series in Computing, pages 22{33. World Scienti�c, 1994.

[2] L. Bachmair and H. Ganzinger. Non-clausal resolution and superposition with selec-

tion and redundancy criteria. In Proc. of LPAR-92, volume 624 of Lecture Notes in

Arti�cial Intelligence, pages 273{284. Springer Verlag, 1992.

[3] M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a

modi�ed Clause-Di�usion method. J. of Symbolic Computation, 21:507{522, 1996.

[4] M. P. Bonacina and J. Hsiang. Parallelization of deduction strategies: an analytical

study. J. of Automated Reasoning, 13:1{33, 1994.

[5] M. P. Bonacina and J. Hsiang. The Clause-Di�usion methodology for distributed

deduction. Fundamenta Informaticae, 24:177{207, 1995.

[6] M. P. Bonacina and J. Hsiang. On the representation of dynamic search spaces in

theorem proving. In C.-S. Yang, editor, Proc. of the Int. Computer Symposium, pages

85{94, 1996. Full version: \On the modelling of search in theorem proving { Towards

a theory of strategy analysis", Tech. Rep., Dept. of Comp. Sci., Univ. of Iowa, 1995.

[7] R. B�undgen, M. G�obel, and W. K�uchlin. A master-slave approach to parallel term-

rewriting on a hierarchical multiprocessor. In J. Calmet and C. Limongelli, editors,

Proc. of the 4th DISCO Symposium, volume 1128 of Lecture Notes in Computer

Science, pages 184{194. Springer Verlag, 1996.

[8] R. B�undgen, M. G�obel, and W. K�uchlin. Strategy-compliant multi-threaded term

completion. J. of Symbolic Computation, 21(4{6):475{506, 1996.

[9] J. Denzinger and S. Schulz. Recording and analyzing knowledge-based distributed

deduction processes. J. of Symbolic Computation, 21(4{6):523{541, 1996.

[10] C. B. Suttner and J. Schumann. Parallel automated theorem proving. In L. Kanal,

V. Kumar, H. Kitano, and C. B. Suttner, editors, Parallel Processing for Arti�cial

Intelligence. Elsevier, Amsterdam, 1994.

28

