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Cut-elimination is a key technique in proof theory. In his famous paper [2] Gentzen

de�ned an (algorithmic) procedure to transform LK-proofs with cuts into cut-free LK-

proofs. Cut-elimination is not only a tool to prove several important logical theorems

(e.g. the interpolation theorem) but is also of relevance to computer science; indeed, after

elimination of cuts, bounds and even programs can be extracted from the resulting proofs

[5]. For these applications to computer science and mathematics e�cient cut-elimination

algorithms are crucial. Unfortunately, as Statman [4] ond Orevkov [3] independently

showed, the complexity of cut-elimination is nonelementary; i.e. the length of cut-free

proofs cannot be bounded by the length of the original proofs with cut via an elementary

function. This clearly implies that every cut-elimination procedure is of nonelementary

complexity. But even in presence of this horrible worst-case bound it pays out to focus

on good algorithms which { at least for some types of problems and cuts { are fast and

yield short cut-free proofs. In [1] we presented a cut-elimination method based on a

projection technique, which (on a class of proofs called QMON) strongly outperforms

Gentzen's method. Here we introduce a method based on resolution. Roughly it works in

the following way: Consider the cut-application in the proof ! below (!
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and assume that ! is an LK-proof with atomic initial sequents. Then, formally, the set

of initial sequents is a set of clauses of the form S : P (

�

t) ` P (

�

t) (where P is a predicate

symbol and

�

t is a term tuple). Either the left or the right occurrence or none of them is a

predecessor of the cut formula A (in !

1

or in !

2

). Thus one of the form `, P (

�

t) `, ` P (

�

t)

or P (

�

t) ` P (

�

t) characterizes the connection of the initial sequent with the (occurrence of

the) cut in !. By following the rule applications in ! we construct a set of clauses C out of

the \characteristic" atomic ancestors s.t. C is unsatis�able. In the next step we construct

a resolution refutation 
 of C which is transformed into a ground refutation 


0

. We may

consider 


0

as an LK-derivation using contraction and atomic cut. By inserting into 


0

appropriate subproofs of ! we obtain a proof of �

1

;�

2

` �

1

;�

2

which is not cut-free, but

having only atomic cuts. In the last step the atomic cuts are eliminated and a cut-free

proof is obtained. We illustrate the procedure by a simple example (�, � are variables, a

is a constant symbol):

�
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1

:

P (�)

?

` P (�) Q(�) ` Q(�)

?

P (�)

?

; P (�)! Q(�) ` Q(�)

?

!:l

P (�)! Q(�) ` (P (�)! Q(�))

?

!:r

P (�)! Q(�) ` (9y)(P (�)! Q(y))

?

9:r

(8x)(P (x)! Q(x)) ` (9y)(P (�)! Q(y))

?

8:l

(8x)(P (x)! Q(x)) ` (8x)(9y)(P (x)! Q(y))

?

8:r

 

2

:

P (a) ` P (a)

?

Q(�)

?

` Q(�)

P (a); (P (a)! Q(�))

?

` Q(�)

!:l

(P (a)! Q(�))

?

` P (a)! Q(�)

!:r

(P (a)! Q(�))

?

` (9y)(P (a)! Q(y))

9:r

(9y)(P (a)! Q(y))

?

` (9y)(P (a)! Q(y))

9:l

(8x)(9y)(P (x)! Q(y))

?

` (9y)(P (a)! Q(y))

8:l

.

.

.

.
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.

.
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.

 

2

S : (8x)(P (x)! Q(x)) ` (9y)(P (a)! Q(y))

cut

The cut formula and its ancestors are marked by (?). We start with the left subproof

 

1

; initially the clauses are P (�) ` and ` Q(�). The rule !:l merges the clauses into

C

1

: P (�) ` Q(�). To the sequence of unary rules following this application we always

assign the clause C

1

. In  

2

the rule !:l is applied to ancestors of the cut-formula (in

contrast to  

1

); here we construct the union of the clauses ` P (a) and Q(�) `. The unary

rules down to the cut don't change the set of clauses f` P (a); Q(�) `g. Eventually the

cut rule generates the union of both sets resulting in

C : fP (�) ` Q(�); ` P (a); Q(�) `g

From C we construct a resolution refutation 
 and the ground refutation 


0

:

` P (a) P (a) ` Q(a)

` Q(a) Q(a) `

`

To ` P (a) and Q(a) ` we assign the LK-proofs  

21

and  

22

(extracted from  

2

).

( 

21

)

P (a) ` P (a)

?

P (a) ` Q(�); P (a)

?

W :r

` P (a)! Q(�); P (a)

?

!:r

` (9y)(P (a)! Q(y)); P (a)

?

9:r

( 

22

)

Q(a)

?

` Q(a)

P (a); Q(a)

?

` Q(a)

W :l

Q(a)

?

` P (a)! Q(a)

!:r

Q(a)

?

` (9y)(P (a)! Q(y))

9:r

To P (a) ` Q(a) we assign the proof  

11

(extracted from  

1

).

P (a)

?

` P (a) Q(a) ` Q(a)

?

P (a)

?

; P (a)! Q(a) ` Q(a)

?

!:l

P (a)

?

; (8x)(P (x)! Q(x)) ` Q(a)

?

8:l
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By replacing the initial sequents in 


0

by the proofs  

21

,  

11

,  

22

we obtain the following

LK-proofs with atomic cuts only:

.

.

.

.

 

21

` (9y)(P (a)! Q(y)); P (a)

.

.

.

.

 

11

P (a); (8x)(P (x)! Q(x)) ` Q(a)

(8x)(P (x)! Q(x)) ` (9y)(P (a)! Q(y));Q(a)

cut

.

.

.

.

 

22

Q(a) ` (9y)(P (a)! Q(y))

(8x)(P (x)! Q(x)) ` (9y)(P (a)! Q(y))

cut

The last step, the elimination of the atomic cuts, is not very interesting and we skip

it.

Once we have the ground projection 


0

of the resolution refutation 
 of C the construc-

tion of the LK-proof corresponding to 


0

is relatively easy: For every clause

�

P `

�

Q in C

we construct a proof of

�

P;�

1

` �

1

;

�

Q or

�

P;�

2

` �

2

;

�

Q, respectively. For this purpose

we simply suppress the inferences on successors of

�

P `

�

Q in !. This is only possible

if no eigenvariable conditions are violated; thus in order to guarantee the correctness of

this transformation we have to skolemize the proof and reskolemize after cut-elimination.

Skolemization does not increase the length of the proof and enables the clauses

�

P `

�

Q to

be propagated downwards. The most subtle point is the construction of the corresponding

set of clauses C. In general the procedure works as follows:

1. Construct an initial set C

0

by selecting the atoms in the initial sequents which are

ancestors of the cut occurrences.

2. Assume that S

1

: �

1

;�

1

` �

1

;�

1

and S

2

: �

2

;�

2

` �

2

;�

2

are derived by the proofs

 

1

and  

2

and that C

1

and C

2

are the sets of clauses corresponding to  

1

and  

2

(representing the ancestors of the subsequents �

i

` �

i

).

(a) A binary rule applies to the parts �

1

` �

1

and �

2

` �

2

{ and not to the (cut-

relevant) parts �

i

` �

i

{ giving a sequent S : �

1

;�

2

;�

0

1

;�

0

2

` �

0

1

;�

0

2

;�

1

;�

2

.

Then we de�ne the set of clauses C corresponding to S by C

1


 C

2

, where

f

�

P

1

`

�

Q

1

; : : : ;

�

P

m

`

�

Q

m

g 
 f

�

R

1
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�

T

1

; : : : ;

�

R

n

`

�

T

n

g =

= f

�

P

i

;

�

R

j

`

�

Q

i

;

�

T

j

ji � m; j � ng:

Before applying 
 the variables in C

1

, C

2

must be renamed s.t. C

1

and C

2

don't

share variables, which correspond to 8:r, 9:l introductions.

(b) A binary rule applies to the ancestors of the cut, i.e. to �

1

` �

1

and �

2

`

�

2

giving a sequent S : �

0

1

;�

0

2

;�

1

;�

2

` �

1

;�

2

;�

0

1

;�

0
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. The set of clauses C

corresponding to S is de�ned as C = C

1

[ C

2

.

3. A unary rule is applied: The set of clauses is left unchanged.

If there are no binary rules, then the initial set of clauses remains unchanged. Therefore

the crucial operations in the construction of the characteristic set of clauses are union and

product. Of course, iteration of 
 and [ may result in a set of clauses of exponential

size. However, by an appropriate transformation of Statman's sequence we can show that

cut-elimination by resolution can give a nonelementary speed-up over Gentzen's method.

The speed-up is obtained by the analysis of the internal structure of the cut formula by

resolution. While Gentzen's method works from outside in (it always applies to the upmost

9



logical operation of the cut formula), the resolution method uses the whole derivation of

the cut formula and thus also applies to the inner structure of the formula. In some sense,

Gentzen's method is \context-free" as the reduction of rank and grade of cuts does only

depend on the occurrence of the cut formula A in the proof and on its upmost operator, but

is largely independent of the proof of A. In particular Gentzen's method cannot eliminate

inner redundancies in the cut formula, but resolution can: Within the set of clauses C

tautology deletion and subsumption can be applied in order to reduce the size of C. By

using one of the e�cient resolution re�nements, the real construction of the resolution

proof and, eventually, of the cut-free proof becomes more realistic.
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