
Re�nements for Restart Model Elimination

Peter Baumgartner � Ulrich Furbach
Universität Koblenz � Institut für Informatik

Rheinau 1 � D–56075 Koblenz � Germany

E-mail: fpeter,ulig@informatik.uni-koblenz.de

We present various refinements for the restart model elimination (RME) calculus

and discuss their interrelationship. As a new variant of the calculus we introduce

RME with early cancellation pruning and investigate its compatibility with the other

refinements.

1 Introduction

Restart Model Elimination (RME) has been introduced as a variant of model elimination in [1]

as a calculus which avoids contrapositives and which introduces case analysis. In [4] a variant for

computing answers to disjunctive logic programs was introduced. RME is implemented as part of

the PROTEIN system [2].

One result of this paper is a table of completeness results with respect to the combination of

the refinements head selection function, strictness, regularity, independance of the goal clause for

RME (Figure 1 below). Another original result is completeness of “early cancellation pruning”1 .

In the following section we recall basic restart model elimination calculus, and in Section 2.2

we introduce refinements. The main results of this paper are then presented in Section 3.

2 Restart Model Elimination (RME)

A pair of literals (K;L) is a connection with MGU σ iff σ is a most general unifier for K and L.

A clause is considered as a multiset of literals, usually written as an implication A1_ : : :_Am

B1^ : : :^Bn where the As and Bs are atoms. Clauses with m� 1 are called program clauses with

head literals Ai and body literals Bi, if present. Negative clauses are written as B1^ : : :^Bn.

We assume our clause sets to be in Goal normal form, i.e. there exists only one negative clause

which furthermore does not contain variables. Without loss of generality this can be achieved by

introducing a new clause Goal where Goal is a new predicate symbol, and by replacing every

negative clause B1^ : : :^Bn by Goal B1^ �� �^Bn.

We consider literal trees (aka tableaux), i.e. finite, ordered trees, all nodes of which, except

the root, are labeled with a literal. A branch of length n consisting of the nodes N0;N1; : : : ;Nn with

root N0 and leaf Nn is usually written as [L1 � : : : �Ln] where Li is the label of Ni. In general, we find

it practical to confuse a node with its label. The letters p and q are branch-valued variables, and if

p = [L1 � : : : �Ln�1] then [p �Ln] is the branch [L1 � : : : �Ln�1 �Ln]. The functions First and Leaf return

the first labeled, resp. last node of a branch. The extension of [p] with clause C, written as [p]�C,

is the branch set f[p �L] j L 2 Cg. Equivalently, in tree view this operation extends the branch [p]

by jCj new nodes which are labelled with the literals from C.

1Early cancellation pruning was introduced in [6] within the context of a nearHorn-Prolog variant, InH-Prolog.

11

A tableaux is represented by a set of branches; branch sets are denoted by the letters P ;Q . We

write P ;Q and mean P [Q . Similarly, [p];Q means f[p]g;Q . We write X 2 [p] iff X occurs in [p],

where X is a node or a literal label. A substitution σ is applied to a branch set P , written as Pσ, by

applying σ to all labels of all nodes in P .

Branches may be labelled with a “?” as closed; branches which are not closed are open. A

tableaux is closed if each of its branches is closed, otherwise it is open.

2.1 The Basic Calculus

De�nition 2.1 (Restart Model Elimination) A computation rule is a total function c which

maps a tableau to one of its open branches2 .Let S be a clause set in Goal normal form. The

inference rules of RME are defined as follows:

Extension

Step:

[p]; P A1_ : : :_Am B1^ : : :^Bn

([p �Ai]?; [p]� (A1_ : : :_Ai�1_Ai+1_ : : :_Am B1^ : : :^Bn);P)σ

if (1) A1_ : : :_Am B1^ : : :^Bn (with m� 1, n� 0 and i 2 f1; : : : ;mg) is a new variant

(called extending clause) of a clause in S, and

(2) (Leaf ([p]);Ai) is a connection with MGU σ. Ai is called the extension literal.

Reduction

Step:

[p]; P

([p]?; P)σ
if (L;Leaf ([p])) is a connection with MGU σ, for some L 2 [p].

Restart

Step:

[p]; P

[p]�First([p]); P
if Leaf ([p]) is a positive literal.

A restart model elimination derivation (RME derivation) of Pn is a sequence (([:Goal] �

P0);P1; : : : ;Pn) of tableaux where Pi is obtained from Pi�1 by one single application of one of

the above inference rules (1 � i � n). Any branch set which is derivable by some RME deriva-

tion is also called a RME tableau. Finally, a RME refutation is an RME derivation such that Pn is

closed. The term “RME” is dropped if context allows.

:Goal

:P

:Q:P

?

Q

?

?

:P

:Q P

P Q

Q

? ?

?

:Q

:Goal

?

P

Note that in extension steps we can connect only with the

head literals of input clauses. Since in general this restriction

is too strong, because it destroys completeness, we have to

“restart” the computation with a fresh copy of a negative clause.

This is achieved by the restart rule, because refutations of clause

sets in Goal normal form always start with First([p]) � :Goal,

and thus only extension steps are possible to :Goal, which in

turn introduce a new copy of a negative clause. The figure on

the right conatins a closed RME tableaux (positive Goal nodes

are not displayed, dashed lines indicate reduction steps).

2.2 Re�nements of RME

Re�nement: Head Selection Function. Unlike model elimination (ME), RME restricts in

extension steps the connections into the extending clause to the head literals. We now go one step

further, by introducing a head selection function. This concept is also present in Plaisted’s Problem

Reduction Formats [7], but not in the nearHorn Prolog family [5].

2It is required that c is stable under lifting, which means that for any substitution σ, whenever c(Q σ) = [q]σ then

c(Q) = [q].

12

De�nition 2.2 (Head Selection Function, [1]) A head selection function f is a function that

maps a clause A1_ : : :_An B1^ : : :^Bm with n� 1 to an atom L 2 fA1; : : : ;Ang. L is called the

selected literal of that clause by f 3. A RME derivation is called a derivation with selection function

f if in every extension step the extension literal Ai is selected in A1_ : : :_An B1^ : : :^Bm by f .

For example, to derive the RME tableaux in Section 2.1 requires a head selection function which

selects Q in Q_P . The head selection function is a severe restriction of the calculus, but it

can be applied and combined with some other refinements (but not all) to still yield a complete

calculus.

Re�nement: Strictness. In RME there are two possibilities to further derive from an open

branch with positive leaf literal: either the branch can be closed by a reduction step or it can be

extended in a restart step. In our sample refutation (Section 2.1) both possibilities are contained.

In strict RME derivations we forbid reduction steps at positve leaf literals (i.e. in Definition 2.1,

reduction step, Leaf ([p]) must be a negative literal). See [1] for further discussion.

Re�nement: Independence of the Goal Clause. In order to arrive at a really goal-oriented

calculus, one wants to restrict the starting branch set to be derived from a negative clause (negative

clause before the transformation to Goal normal form). Since we assume Goal normal form let us

call any clause Goal B1^ �� � ^Bn 2 S a goal clause. What we really want is to be independant

of this goal clause:

De�nition 2.3 A (refinement of the) RME caculus is called independent of goal clause if every

derivation (([:Goal] � P0);P1) where P1 is obtained by extension with a goal clause from a

minimal unsatisfiable subset of the clause set S can be extended to a refutation, if a refutation

exists.

Re�nement: Regularity. This is a well-know “loop-check” refinement: a branch is regular iff

no literal occurs more than once on it; a tableaux is regular if each of its branches is regular. Reg-

ularity is easy to implement4 and it is one of the most effective restrictions for model elimination

procedures. Unfortunately, the regularity check is not compatible with RME.

De�nition 2.4 (Blockwise Regularity, [4]) However, what can be achieved is blockwise reg-

ularity: A branch [p] = [:B1
1 � � �:B1

k1
�A1
� :B2

1 � � �:B2
k2
�A2
� � �An�1

� :Bn
1 � � �:Bn

kn
] (where the As

and Bs are atoms) is called blockwise regular iff

1. Ai
6= Aj for 1� i; j� n�1, i 6= j (Regularity wrt. positive literals), and

2. Bl
i 6= Bl

j for 1� l� n, 1� i; j� kl, i 6= j (Regularity inside blocks).

A tableaux is called blockwise regular iff every branch in it is blockwise regular. For example, the

RME tableaux in Section 2.1 is blockwise regular.

3The head selection function f is required to be stable under lifting which means that if f selects Lγ in the instance of

the clause (A1_ : : :_An B1^ : : :^Bm)γ (for some substitution γ) then f selects L in A1_ : : :_An B1^ : : :^Bm.
4For every branch one states pairwise syntactical inequality constraints.

13

Re�nement: Early Cancellation Pruning. This refinement is essentially due to [6] and was

called strong early cancellation pruning rule in Inh-Prolog.

De�nition 2.5 (RME with Early Cancellation Pruning) We allow to label positive nodes in

RME tableaux by the symbol “r” (meaning: used for reduction steps). If node L is labeled in this

way we will write Lr. The calculus RME with early cancellation pruning (RMEP) consists of the

inference rule “extension step” of Def. 2.1 and the following inference rules:

Labeling

Reduction

Step:

[p �L �q]; P

([p �Lr
�q]?; P)σ

if (L;Leaf ([p])) is a connection with MGU σ.

Restricted

Restart

Step:

[p]; P

[p �First([p])]; P
if Leaf ([p]) is a positive literal, and the leafmost positive inner

node of [p], if it exists, is labeled with r.

The notion of derivation is taken from Def. 2.1. A RMEP refutation is a derivation of closed

RME tableau where every inner positive node is labeled with r5.

The idea of the early cancellation pruning is to achieve a relevance check: a new “case” by means

of a restart step applied to [� � �L0 � � �L] may only be examined if the previous case L0 turned out to

be “relevant” for the derivation of the new case L. Here, “relevant” means that L0 is the target for

a reduction step before (hence “early”) the restart step at L is attempted. For example, in Figure 2,

restart at leaf D is not possible because ancestor B is not labelled with r.

Most of our calculi variants allow for arbitrary computation rules. The notable exception are

the variants which employ the early cancellation pruning. In these cases we have to restrict to the

following class of computation rules which prefers negative leafs over positive ones:

De�nition 2.6 (Negative Preferrence Computation Rule) A negative preferrence compu-

tation rule is a computation rule c such that whenever a positive inner node L is contained in an

open branch [p] with positive leaf, and L is contained in an open branch [p0] with negative leaf,

then c does not select [p].

3 Combining Re�nements

Calculus

Selection

function Regularity

Indep. of

goal clause

Complete-

ness

(0) ME – Full Yes Yes

(1) RME with Blockwise No Yes

(2) without Blockwise Yes Yes

(3) RMEP with – – No

(4) without Blockwise Yes Yes

Figure 1: Summary of properties of model elimination variants.

“–” means “does not apply”.

Each refinement of the pre-

vious section was motivated

in some way, so the question

arises to what extent they can

be combined. Unfortunately,

some combinations cause in-

completeness. Further, these

incompatibilities are “inher-

ent”, in the sense that com-

pleteness cannot be recovered

by relaxing other refinements,

such as giving up “regularity” or “strictness”. Figure 1 contains a summary of both, these negative

results, and the positive results.

5We emphasize that in order to make the labeling meaningfull, the r-label is to be attached to the node (but not to the

label), such that it is shared with other branches.

14

3.1 Negative Results

The negative results (the “no” entries in Figure 1) are shown by appropriate counterexamples to

the assumption that the combination of the indicated features would yield a complete calculus.

\Head selection function" is incompatible to \early cancellation pruning". This ad-

dresses line (3) in Figure 1. Consider the clause set M1 = f A; A_D ; A B^D; B_

C ; A Cg. There is no RMEP refutation of the Goal normal form of M1 with a head selec-

tion function which selects in M1 the underlined atoms in the clause heads. Figure 2 shows an

exhaustive case analysis: either the derivation contains a negative leaf :D and gets stuck because

the sole clause containing D in the head is A_D, but D is not selected. Or, the other derivations

are not weakly connected, so that a restart step at the positive branches is not permitted. There

are some variations of these derivations by re-using clauses on a branch, but all of these run into

the same problems. On the other side, there is a RMEP refutation of the Goal normal form of M1

without selection function. Hence, in sum, the concept “head selection function” is not compatible

to RMEP.

:Goal

:A

A :B :D
?

:Goal

:A

D
?

A

:Goal

:A

:C
?

A

C
?

B

a) b) c) d)

No extension
step possible

Not weakly
connected

:A

:C

C B

:Goal

?

?

A

:A

D
?

A

:A

:C

C B

:Goal

?

?

A

:A

A :B :D
?

:Goal :Goal

Figure 2: “Selection Function” is incompatible to “Early Pruning”.

\Head selection function" is incompatible to \independence of the goal clause". This

addresses line (1) in Figure 1. Consider the clause set M2 = f P; Q; P_Q g :, which

was also used in Section 2.2. It is easy to see that there is no RME refutation (and hence no RMEP

refutation either) of the Goal normal form of M2 with goal clause Goal Q and a head selection

function which selects P in P_Q . However, chosing Goal P as the goal clause admits a

RME refutation. In sum, the concepts “head selection function” and “independence of the goal

clause” are incompatible for all considered RME variants.

3.2 Positive Results

For space reasons we can only cite the relevant results. Further, we will state the ground versions

only. Lifting to the first-order case can be done along the lifting proof in [4]. We recall only that

both the “computation rule” and the “head selection function” were defined to be stable under

lifting (Defs. 2.1 and 2.2), which enables lifting them to the first-order level.

15

A standard strategy for completeness proofs of related calculi is to prove completeness of the

weakest variants only, i.e. the variants, the refutations of which can stepwisely be simulated by

the other variants. For instance, strict RME is weaker than non-strict RME. For the case of restart

model elimination there are the following two weakest variants:

� RME with “head selection function”, but without “independence of the goal clause. This

addresses the “completeness” entry in line (1) in Figure 1. See [4] for a proof.

� RME without “selection function” but with “independence of the goal clause” and with

“early cancellation pruning”. This addresses the “completeness” entries in lines (2) and (4)

in Figure 1. Since this result is new we state it here explicitly; see the full version [3] for a

proof.

Theorem 3.1 (Ground completeness of Blockwise Regular Strict RMEP) Let S be a

minimal unsatisfiable ground clause set in Goal normal form, c be a negative preferrence com-

putation rule. Then, for any clause G = (Goal B1 ^ �� � ^Bn) 2 S there is a strict, blockwise

regular RMEP refutation via c with top clause Goal and goal clause G used in the first exten-

sion step.

4 Conclusions

We studied various refinements for the restart model elimination calculus. One of our main con-

cerns was compatibility among them. Further, we developed a new variant, RME with early can-

cellation pruning.

References

1. Peter Baumgartner and Ulrich Furbach. Model Elimination without Contrapositives and its Application

to PTTP. Journal of Automated Reasoning, 13:339–359, 1994. Short version in: Proceedings of CADE-

12, Springer LNAI 814, 1994, pp 87–101.

2. Peter Baumgartner and Ulrich Furbach. PROTEIN: A PROver with a Theory Extension

Interface. In A. Bundy, editor, Automated Deduction – CADE-12, volume 814 of Lecture

Notes in Aritificial Intelligence, pages 769–773. Springer, 1994. Available in the WWW, URL:

http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

3. Peter Baumgartner and Ulrich Furbach. Refinements for Restart Model Elimination. Fachberichte

Informatik 24–96, Universität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz,

1996.

4. Peter Baumgartner, Ulrich Furbach, and Frieder Stolzenburg. Computing Answers with Model Elimi-

nation. Artificial Intelligence, 90(1–2):135–176, 1997.

5. D.W. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor, Proc. of the 4th Int. Conf. on Logic Program-

ming, pages 456–469. The MIT Press, 1987.

6. D.W. Loveland and D.W. Reed. A near-Horn Prolog for Compilation. In Jean-Luis Lassez and Gordon

Plotkin, editors, Computational Logic — Essays in Honor of Alan Robinson, chapter III/16, pages 542–

564. MIT Press, 1991.

7. D. Plaisted. Non-Horn Clause Logic Programming Without Contrapositives. Journal of Automated

Reasoning, 4:287–325, 1988.

16

