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Introduction

In this paper, the use of semantic hyper-linking and of UR-resolution in a tableau based the-

orem prover is discussed. Semantic hyper-linking, see [5] or [6], can be viewed as a systematic

search for a model of a formula X. If this search fails, X has been shown to be unsatisfiable.

Also proving the unsatisfiability of a formula using analytic tableaux is a search for a model.

So, it seems promising to adapt semantic hyper-linking for the use in tableaux. As hyper-linking

generates ground instances of clauses, this approach fits neatly to the tableau prover Tatzel-

wurm. This prover also generates ground instances of g-formulae. (This allows the use of

decision procedures for quantifier theories during a proof. See [8].)

In the recent years implementations of the tableau method used free variables. (See [7] for

free variables and [1] or [2] for an implementation of a tableau prover employing this method.)

Hyper-linking allows to implement an efficient prover which replaces the variables of g-for-

mulae by ground terms. So, when the equality appears on a branch, its closure can be

determined with a congruence closure algorithm. (See [8].)

Some Terminology

In the tableau calculus a composite formula belongs to one of the following types.

type of the formula formulae equivalent to

α
b

γ
δ

a1 å a2, ¬¬a1

b1 √ b2

Æx g(x)

æx d(x)

The variable bound by the outmost quantifier of a g-formula is said to be g-bound. g(x)

(d(x)) is contained in g (d), and the ai (bi) are contained in a (b). This relation is transitive:

If X is contained in Y and Y in Z then X is contained in Z.

A literal is said to be negative, if it is a negated atomic formula and positive else. A for-

mula is proper, if each variable is bound by at most one quantifier. (Rectified formulae are
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proper.)

A structure giving meaning to first order formulae is a pair A = (U , I  ). U is the

universe and I  the interpretation assigning a meaning to the function and predicate symbols. If

A is model for a formula X, we write A  2  X, and A Ã  X, if this is not the case. A

Herbrand structure is a structure where U is the Herbrand universe.

Substitutions are defined as usual. i is the identity substitution.

Semantic Hyper-Linking and Analytic Tableaux

Assume we are given a structure A and ground literals L1, … , Ln, having A not as model.

Then, A[L1, … , Ln] is a structure with the property

A[L1, … , Ln] 2 L for a ground literal iff

1. L ™ {L1, … , Ln} or

2. L „ {L1, … , Ln}, ¬L „ {L1, … , Ln} and A 2 L

The set {L1, … , Ln} is the explicit part of A[L1, … , Ln].

Hyper-Linking selects a clause C = C1 √ C2, such that each literal of C appears either

in C1 or C2. If there is a ground substitution σ, such that each of the literals of σ(C1) has a

complement in {L1, … , Ln} and if this is not the case for each of the literals of σ(C2), then

σ(C) is a partial hyper-link. If σ(C2) contains variables, a ground substitution τ must be

found, such that A Ã τ(σ(C2)). (This definition is taken from [6].)

Example.  Assume we are given C  = P(x) √  Q(x) and A[¬P(a), ¬Q (a), ¬P (b)].

Using σ(x) = a , C can be split into C1 = P(x) √  Q(x) where C2 is the empty clause. The

substitution σ(x) = b allows to split C into C1 = P(x) and C2 = Q(x).

We now discuss a small proof performed by CLIN-S and how it can be transformed into a

tableau proof. To this end, we assume that there is a function hlu0 determining which formulae

can be used for the tableau expansion. If a formula can be used, then hlu0 should give the sub-

stitutions for obtaining a hyper-link. (In the example we omit that this function depends on the

explicit part of the model. (The Ti are sets of ground clauses generared by CLIN-S.)

CLIN-S

C1. ¬P(a)

C2. Q(f(z), z)

C3. ¬Q(f(x), y) √ P(x)

A0: all negated atoms are true.

partial hyper-link: Q(f(z), z)

T1 = {Q(f(a), a)}

A1 = Ao[Q(f(a), a)]

Tableau

1. ¬P(a)

2. Æz Q(f(z), z)

3. Æx, y ¬Q(f(x), y) √ P(x)

hlu0(Æz Q(f(z), z)) = {i}.

4. Q(f(a), a)
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partial hyper-link: ¬Q(f(a), a) √ P(a)

T2 = {Q(f(a), a), ¬Q(f(a), a) √ P(a)}

hlu0(Æx, y ¬Q(f(x), y) √ P(x))

= {{x/a, y/a}}

A2 = Ao[Q(f(a), a), P(a)]

partial hyper-link: ¬P(a)

T3

= {Q(f(a), a), ¬Q(f(a), a) √ P(a), ¬P(a)}

T3 is propositional not satisfiable.

5. ¬Q(f(a), a) √ P(a)

hlu0(¬Q(f(a), a) √ P(a)) = {i}

Now the β-rule is applied to 5. By this, two

closed branches are obtained.

Consider the expansion of the tableau with the formula 4. hlu0(Æ z  Q(f(z), z)) must be

{i}, since the partial hyper-link Q(f(z), z) exists. Each ground instance of it must be

generated. In the first step, Q(f(a), a) is selected. Since there is no substitution such that

¬Q(f(x), y) √ P(x) becomes a partial hyper-link, hlu0 is Ø for formula 3.

We now present the complete definition of hlu or more precisely the function hluS, A which

determines the hyper-link unifiers. It depends on a structure A and a set of closed formulae S

containing the literals being false in A.

Definition. Let S be a set of closed formulae and F a formula. A variable appearing in S or

F is assumed to be bound by at most one quantifier. Let A be a decidable structure with the

property: If L ™ S, then A Ã L. The  set hluS, A(F) of hyper-link-unifiers of F is

1. If F is an equation: hluS, A(F) = {i}

2. F is a literal:

If A Ã F: hluS, A(F) = {i}

If A 2 F: hluS, A(F) = {σ: σ(F) complementary to a G ™ S, σ most general}

3. hluS, A(α) = hluS, A(α1) ˙ hluS, A(α2)

4. hluS, A(β) = MG(hluS, A(β1), hluS, A(β2))

5. hluS, A(γx) = gen(x, hluS, A(γ’x))

6. hluS, A(δ) ={i}

Remark. s' = gen(x, s) is a substitution with s'(y) = s (y) for x ≠ y and s '(x) = x. (The

generalisation of gen to sets of substitutions is obvious.) The function MG  combines to

substitutions.

For example MG({{x/a, y/b}, {x /b}}, {{z/c}, ι, {x/c}}) = {{x /a, y/b, z/c},

{x/a, y/b}, {x /b, z/c}, {x /b}} and MG{{x/a}, {x /b}} = Ø. (The definition can be

found in [3] and a forthcoming technical report [4].)

The definition also shows that it is not necessary to transform the formulae into conjunctive

normal form. In the implementation the decomposition of composite formulae is done only

once. The result is stored as tree together with the formula.

In [3] and [4] it is shown that it is sufficient to determine the hyper-link unifiers in order to
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obtain a complete proof procedure.

Example. We now demonstrate how the use of hyper-links restricts the application of tableau

expansion rules. The proof starts with the formulae 1–3 in the tableau. The structure is a trivial

one: Each negated atom is assumed to be true. (Negative hyper-linking)

1.

2.

3.

4.

5.

P(a)

Æx, y (P(x) µ Q(f(x), y))

Æz (Q(f(z), f(z)) µ ¬Q(f(z), z))

Æy (P(a) µ Q(f(a), y))   g(2)

P(a) µ Q(f(a), a)   g(4)

The hyper-link unifier of 4 is i. a has been determined by the fair strategy.

6. ¬P(a) 7. Q(f(a), a)   b(5)

8. P(a) µ Q(f(a), f(a))   g(4)

2 and 3 cannot be used. f(a) has been determined by the fair strategy.

9. ¬P(a) 10. Q(f(a), f(a))   b(5)

The branches ending with 6 and 9 are closed. In the branch ending with 10 the set of hyper-

link unifiers of formula 3 is gen(z, {{z/a}}). The proof is successfully terminated after ex-

pansion of the tableau with Q(f(a), f(a)) µ  ¬Q(f(a), a)).

1. How does hyper-linking constrain the application of the g-rule? If formula 7 has been

added to the tableau, the sets of hyper-link unifiers for the quantifications 2 and 3 are still empty.

For formula 4 the only hyper-link unifier is i. A fair strategy, for example that suggested by

Smullyan [9] would have selected 2 or 3 for the expansion of the tableau.

2. The sets of hyper-link unifiers generated in the example are {i} where i is the identity. In

these cases, a fair strategy must select an instantiation from the Herbrand universe. Additionally,

heuristics can be used to determine further instantiations. Tatzelwurm maintains a list of links

between all pairs of literals which can be made complementary. So, there is a link between 1

and ¬P(x) being contained in 5. Assume the fair strategy would select the term t ≠ a when

applying the g-rule to 4. Since this link exists, formula 5 would be added to the tableau together

with P(t) µ Q(f(t), t).

3. A b-formula must be used for tableau expansion, iff the set of its hyper-link unifiers is {i}.

i is the only possible hyper-link unifier, since these formulae are closed when appearing on a

tableau branch.

Unit Resulting Resolution

In CLIN-S (see [5]) unit resulting resolution has been used for a quick test in order to reject

possible models. Since the results obtained were promising, we tried to adopt this method in

Tatzelwurm.

Units are ground literals or universally closed literals. Unit resulting resolution (UR-resolu-
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tion) is used by the tableau procedure as lemma generation. Suppose that Æy (¬P(y) √  R(y))

and Æx P(x) appear on a branch. UR-resolution generates Æy R(y). This unit is not added

to the tableau formulae. It is kept in a separate data structure. Only if the branch is tested for

closure, Tatzelwurm checks whether a unit can be made complementary to a literal appearing

on the branch. UR-resolution is applied when a clause-like g-formula is selected for tableau

expansion. (P µ  Q å R is not clause-like, P µ  Q √ R and P  å Q µ  R are.) During gen-

eration of new units it is checked whether a pair of complementary units is obtained or if the

existing units allow to derive the empty clause from the selected g-formula. In these cases the

branch is closed.

By this, UR-resolution helps to find out closures of branches in early steps of the proof.

Conclusion and Future Work

Adding semantic hyper-linking and UR-resolution to Tatzelwurm has increased its deductive

power considerably. Both methods can be used when the prover uses decision procedures for

theories too. So, when the equality occurs in a proof, the system uses a congruence closure

algorithm.

Tatzelwurm offers an interface allowing the user to define structures. At present, the only

"built in" structures are trivial ones. (All not negated literals are true, false resp.) It is planned to

study also other structures for use as built-in ones.

UR-resolution does not apply the built in decision procedures for theories. It seems to be

promising to investigate the combination of these procedures with UR-resolution.
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