
CERES in Second-Order Logic ?

Stefan Hetzl1, Alexander Leitsch1, Daniel Weller1, and
Bruno Woltzenlogel Paleo1

{hetzl, leitsch, weller, bruno}@logic.at
Institute of Computer Languages (E185),

Vienna University of Technology,
Favoritenstraße 9, 1040 Vienna, Austria

Abstract. This work defines an extension CERES2 of the first-order
cut-elimination method CERES to the subclass of sequent calculus proofs
in second-order logic using quantifier-free comprehension. This extension
is motivated by the fact that cut-elimination can be used as a tool to
extract information from real mathematical proofs, and often a crucial
part of such proofs is the definition of sets by formulas. This is expressed
by the comprehension axiom scheme, which is representable in second-
order logic. At the core of CERES2 lies the production of a set of clauses
CL(ϕ) from a proof ϕ that is always unsatisfiable. From a resolution
refutation γ of CL(ϕ), an essentially cut-free proof can be constructed.
The main theoretical obstacle in the extension of CERES to second-
order logic is the construction of this cut-free proof from γ. This issue
is solved for the subclass considered in this paper. Moreover, we discuss
the problems that have to be solved to extend CERES2 to the complete
class of second-order proofs. Finally, the method is applied to a simple
mathematical proof that involves induction and comprehension and the
resulting proof is analyzed.

1 Introduction

The discipline of proof mining deals with the extraction of information from
formal proofs. Different methods have been applied successfully (see [1], [2]).
This work considers the approach of using cut-elimination to extract new proofs
from known ones. In particular, it is well known that in first-order logic cut-
elimination produces proofs that are analytic in the sense that all formulas used
in the proof will be subformulas of the proved theorem, eliminating the use of
auxiliary notions that have no direct connection to the theorem. In second-order
logic, the notion of analyticity has to be adapted to this slightly weaker form:
all formulas used in a cut-free proof in second-order logic either are subformulas
of the proved theorem, or they are replaced by weakly quantified second-order
variables by the use of comprehension (i.e. they are used to define a set). In
other words, formulas of second-order logic can be viewed as frames, and cut-
free proofs of such formulas will only contain (subformulas of) instances of these
frames.
? Supported by the Austrian Science Fund (project P19875)

The first-order cut-elimination method CERES (cut-elimination by resolution)
has several advantages over the traditional reductive cut-elimination methods:
firstly, the reductive methods are subsumed by CERES (i.e. every proof obtained
by a reductive method can also be obtained by CERES, see [2]), and secondly, a
non-elementary speed-up over Gentzen’s method by the use of CERES is possible
(see [3]). The CERES method has been implemented in the CERES system1.

An inherent limitation of the CERES method (and indeed of all first-order
cut-elimination procedures) is that proofs that use comprehension cannot be
handled in a straightforward way, as comprehension is essentially a second-order
property. This motivates the extension of CERES to CERES2, a cut-elimination
method for second-order logic, which will be able to handle proofs that make use
of comprehension in a natural way. The subclass of proofs we are considering
here is the class of proofs where comprehension is restricted to quantifier-free
formulas. This choice is motivated in part by the fact that converting a resolution
refutation to a sequent calculus proof in the presence of arbitrary comprehension
(and, therefore, skolemization) is problematic.

2 The second-order language

Here, we consider a fragment of higher-order logic based on Church’s simply
typed λ-calculus [4] and fix the set of base types BT := {ι, o}, where ι denotes
the type of individuals and o the boolean type. The set T of types is built in
the usual inductive way over the BT . In contrast to second-order logic as it
is defined in e.g. [5], we include in the language more objects of order ≤ 2
to allow skolemization, although quantification is restricted to individuals and
unary predicates on individuals (i.e. variables of types ι and ι→ o).

We assume given a set of symbols S together with a function τ : S 7→ T
assigning types to symbols, where S can be partitioned into the sets V (individual
variables), CS (individual constants), FSn (function symbols), PCn (predicate
constants), PV (unary predicate variables) s.t.

1. For all x ∈ V , τ(x) = ι,
2. for all c ∈ CS, τ(c) = ι,
3. for all f ∈ FSn, n ≥ 1: τ(f) = t1 → . . . → tn → ι where for 1 ≤ i ≤ n,
ti = ι or ti = ι→ o,

4. for all P ∈ PCn, n ≥ 0: τ(P) = t1 → . . . → tn → o where for 1 ≤ i ≤ n,
ti = ι or ti = ι→ o,

5. for all X ∈ PV , τ(X) = ι→ o.

We additionally require that each of these partitions is countably infinite.
We define PC :=

⋃
i≥0 PC

i and FS :=
⋃
i≥1 FS

i. The set of expressions E is
defined inductively in the usual way over the set of symbols together with the
symbols ¬,∧,∨,→,∃,∀, λ, ., (,) (keeping in mind the restriction on the order of
the types and on the types of the quantified variables). We use infix notation for
familiar function symbols and predicates (e.g. +,=).
1 http://www.logic.at/ceres

2

Definition 1. The set of second-order formulas or simply formulas SOF :=
{F | F ∈ E , τ(F) = o}. If F ∈ SOF , F ≡ P (t1, . . . , tn), P ∈ PC ∪ PV , then F
is called atomic.

For atomic formulas P (t1, . . . , tn) we may also write t1 ∈ P (t2, . . . , tn). We
define the set of lambda terms LT := {t | t ∈ E , t ≡ λx.F, τ(F) = o} and the set
of terms T := {t | t ∈ E , τ(t) = ι}. Polarity of subexpressions w.r.t. formulas and
sequents, strong and weak quantifiers, the scope of quantifiers, closed formulas,
β-reduction are defined as usual. We assume a variable convention (i.e. variables
are renamed appropriately to avoid conflicts).

3 The calculus LKDe2

In this section, we define the sequent calculus LKDe2. It consists of the following
rules:

1. propositional
Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A ∧B ∧ : r

A, Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l1

A,Γ ` ∆
B ∧A,Γ ` ∆ ∧ : l2

A,Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆Λ ∨ : l

Γ ` ∆,A
Γ ` ∆,A ∨B ∨ : r1

Γ ` ∆,A
Γ ` ∆,B ∨A ∨ : r2

Γ ` ∆,A B,Π ` Λ
A→ B,Γ,Π ` ∆,Λ →: l

A, Γ ` ∆,B
Γ ` ∆,A→ B

→: r

A, Γ ` ∆
Γ ` ∆,¬A ¬ : r

Γ ` ∆,A
¬A,Γ ` ∆ ¬ : l

2. first-order

Γ ` ∆,A{x← α}
Γ ` ∆, (∀x)A ∀ : r

A{x← t}, Γ ` ∆
(∀x)A,Γ ` ∆ ∀ : l

Γ ` ∆,A{x← t}
Γ ` ∆, (∃x)A ∃ : r

A{x← α}, Γ ` ∆
(∃x)A,Γ ` ∆ ∃ : l

For the ∀ : r and the ∃ : l rules the variable α must not occur in Γ nor in ∆
nor in A.
For the ∀ : l and the ∃ : r rules the term t must not contain a variable that
is bound in A.

3

3. second-order

Γ ` ∆,A{X ← Θ}
Γ ` ∆, (∀X)A ∀2 : r

A{X ← λx.F}, Γ ` ∆
(∀X)A,Γ ` ∆ ∀2 : l

Γ ` ∆,A{X ← λx.F}
Γ ` ∆, (∃X)A ∃2 : r

A{X ← Θ}, Γ ` ∆
(∃X)A,Γ ` ∆ ∃2 : l

For the ∀2 : r and the ∃2 : l rules the predicate variable Θ must not occur
in Γ nor in ∆ nor in A.
For the ∀2 : l and the ∃2 : r rules the formula F must not contain variables
that are bound in A, and A{X ← λx.F} is A after replacing all occurrences
of X with λx.F and reducing to β-normal form.

4. equality

Γ ` ∆, s = t Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ,A[t]Ξ

= (Ξ) : r1
Γ ` ∆, s = t A[s]Ξ ,Π ` Λ

A[t]Ξ , Γ,Π ` ∆,Λ
= (Ξ) : l1

Γ ` ∆, t = s Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ,A[t]Ξ

= (Ξ) : r2
Γ ` ∆, t = s A[s]Ξ ,Π ` Λ

A[t]Ξ , Γ,Π ` ∆,Λ
= (Ξ) : l2

where Ξ is a set of positions in A, and s, t are terms.
5. structural

Γ ` ∆
Γ ` ∆,A w : r Γ ` ∆

A,Γ ` ∆ w : l

Γ ` ∆,A,A
Γ ` ∆,A c : r

A,A, Γ ` ∆
A,Γ ` ∆ c : l

Γ1, A1, A2, Γ2 ` ∆
Γ1, A2, A1, Γ2 ` ∆

π : l
Γ ` ∆1, A1, A2,∆2

Γ ` ∆1, A2, A1,∆2
π : r

Γ ` ∆,A A,Π ` Λ
Γ,Π ` ∆,Λ cut

6. definitions

A(t1, . . . , tn), Γ ` ∆
P (t1, . . . , tn), Γ ` ∆

defP : l
Γ ` ∆,A(t1, . . . , tn)
Γ ` ∆,P (t1, . . . , tn)

defP : r

where P is a new constant predicate symbol, the defining predicate of A.

As axioms we allow the usual tautological sequents A ` A for an atomic formula
A as well as arbitrary atomic sequents without second-order variables (which
is useful for conveniently axiomatizing a background theory). Additionally, if C
is a set of atomic sequents, then we say that π is an LKDe2-proof from C if
for every initial sequent S of π, S is either an axiom, or S is in C. For formula
occurrences α in π, we will say that α goes into the end-sequent (into a cut) if

4

there exists a formula occurrence β such that α is an ancestor of β and β occurs
in the end-sequent (is a cut-formula occurrence). For rule applications ρ, we say
that ρ goes into the end-sequent (into a cut) if the main formula occurrence of
ρ goes into the end-sequent (into a cut). Sometimes, when it is convenient, we
will use the additive rules ∨ : r, ∧ : l — these can of course be derived using the
multiplicative rules together with contractions and permutations.

4 The second-order resolution calculus

In this section, we briefly present the resolution calculus we will need for the
CERES2 method. Note that in second-order logic, in contrast to first-order logic,
clauses are not closed under substitution, so the transformation of a formula to
clause form has to be incorporated into the calculus, instead of being used just
in a preprocessing step.

To use a resolution calculus with CERES2, it must be possible to use the
resolution refutation of a particular set of clauses (the characteristic clause set,
see Section 5) as the skeleton of an LKDe2-proof that contains no non-atomic
cuts. Intuitively, the following requirements arise:

1. Only literals (i.e. atomic formulas and their negations) may be resolved.
2. It must be possible to produce a propositional resolution refutation from

instances of the refuted set of clauses.

Requirement 1 stems from the fact that CERES2 is a cut-elimination method,
and the resolution rule will be translated to the cut rule in LKDe2. Requirement
2 is due to the fact that substitution is integrated in the resolution calculus, while
this is not the case with LKDe2.

The resolution calculus we are considering here is a restricted version of the
higher-order resolution calculus defined by P.B. Andrews in [6].

Definition 2. We define a clause as a sequent C := A1, . . . , An ` B1, . . . , Bm
with Ai, Bi atomic.

In this paper, the transformation to conjunctive normal form (CNF) is the stan-
dard transformation that preserves logical equivalence.

Definition 3. Let F be a quantifier-free formula. Let CNF(F) ≡ F1 ∧ . . . ∧ Fn
and for all 1 ≤ i ≤ n define L+

i (L−i) as the set consisting of the atom formu-
las occurring positively (negatively) in Fi. If L−i = {A1, . . . , Ak} and L+

i =
{B1, . . . , Bl}, then define the clause Ci as the atomic sequent A1, . . . , Ak `
B1, . . . , Bl. Then the clause form C of F is defined as the set C = {C1, . . . , Cn}.

Let S ≡ F1, . . . , Fn ` G1, . . . , Gm be a quantifier-free sequent, then the clause
form of S is defined as the clause form of (F1 ∧ . . . ∧ Fn)→ (G1 ∨ . . . ∨Gm).

A substitution is a pair of mappings: The first maps variables to terms, while the
second maps predicate variables to lambda terms. The result of the application
of a substitution σ to an expression e is e after replacing all variables by the
respective terms and all predicate variables by the respective lambda terms and

5

reducing to β-normal form, this will be denoted by eσ. A substitution is called
quantifier-free if all the (lambda-)terms are quantifier-free.

Definition 4. We define the application of a quantifier-free substitution σ to a
set of clauses C = {C1, . . . , Cn}, denoted S(C, σ), as the clause form of the set of
quantifier-free sequents {C1σ, . . . , Cnσ}. Note that this includes transformation
to CNF, therefore |S(C, σ)| ≥ |C|.

With this definition, we can state the rules of our resolution calculus.

Definition 5. In the following, C,D are clauses.

1. C is called instance of D if there exists a quantifier-free substitution σ s.t.
C ∈ S({D}, σ).

2. C is called p-reduct of D if C is D after omission of some multiply occuring
atomic formulas on either side of the sequent.

3. Let C ≡ Γ,L ` ∆ and D ≡ Γ ′ ` L,∆′, then the clause Γ, Γ ′ ` ∆,∆′ is
called a resolvent of {C,D}.

Definition 6. Let C ≡ Γ ` ∆, s = t, D ≡ Π ` Λ,F be clauses, s, t terms
and = a distinguished constant predicate. Then the clause Γ,Π ` Λ,∆, F [t] (or
Γ,Π ` Λ,∆, F [s]) where F [t] is the result of replacing some occurrences of s by
t in F (F [s] is defined symmetrically) is the result of paramodulation of {C,D}.
For D ≡ F,Π ` Λ paramodulation is defined analogously.

With this, we can define the notion of a deduction in this calculus:

Definition 7. Let C be a set of clauses and let C be a clause. A sequence
C1, . . . , Cn is called an R-deduction of C from C if it fulfills the following con-
ditions:

1. Cn ≡ C,
2. for all i = 1, . . . , n:

(a) Ci ∈ C or
(b) Ci is an instance or a p-reduct of Cj for some j < i or
(c) Ci is a resolvent of {Cj , Ck} for some j, k < i or
(d) Ci is the result of paramodulation of {Cj , Ck} for j, k < i.

An R-deduction of the empty sequent ` from C is called an R-refutation of C.

To see how this calculus can be used to prove a theorem, consider the following
example.

Example 1. We want to prove (∀x)(¬0 < x→ 0 = x) in a theory of arithmetic.
We use the second-order induction axiom, an axiom for the successor function s,
an axiom for the transitivity of the predicate <, and an axiom for the reflexivity
of the predicate = (the other properties of = are expressed by the paramodu-
lation rule). After negation of the theorem and transformation to clause form,

6

this yields the set of clauses

C = { ` x < s(x) (AX1)
x < y, y < z ` x < z (AX2)
X(0) ` X(x), X(f(X)) (IND1)
X(0), X(s(f(X))) ` X(x) (IND2)
` x = x, (REF)
0 < a `, (CONC1)
0 = a `} (CONC2)

where (IND1), (IND2) correspond to the induction axiom and (CONC1),
(CONC2) correspond to the negated theorem. We denote T ≡ λx.0 = x∨0 < x,
then using

σ = 〈{x← a}, {X ← T}〉 ,

we produce the set of clauses S({(IND1)}, σ) =

{ 0 = 0 ` 0 = a, 0 < a, 0 = f(T), 0 < f(T); (1)
0 < 0 ` 0 = a, 0 < a, 0 = f(T), 0 < f(T)} (2)

from which we choose the instance (1) which we resolve with (CONC2), this
yields

(C1) : 0 = 0 ` 0 < a, 0 = f(T), 0 < f(T)

From (REF) we get the instance ` 0 = 0, resolving with (C1) we get

(C2) : `0 < a, 0 = f(T), 0 < f(T)

and resolving (C2) with (CONC1) yields

(C3) : `0 = f(T), 0 < f(T)

Again using σ we obtain the set of clauses S({(IND2)}, σ) =

{ 0 = 0, 0 = s(f(T)) ` 0 = a, 0 < a; (1)
0 < 0, 0 = s(f(T)) ` 0 = a, 0 < a; (2)
0 = 0, 0 < s(f(T)) ` 0 = a, 0 < a; (3)
0 < 0, 0 < s(f(T)) ` 0 = a, 0 < a; (4)

from which we choose the instance (3) and resolve it with (CONC1), (CONC2)
and an instance of (REF) to get

(C4) : 0 < s(f(T)) `

Now we resolve (C4) with an instance of (AX2) to obtain

(C5) : 0 < y, y < s(f(T)) `

and resolve (C5) with (AX1) and get

(C6) : 0 < f(T) `

7

From (C6) and (C3) we get the resolvent

(C7) : `0 = f(T)

and from paramodulation with (C4) we get

(C8) : 0 < s(0) `

Now resolving (C8) and (AX1) yields

`

and we have proved (∀x)(¬0 < x→ 0 = x).

Finally, we state some lemmas that show that R-deductions can be transformed
to LKDe2-proofs. These will be useful for showing the effectiveness of the
CERES2 method in the next section.

Lemma 1. Let C be a clause and σ be a quantifier-free substitution. Then we
can construct an LKDe2-proof of Cσ from S({C}, σ) containing quantifier-free
cuts only.

Proof. As σ is quantifier-free, Cσ can be considered as a first-order sequent
Γ ` ∆. Let S({C}, σ) = {Γ1 ` ∆1, . . . , Γn ` ∆n}. For Σ = F1, . . . , Fj , define
¬Σ = ¬F1, . . . ,¬Fj ,

∨
Σ = F1∨. . .∨Fj . Then by the definition of transformation

to clause form, Π ≡
∨
¬Γ ∨

∨
∆ is logically equivalent to Λ ≡ (

∨
¬Γ1∨

∨
∆1)∧

. . . ∧ (
∨
¬Γn ∨

∨
∆n), so there is a proof of Λ ` Π. Clearly there is a proof of

Π,Γ ` ∆. There is a proof of ` Λ from S({C}, σ), we show this by induction on
the number of conjuncts in Λ:

1. Λ ≡
∨
¬Γ1 ∨

∨
∆1. Then S({C}, σ) = {Γ1 ` ∆1}. By repeated applications

of ¬ : r, we can prove ` ¬Γ1,∆1 from S({C}, σ). By repeated applications
of ∨ : r, we get `

∨
¬Γ1 ∨

∨
∆1.

2. Λ ≡ (
∨
¬Γ1 ∨

∨
∆1) ∧ . . . ∧ (

∨
¬Γn+1 ∨

∨
∆n+1), so S({C}, σ) = {Γ1 `

∆1, . . . , Γn+1 ` ∆n+1}. By (IH) we have a proof of ` (
∨
¬Γ1 ∨

∨
∆1)∧ . . .∧

(
∨
¬Γn ∨

∨
∆n) from {Γ1 ` ∆1, . . . , Γn ` ∆n}. To get the desired proof, use

` (
W
¬Γ1 ∨

W
∆1) ∧ . . . ∧ (

W
¬Γn ∨

W
∆n)

Γn+1 ` ∆n+1 ¬ : r
` ¬Γn+1, ∆n+1

∨ : r
`

W
¬Γn+1 ∨

W
∆n+1

∧ : r
` (

W
¬Γ1 ∨

W
∆1) ∧ . . . ∧ (

W
¬Γn ∨

W
∆n) ∧ (

W
¬Γn+1 ∨

W
∆n+1)

Putting things together, we get a proof π with quantifier-free cuts

` Λ Λ ` Π
cut

` Π Π,Γ ` ∆
cut

Γ ` ∆

As required, π is a proof from S({C}, σ).

8

Lemma 2. Let C ≡ Γ ` ∆ be a clause, D be a set of clauses, ψ be a LKDe2-
proof of Γ,Π ` Λ,∆ from D with only quantifier-free cuts, let σ be a quantifier-
free substitution whose domain contains no variable which occurs free in Π ∪ Λ
and let Γ ∗ ` ∆∗ ∈ S({C}, σ). Then we can construct an LKDe2-proof ψ∗

of Γ ∗,Π ` Λ,∆∗ from S(D, σ) with only quantifier-free cuts and with |ψ∗| ≤
|ψ|+ρ(|Γσ ` ∆σ|), where ρ is exponential if σ substitutes for a predicate variable
in D, and polynomial otherwise.

Proof. The proof ψ∗ has the following form:

(ψ′σ)
Γσ,Π ` Λ,∆σ.... (a)

Π ` Λ,
∧
Γσ →

∨
∆σ.... (b)

Π ` Λ,NNF(
∧
Γσ →

∨
∆σ).... (c)

Γ ∗,Π ` Λ,∆∗

First, we obtain ψ′σ from ψ: Let D = {C1, . . . , Cn}, then when we apply σ to
ψ, this yields a proof of Γσ,Π ` Λ,∆σ where every initial sequent is either an
axiom, or of the form Aσ ` Aσ, or Ciσ for some 1 ≤ i ≤ n. We have to replace
the latter two kinds of initial sequents by proofs to obtain the proof ψ′σ from
S(D, σ):

1. We replace initial sequents of the form Aσ ` Aσ by their respective proofs
from atomic initial sequents and

2. apply Lemma 1 to initial sequents of the form Ciσ to obtain proofs of Ciσ
from S({Ci}, σ). We replace the initial sequents by the respective proofs.

This yields the desired proof ψ′σ from S(D, σ). We will now describe the steps
(a-c) in detail:

(a) By a series of ∧: l- and ∨: r-, followed by an → : r-rule.
(b) For any formula F there is a proof χF of F ` NNF(F) based on the well-

known rewrite rules of (i) replacing implication by negation and disjunction,
(ii) the de Morgan-laws and (iii) double negation elimination. Phase (b)
consists of a single cut against such a proof.

(c) For every negation normal form F and clause Γ ∗ ` ∆∗ ∈ CNF(F), there
exists a proof χΓ

∗`∆∗
F of F, Γ ∗ ` ∆∗. χΓ

∗`∆∗
F is constructed as follows:

If F = G ∧H, then Γ ∗ ` ∆∗ ∈ CNF(G) or Γ ∗ ` ∆∗ ∈ CNF(H). Define

χΓ
∗`∆∗

G∧H :=
(χΓ

∗`∆∗
G)

G,Γ ∗ ` ∆∗

G ∧H,Γ ∗ ` ∆∗ ∧: l1

in the first case and use ∧: l2 analogously in the second case. If F = G∨H,
then Γ ∗ = Γ ∗1 ∪ Γ ∗2 and ∆∗ = ∆∗

1 ∪ ∆∗
2 s.t. Γ ∗1 ` ∆∗

1 ∈ CNF(G) and

9

Γ ∗2 ` ∆∗
2 ∈ CNF(H). Define

χΓ
∗`∆∗

G∨H :=
(χΓ

∗
1 `∆

∗
1

G)
G,Γ ∗1 ` ∆∗

1

(χΓ
∗
2 `∆

∗
2

H)
H,Γ ∗2 ` ∆∗

2

G ∨H,Γ ∗ ` ∆∗ ∨: l

If F = ¬G, then G is an atom, Γ ∗ = {G}, ∆∗ = ∅ and define

χG`¬G :=
G ` G
¬G,G ` ¬: l

If F is an atom, then Γ ∗ = ∅, ∆∗ = {F} and therefore F, Γ ∗ ` ∆∗ is already
an axiom. Phase (c) consists of a single cut against χΓ

∗`∆∗
NNF(

V
Γσ→

W
∆σ).

The total size of ψ∗ is |ψσ| = |ψ| plus O(|Γσ ` ∆σ|) for each of the three phases,
plus a number exponential in the size of σ in case we have to apply Lemma 1.

Lemma 3. Let R be an R-deduction of Γ ` ∆ from a set of clauses C. Then
there exists an LKDe2-proof ψ of Γ ` ∆ from D containing quantifier-free
cut-formulas only, where D = {D | D ∈ S(C, σ) for some quantifier-free σ}.

Proof. By induction on the size of R, letting C = {C1, . . . , Cn}:

1. |R| = 0. Then R = Ci for some 1 ≤ i ≤ n. Take ψ as the initial sequent Ci.
2. |R| = m+ 1. Let R = A1, . . . , Am+1. Distinguish:

(a) Am+1 is an instance of Ai under a quantifier-free substitution σ (for
some 1 ≤ i ≤ m). By (IH) we have an LKDe2-proof ψ of Ai from
D = {D | D ∈ S(C, µ) for some quantifier-free µ}. We apply Lemma 2
to obtain a proof ψ′ of Am+1 from S(D, σ). Clearly, S(D, σ) consists of
quantifier-free instances of clauses in C and we can take ψ′ as the desired
LKDe2-proof.

(b) Am+1 is a p-reduct of Ai for some 1 ≤ i ≤ m. Then

Ai ≡ B1, . . . , B1, B2, . . . , B2, . . . , Bk, . . . , Bk ` C1, . . . , C1, . . . , Cl, . . . , Cl

and Am+1 is Ai after omission of some B1, . . . , Bk, C1, . . . , Cl such that
at least one atom remains in every group. By (IH), we have an LKDe2-
proof ψ of Ai fulfilling our conditions, so clearly we can take

ψ

Ai c : ∗
Am+1

as the desired proof.
(c) Am+1 is a resolvent of {Cj , Ck} for some 1 ≤ j ≤ m, 1 ≤ k ≤ m. So if

Cj ≡ Γ ` ∆,A, Ck ≡ A,Π ` Λ, then Am+1 ≡ Γ,Π ` ∆,Λ and by (IH),
we have proofs ψ1 of Cj and ψ2 of Ck fulfilling our conditions. So as the
desired proof we may take

10

ψ1

Γ ` ∆,A
ψ2

A,Π ` Λ
cut

Γ,Π ` ∆,Λ
(d) Am+1 is the result of paramodulation of {Cj , Ck} for some 1 ≤ j ≤ m,

1 ≤ k ≤ m. Analogous to the previous case, using the equality rules of
LKDe2 instead of cut.

Example 2. Consider the following R-deduction of P (t), Q(t) ` P (s) from

C = {T, t ∈ X ` s ∈ X; ` T},

where σ = {X ← λx.P (x) ∧Q(x)}:

` T T, t ∈ X ` s ∈ X
res

t ∈ X ` s ∈ X
inst σ

P (t), Q(t) ` P (s)

First, we convert the application of resolution to an application of cut, yielding
the proof ψ:

` T T, t ∈ X ` s ∈ X
cut

t ∈ X ` s ∈ X

Using Lemma 2, from ψ we obtain a proof ϕ of P (t), Q(t) ` P (s). For step (a),
we obtain the proof ψ→:

` T

T, P (t), Q(t) ` P (s) T, P (t), Q(t) ` Q(s)
∧ : r

T, P (t), Q(t) ` P (s) ∧Q(s)
∧ : l

T, P (t) ∧Q(t) ` P (s) ∧Q(s)
cut

P (t) ∧Q(t) ` P (s) ∧Q(s)
→: r

` P (t) ∧Q(t) → P (s) ∧Q(s)

Step (b) yields the proof ξP (t)∧Q(t)→P (s)∧Q(s):

P (t) ` P (t) Q(t) ` Q(t)
∧ : r

P (t), Q(t) ` P (t) ∧Q(t)
¬ : r

` P (t) ∧Q(t),¬P (t),¬Q(t)

P (s) ` P (s) Q(s) ` Q(s)

P (s), Q(s) ` P (s) ∧Q(s)
∧ : r

P (s) ∧Q(s) ` P (s) ∧Q(s)
→: l

P (t) ∧Q(t) → P (s) ∧Q(s) ` ¬P (t),¬Q(t), P (s) ∧Q(s)
∨ : r

P (t) ∧Q(t) → P (s) ∧Q(s) ` ¬P (t) ∨ ¬Q(t) ∨ (P (s) ∧Q(s))

In step (c), we compute ξP (t),Q(t)`P (s)
NNF(P (t)∧Q(t)→P (s)∧Q(s)):

P (t) ` P (t)
¬ : l

¬P (t), P (t) `
Q(t) ` Q(t)

¬ : l
¬Q(t), Q(t) `

∨ : l
¬P (t) ∨ ¬Q(t), P (t), Q(t) `

P (s) ` P (s)
∧ : l1

P (s) ∧Q(s) ` P (s)
∨ : l

¬P (t) ∨ ¬Q(t) ∨ (P (s) ∧Q(s)), P (t), Q(t) ` P (s)

Putting these proofs together we obtain ϕ:

ψ→ ξP (t)∧Q(t)→P (s)∧Q(s)
cut

` ¬P (t) ∨ ¬Q(t) ∨ (P (s) ∧Q(s)) ξ
P (t),Q(t)`P (s)
NNF(P (t)∧Q(t)→P (s)∧Q(s))

cut
P (t), Q(t) ` P (s)

which is the desired LKDe2-proof of P (t), Q(t) ` P (s) from S(C, σ).

11

5 The CERES2 cut-elimination method

We now define the CERES2 method, which will turn out to be a cut-elimination
method for LKDe2-proofs using quantifier-free comprehension.

Definition 8. Let (R) be a weak second-order quantifier rule

A{X ← λx.F}, Γ ` ∆
(∀X)A,Γ ` ∆ ∀2 : l

Γ ` ∆,A{X ← λx.F}
Γ ` ∆, (∃X)A ∃2 : r

then (R) is called quantifier-free if F does not contain quantifiers. We call an
LKDe2-proof π a QFC-proof if all its weak second-order quantifier rule appli-
cations are quantifier-free.

Note that as we allow non-tautological axioms, it is not in general possible to
eliminate all cuts. This leads to the following notion: An LKDe2-proof π is
called in atomic cut normal form (ACNF) if all cut-formulas of π are atomic.

We will now prove a lemma that shows that strong quantifiers can be removed
from a sequent in a proof by replacing the corresponding variables by skolem
terms. First, we define skolemization:

Definition 9. We define the skolemization operator sk−. Let F be a closed
formula, then define

sk−(F) =

F if F does not contain strong
quantifiers,

sk−(F(Qy){y ← f(x1, . . . , xn)}) if y ∈ V and (Qy) is in the
scope of the weak quantifiers
(Q1x1), . . . , (Qnxn)
(appearing in this order),

sk−(F(Qy){y ← λz.z ∈ P (x1, . . . , xn)}) if y ∈ PV and (Qy) is in the
scope of the weak quantifiers
(Q1x1), . . . , (Qnxn)
(appearing in this order),

where F(Qy) denotes F after omission of (Qy), f ,P do not occur in F , (Qy) is
a strong quantifier and if for 1 ≤ i ≤ n, τ(xi) = ti, then τ(P) = ι→ t1 → . . .→
tn → o and τ(f) = t1 → . . .→ tn → ι.

This definition is made for formulas F not containing defined atoms. In the
case of F containing such atoms, the definition above has to be extended in the
following way: every defined atom P is replaced by a new defined atom Pµx1,...,xn

,
where µ ∈ {+,−} denotes the polarity of P in F and x1, . . . , xn is the list of the
weakly quantified variables whose quantifiers dominate P .

In any case, let S be the closed sequent A1, . . . , An ` B1, . . . , Bm, and let F ≡
(A1∧ . . .∧An)→ (B1∨ . . .∨Bm). If sk−(F) ≡ (A′1∧ . . .∧A′n)→ (B′1∨ . . .∨B′m),
then sk−(S) = A′1, . . . , A

′
n ` B′1, . . . , B′m.

12

Example 3. Consider the formula F ≡ (∀X)((∃Y)t ∈ Y → (∃Z)(s ∈ Z∧r ∈ X)),
then

sk−(F) ≡ t ∈ P2 → ((∃Z)s ∈ Z ∧ r ∈ P3)

A path in an LKDe2-proof is defined in the usual way. For the replacement of
a subformula B at position λ by C in A we write A[C]λ.

Lemma 4. Let ψ be a proof of S, then we can construct a proof of sk−(S).

Proof. This proof is based on the proof of the proposition for first-order logic
in [7]. Let S ≡ Γ ` ∆ and assume S contains a positive occurrence of (∀X)A.
Then this quantifier has been introduced in one of the following ways in ψ:

(a)
Π ` Λ,B

∨ : r
Π ` Λ,B ∨ C

s.t. (∀X)A occurs as a subformula of C. Let ρ[B∨C] be the path connecting
Π ` Λ,B ∨C with S. Let A{X ← λz.z ∈ P (x1, . . . , xn)} be the subformula
in sk−(S) corresponding to (∀X)A in S (i.e. its skolemization). Then define
C ′ ≡ C[(∀X)A(X)/A(λz.z ∈ P (x1, . . . , xn))]ξ, where ξ is the position of
(∀X)A in C and replace ρ[B ∨ C] by ρ[B ∨ C ′]. This will not violate any
eigenvariable conditions, as x1, . . . , xn are all weakly quantified variables.

(b)
B,Π ` Λ

∧ : l
B ∧ C,Π ` Λ

s.t. (∀X)A occurs as a subformula of C. Analogous to (a).

(c) Π ` Λ w : r
Π ` Λ,B

s.t. (∀X)A occurs as a subformula of B. Analogous to (a).

(d) Π ` Λ w : r
B,Π ` Λ

s.t. (∀X)A occurs as a subformula of B. Analogous to (a).

(e)
ϕ(Θ)

Π ` Λ,A(Θ)
∀2 : r

Π ` Λ, (∀X)A(X)
Let ρ[(∀X)A(X)] be the path connecting Π ` Λ, (∀X)A(X) with S. Let
t1, . . . , tn be the (lambda-)terms eliminated by introductions of weak quan-
tifiers on ρ[(∀X)A(X)] that dominate the occurrence of (∀X)A(X). We in-
troduce a new constant predicate symbol P of appropriate type and replace
ϕ(Θ) by ϕ(λz.z ∈ P (t1, . . . , tn)). By the eigenvariable condition on Θ, this
yields a valid proof of Π ` Λ,A(λz.z ∈ P (t1, . . . , tn)) (note that t1, . . . , tn
cannot contain eigenvariables from the proof ϕ(Θ), as they cannot be present
in Π ` Λ, (∀X)A(X) by the eigenvariable condition and t1, . . . , tn occur be-
low this sequent). We remove the ∀2 : r rule and replace ρ[(∀X)A(X)] by
ρ[A(λz.z ∈ P (t1, . . . , tn))]. By construction, the (lambda-)terms t1, . . . , tn
will be eliminated one-by-one by the weak quantifier introduction rules on
ρ[A(λz.z ∈ P (t1, . . . , tn))], the occurrence of (∀X)A(X) in S will thus be-
come A(λz.z ∈ P (x1, . . . , xn)), which is exactly the corresponding occur-
rence in sk−(S).

13

In all cases, we have to take contractions and definition introductions into con-
sideration: For the latter, we replace every definition introduction rule defP : l
by defP−x1,...,xn

: l and defP : r by defP+
x1,...,xn

: r, where Pµx1,...,xn
is the corre-

sponding skolemized defined predicate. Regarding the former: If there are two
predecessors of the form D ≡ C[(∀X)A(X)] of the occurrence of (∀X)A(X) in
S s.t. there is a contraction

F [D], F [D]Λ ` Π
c : l

F [D], Λ ` Π
we have to introduce the same skolem symbol for both predecessors (as otherwise
the contraction can not be applied anymore).

The cases for other quantifiers are handled analogously. Note that in this
transformation, all tautological initial sequents A ` A are still tautological al-
though their structure changes: This is due to the restriction to atomic initial se-
quents and the eigenvariable condition. The only part of the transformation that
changes the initial sequents is (e), here initial sequents of the form A(α) ` A(α)
are transformed to A(t) ` A(t) in the first-order case and initial sequents of the
form t ∈ Θ ` t ∈ Θ are transformed to t ∈ P (t1, . . . , tn) ` t ∈ P (t1, . . . , tn) in
the second-order case.

Definition 10. Let ψ be an LKDe2-proof. If all strong quantifier rules in ψ go
into cuts, then ψ is said to be in skolem form.

The following proposition shows that from a QFC-proof, we can indeed obtain
a proof in skolem form. Proofs in skolem form allow the definition of proof
projections by leaving out rules from the proof, as no eigenvariable violations can
occur by doing so. This will be necessary to construct sound proofs in Definition
11.

Proposition 1. For every QFC-proof ψ of S there exists a QFC-proof ψ′ of
sk−(S) in skolem form.

Proof. We can obtain ψ′ from ψ by applying Lemma 4 to S, this yields a proof of
sk−(S) s.t. all strong quantifiers go into cuts, as by assumption, ψ uses quantifier-
free comprehension and therefore all strong quantifier rules in ψ going into the
end-sequent will be removed by skolemization.

Note that in this context, skolemization indeed does preserve validity (in contrast
to what is observed in [8]), because the proposition we just stated generates a
proof of the skolemized formula from a proof of the unskolemized formula. As
LKDe2 is sound, the transformation is validity preserving.

We can now define the main parts of the CERES2-method: the characteristic
clause set and the set of proof projections of a proof π. The former will be always
unsatisfiable and give rise to a resolution refutation, while the latter will allow
the resolution refutation to be transformed into a proof of the end-sequent of π.

Definition 11. Let π be a QFC-proof in skolem form. For each rule ρ in π, we
define a set of cut-free QFC-proofs, the set of projections Pρ(π) of π, and a set
of clauses, the characteristic clause set CLρ(π) of π, at the position ρ.

14

– If ρ is an initial sequent, let Γ1 ` ∆1 be the part of it which consists of
ancestors of cut formulas, let Γ2 ` ∆2 be the part which consists of ancestors
of the end-sequent of π and define

Pρ(π) := {Γ1, Γ2 ` ∆2,∆1}
CLρ(π) := {Γ1 ` ∆1}.

– If ρ is a unary rule with immediate predecessor ρ′ with Pρ′(π) = {ψ1, . . . , ψn},
distinguish:
(a) The active formulas of ρ are ancestors of cut formulas. Then

Pρ(π) := Pρ′(π)

(b) The active formulas of ρ are ancestors of the end-sequent. Then

Pρ(π) := {ρ(ψ1), . . . , ρ(ψn)}

where ρ(ψ) is the proof that is obtained from ψ by applying ρ to its end-
sequent. Note that by assumption, all strong quantifier rules go into cuts,
so ρ cannot be a strong quantifier rule, so no eigenvariable violation can
occur here.

In any case, CLρ(π) := CLρ′(π).
– Let ρ be a binary rule with immediate predecessors ρ1 and ρ2.

(a) If the active formulas of ρ are ancestors of cut-formulas, let Γi ` ∆i

be the ancestors of the end-sequent in the conclusion sequent of ρi and
define

Pρ(π) := Pρ1(π)Γ2`∆2 ∪ Pρ2(π)Γ1`∆1

where PΓ`∆ := {ψΓ`∆ | ψ ∈ P} and ψΓ`∆ is ψ followed by weakenings
adding Γ ` ∆. For the characteristic clause set, define

CLρ(π) := CLρ1(π) ∪ CLρ2(π)

(b) If the active formulas of ρ are ancestors of the end-sequent, then

Pρ(π) := Pρ1(π)× Pρ2(π).

where
P ×Q = {ρ(ψ, χ) | ψ ∈ P, χ ∈ Q}

and ρ(ψ, χ) is the proof that is obtained from the proofs ψ and χ by
applying the binary rule ρ. For the characteristic clause set, define

CLρ(π) := CLρ1(π)× CLρ2(π)

where

{Γ1 ` ∆1, . . . , Γm ` ∆m} × {Π1 ` Λ1, . . . ,Πn ` Λn} =
{Γi,Πj ` ∆i, Λj | i ≤ m, j ≤ n}.

15

The set of projections of π, P(π) is defined as Pρ0(π), and the characteristic
clause set of π, CL(π) is defined as CLρ0(π), where ρ0 is the last rule of π.

Note that for the soundness of this definition, we need the assumption that π is
in skolem form: if this were not the case, violations of eigenvariable conditions
could appear in the projections.

Example 4. Consider the proof ψ:

a ∈ Θ ` a ∈ Θ ¬ : r
` a ∈ Θ, a /∈ Θ

b ∈ Θ ` b ∈ Θ
¬ : l

b /∈ Θ, b ∈ Θ `
→: l

b ∈ Θ, a /∈ Θ → b /∈ Θ ` a ∈ Θ
∀2 : l

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) ` a ∈ Θ
→: r

(∀X)(a ∈ X → b ∈ X) ` b ∈ Θ → a ∈ Θ
∀2 : r

(∀X)(a ∈ X → b ∈ X) ` (∀X)(b ∈ X → a ∈ X)

b ∈ P ` b ∈ P a ∈ P ` a ∈ P
→: l

b ∈ P → a ∈ P, b ∈ P ` a ∈ P
→: r

b ∈ P → a ∈ P ` b ∈ P → a ∈ P
∀2 : l

(∀X)(b ∈ X → a ∈ X) ` b ∈ P → a ∈ P
cut

(∀X)(a ∈ X → b ∈ X) ` b ∈ P → a ∈ P

where X,Θ are predicate variables, a, b are individual constants, and P is a
predicate constant. Then

CL(ψ) = ({` a ∈ Θ} × {b ∈ Θ `}) ∪ {` b ∈ P} ∪ {a ∈ P `}
= {b ∈ Θ ` a ∈ Θ; ` b ∈ P ; a ∈ P `}

and P(ψ) consists of the proofs

a ∈ Θ ` a ∈ Θ ¬ : r
` a ∈ Θ, a /∈ Θ

b ∈ Θ ` b ∈ Θ
¬ : l

b /∈ Θ, b ∈ Θ `
→: l

b ∈ Θ, a /∈ Θ → b /∈ Θ ` a ∈ Θ
∀2 : l

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) ` a ∈ Θ
w : r

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) ` b ∈ P → a ∈ P, a ∈ Θ

and

a ∈ P ` a ∈ P
w : l

b ∈ P, a ∈ P ` a ∈ P
→: r

a ∈ P ` b ∈ P → a ∈ P
w : l

a ∈ P, (∀X)(a ∈ X → b ∈ X) ` b ∈ P → a ∈ P

and

b ∈ P ` b ∈ P
w : r

b ∈ P ` b ∈ P, a ∈ P
→: r

` b ∈ P → a ∈ P, b ∈ P
w : l

(∀X)(a ∈ X → b ∈ X) ` b ∈ P → a ∈ P, b ∈ P

We will now prove the main properties of CERES2. The following lemmas are
used to establish that for QFC-proofs π in skolem form, we can always find an
R-refutation of CL(π).

Lemma 5. Let C be a set of clauses, π be a regular QFC-proof of ` from C.
Then there exists a QFC-proof ψ of ` from a set of clauses D = {D | D ∈
S(C, σ) for some quantifier-free σ} such that ψ consists of atomic cuts, contrac-
tions and permutations.

16

Proof. As we know from e.g. [9], reductive cut-elimination in second-order logic
terminates, so we can apply it to π to eliminate all non-atomic cuts and ob-
tain a proof π′ of `. First, note that π′ consists of atomic cut, contraction and
permutation: weakening is automatically eliminated by cut-elimination. Denote
the set of initial sequents of a proof ϕ by init(ϕ). We will show that π′ can be
transformed into a proof ψ s.t. init(ψ) consists of quantifier-free instances of
clauses in C. We can then take D as init(ψ). We proceed by induction on the
cut-elimination of π to obtain π′. As induction invariant, we take the following:
π′ can be transformed into a QFC-proof ψ s.t. init(ψ) consists of quantifier-free
instances of clauses in C.

For the base case, we take ψ = π, so as init(π) = init(ψ) and π uses quantifier
free comprehension, the invariant holds.

1. The cut-eliminiation performs a rank reduction on π. Then the initial se-
quents of π and π′ coincide, except when performing rank reduction over a
contraction: Here, we perform adequate renamings of eigenvariables in π′ to
keep regularity and take ψ = π′. Clearly, init(ψ) consists of init(π) together
with some renamed variants of clauses in init(π), and the lambda terms of
the weak second-order quantifier rules are not changed, so the proposition
holds.

2. The cut-elimination performs a grade reduction on ϕ. Distinguish:
(a) The grade reduction is performed on propositional rules. init(π) and

init(π′) coincide and we take ψ = π′, still the lambda terms of the weak
second-order quantifier rules are not changed.

(b) The grade reduction is performed on first-order quantifier rules. Let x←
t be the substitution that is applied by the cut-elimination, then by
regularity init(π′) = init(π){x ← t}. Again we take ψ = π′ and note
that no quantifiers are introduced in any lambda terms of weak second-
order quantifier rules, so the proposition holds.

(c) The grade reduction is performed on second-order quantifier rules. Let
σ = {X ← λx.F} be the substitution that is applied by the cut-
elimination. By (IH), σ is quantifier-free. Let init(π) = {Γ1 ` ∆1, . . . , Γn `
∆n}. Then

init(π′) = {(Γ1 ` ∆1)σ, . . . , (Γn ` ∆n)σ}.

By Lemma 1, for every 1 ≤ i ≤ n, we have a proof of (Γi ` ∆i)σ from
S({Γi ` ∆i}, σ). Take ψ to be π′ where those leafs are replaced by the
respective proofs, then

init(ψ) = S({Γ1 ` ∆1}, σ) ∪ . . . ∪ S({Γn ` ∆n}, σ)

and the first part of the proposition holds. For the second part, note that
as σ is quantifier-free and no new second-order quantifier rules are intro-
duced in this step, all second-order quantifier rules are still quantifier-
free.

17

Lemma 6. Let π be a QFC-proof in skolem form. Then there exists an R-
refutation of CL(π).

Proof. Analogous to the proof of unsatisfiability of CL(π) for first-order logic
in [3] by removing all rules of π except the ancestors of the cuts, and removing
all formula occurrences in π except the ancestors of cuts, we construct a QFC-
proof ψ of ` from CL(π). We apply Lemma 5 to obtain a QFC-proof γ of ` from
quantifier-free instances of CL(π) using atomic cut, contraction and permutation
only. γ readily gives rise to an R-refutation of CL(π): First, derive the necessary
instances used in γ from CL(π) using instantiation, then, whenever atomic cuts
are used in γ, apply resolution, and whenever contractions are used in γ, apply
p-reduction.

We are now ready to define the CERES2 method and state our central result.

Definition 12. Let π be a QFC-proof of S. Then the CERES2 method is the
following algorithm:

1. Compute a QFC-proof πsk of sk−(S).
2. Compute CL(πsk), P(πsk).
3. Compute an R-refutation γ of CL(πsk).
4. Convert γ into an LKDe2-proof γ′ of ` from CL(πsk).
5. Plug instances of the proofs in P(πsk) into the leaves of γ′ to obtain a proof

ψ of sk−(S) containing quantifier-free cuts only.
6. Perform quantifier-free cut-elimination on ψ to obtain a proof ϕ of sk−(S)

containing no non-atomic cuts.

Let us remark here that in step 6, any method for cut-elimination for quantifier-
free cuts can be used (e.g. reductive methods, “zero-th order” CERES). Further-
more, considering that the instantiations of quantifiers are the core information
in a proof, one can even leave out this step as the instantiations in ϕ and ψ
coincide.

Theorem 1. Let π be a QFC-proof of S. Then the CERES2 method transforms
π into an LKDe2-proof ϕ of sk−(S) such that ϕ is in atomic-cut normal form.

Proof. Using Proposition 1, we convert π to πsk. By Lemma 6, we can compute
an R-refutation γ of CL(πsk). By Lemma 3, from γ we can construct an LKDe2-
refutation γ′ of CL(πsk). Every initial sequent of γ′ is either a sequent A ` A,
an axiom, or an instance C∗ of some C ∈ CL(πsk) under a substitution σ. Let
C ≡ Π ` Λ and sk−(S) ≡ Γ ` ∆, then by Definition 11 we have a cut-free
QFC-proof ψC of Γ,Π ` Λ,∆. Let C∗ ≡ Π∗ ` Λ∗, then by Lemma 2, we can
construct LKDe2-proofs ψC∗ of Γ,Π∗ ` Λ∗,∆ that contain quantifier-free cuts
only. By plugging these proofs onto the leaves of γ′ and adding contractions at
the end, we obtain an LKDe2-proof of Γ ` ∆ containing quantifier-free cuts
only. By applying cut-elimination to this proof, we obtain the desired proof ϕ.

18

5.1 Extending CERES2

This work defines a method for cut-elimination for QFC-proofs. A natural ques-
tion is then, whether the method can be extended to stronger comprehension. In
the previous section, it was stated that skolemization is an important technical
tool in the context of the method, as it removes strong quantifier introduction
rules and because of this allows the definition of proof projections without caus-
ing violations of eigenvariable conditions.

When considering comprehension involving quantifiers, proof skolemization
has to be modified to achieve the same effect: it is not enough to skolemize the
end-sequent, as strong quantifier rules may go into weak second-order quantifier
rules and therefore, the corresponding strong quantifiers will not be present in
the end-sequent.

A tempting idea is, then, to simply skolemize the formulas that disappear
into weak second-order quantifier rules. This motivates the following definitions:

Definition 13. Let (R) be a weak second-order quantifier rule

A′, Γ ` ∆
∀2 : l λx.F(∀X)A,Γ ` ∆

and let A∗ be the formula obtained from A′ by skolemizing the strong quantifiers
that are eliminated by (R). (R) is called skolemizable if there exists a formula
F ∗ such that

A∗, Γ ` ∆
∀2 : l λx.F ∗(∀X)A,Γ ` ∆

is a valid rule application. For ∃2 : r the definition is analogous.

Definition 14. An LKDe2-proof ψ is called skolemizable if all weak second-
order quantifier rules occurring in ψ that go into the end-sequent are skolemiz-
able.

Example 5. The following proof is not skolemizable:

P (β, a) ` P (β, a)
∀ : l

(∀x)P (x, a) ` P (β, a)
∀ : r

(∀x)P (x, a) ` (∀z)P (z, a)

P (α, b) ` P (α, b)
∀ : l

(∀z)P (z, b) ` P (α, b)
∀ : r

(∀z)P (z, b) ` (∀x)P (x, b)
→: l

(∀x)P (x, a), (∀z)P (z, a)→ (∀z)P (z, b) ` (∀x)P (x, b)
∀2 : l λx.(∀z)P (z, x)

(∀x)P (x, a), (∀X)(X(a)→ X(b)) ` (∀x)P (x, b)
→: r

(∀X)(X(a)→ X(b)) ` (∀x)P (x, a)→ (∀x)P (x, b)

Skolemization of the proof would yield

19

P (s2, a) ` P (s2, a) ∀ : l
(∀x)P (x, a) ` P (s2, a)

P (s1, b) ` P (s1, b) ∀ : l
(∀z)P (z, b) ` P (s1, b) →: l

(∀x)P (x, a), P (s2, a)→ (∀z)P (z, b) ` P (s1, b) ∀2 : l λx.(∀z)P (z, x)
(∀x)P (x, a), (∀X)(X(a)→ X(b)) ` P (s1, b) →: r

(∀X)(X(a)→ X(b)) ` (∀x)P (x, a)→ P (s1, b)

where the ∀2 : l rule application is clearly not sound.

Example 6. Proofs that use induction with an induction invariant that contains
quantifiers (where the induction goes into the end-sequent) are not skolemizable.
Take for example the proof

Γ, (∀z)G(z, 0) ∧ (∀x)((∀z)G(z, x)→ (∀z)G(z, x′))→ (∀x)(∀z)G(z, x) ` ∆
∀2 : l

Γ, (∀X)(X(0) ∧ (∀x)(X(x)→ X(x′))→ (∀x)X(x)) ` ∆

where A ≡ X(0) ∧ (∀x)(X(x) → X(x′)) → (∀x)X(x). Here, X occurs in two
polarities in A and F ≡ λx.(∀z)G(z, x) contains quantifiers. Then

A∗ ≡ G(s1, 0) ∧ (∀x)((∀z)G(z, x)→ G(s2, x′))→ (∀x)(∀z)G(z, x)

and does not admit the introduction of the weak second-order quantifier.

We will now give a syntactic characterization of the skolemizable rules. For this,
we need some definitions.

Definition 15. Let X be a predicate variable and F be a formula. We say that
X is linear in F if the number of occurrences of X in F is < 2. Let X be linear
in F , then we call X restricted in F if

1. no weak quantifier dominates X or
2. exactly one weak quantifier (Qx) dominates X and X occurs as x ∈ X.

Definition 16. Let (Qx)F be a quantified formula. The occurrence of (Qx) is
called non-dummy if F contains x.

Proposition 2. Let (R) be a second-order quantifier rule as in Definition 13.
(R) is skolemizable iff either

1. X is linear in A and if F contains non-dummy strong quantifiers w.r.t.
A{X ← λx.F} then X is restricted in A or

2. X occurs only positively (negatively) in A and all non-dummy quantifier
occurrences in F are weak (strong) quantifiers or

3. F does not contain non-dummy quantifiers.

Proof. (R) is

A{X ← λx.F (x)}, Γ ` ∆
∀2 : l(∀X)A,Γ ` ∆

20

First, we will show that the given criteria imply skolemizability of (R). We will
define the formula F ∗ that will be used for the rule application

A∗, Γ ` ∆
∀2 : l λx.F ∗(∀X)A,Γ ` ∆

Either:

1. X is linear in A and if F (x) contains non-dummy strong quantifiers w.r.t.
A{X ← λx.F} then X is restricted in A. If X does not occur in A, then
there is nothing to show, so assume X occurs as t ∈ X at position ξ in
A. Then A{X ← λx.F (x)} ≡ A[F (t)]ξ and A∗ ≡ A[F ′(t)]ξ where F ′(t) is
the skolemization of F (t) in A. If F does not contain non-dummy strong
quantifiers w.r.t. A{X ← λx.F}, then F ′(t) is just F (t) after dropping some
quantifiers, and we can use F ∗ ≡ F ′(x). Otherwise, distinguish the cases
(a) No weak quantifier dominates X. Then F ′(t) only contains variables that

occur in F (t), so F ′(t) does not contain any variable that is bound in A,
therefore we may use F ∗ ≡ F ′(x).

(b) Exactly one weak quantifier (Qz) dominates X and t ≡ z. We set F ∗ ≡
F ′(t){z ← x}, then A{X ← λx.F ∗} ≡ A[F ′(t)]ξ and again F ∗ does not
contain any variable that is bound in A.

2. X occurs only positively in A and all non-dummy quantifiers in F (x) are
weak. Then the skolemization of F (x) in A{X → λx.F (x)}, call it F ′(x),
is just F (x) after dropping some empty strong quantifiers and we may use
F ∗ ≡ F ′(x).

3. X occurs only negatively in A and all non-dummy quantifiers in F (x) are
strong. Analogous to the previous case.

4. F (x) only contains empty quantifiers. Analogous to the previous cases.

For the other direction, we show that if the given criteria are not fulfilled,
then (R) is not skolemizable. We proceed with a proof by contradiction. We may
assume that F contains non-dummy quantifiers. We distinguish the cases

1. X is not linear in A. Assume X occurs at positions η1,η2 in A as t1 ∈ X,
t2 ∈ X. Then at positions η1, η2 in A{X ← λx.F} we have subformula
occurrences of F (t1), F (t2). There are the following subcases:
(a) X occurs positively in A and F contains non-dummy strong quanti-

fiers. Then the occurrences of F (t1), F (t2) are positive. F contains non-
dummy strong quantifiers, so at the same relative positions in the skolem-
izations of F (t1), F (t2) we have skolem terms with different head sym-
bols, say f1, f2. F ∗ cannot contain two terms with different heads at the
same position, so they must be introduced in A∗ by substitution when
applying λx.F ∗ to t1, t2. But t1, t2 cannot contain f1, f2, because they
are fresh symbols, and we arrive at a contradiction.

(b) X occurs negatively in A and F contains non-dummy weak quantifiers.
Analogous to the previous case.

(c) F contains non-dummy strong and weak quantifiers. As X occurs in A, it
does so either positively or negatively, so one of the above cases applies.

21

(d) X occurs positively and negatively in A. As F contains non-dummy
quantifiers, it either contains strong or weak ones, so one of the above
cases applies.

2. F contains non-dummy strong quantifiers w.r.t. A{X ← λx.F} and there
are weak quantifiers dominating X in A and either
(a) more than one weak quantifier dominates X or
(b) exactly one quantifier (Qz) dominates X and X does not occur as z ∈ X

in A.
Regarding (2a): Assume X occurs at position η as t ∈ X in A, then at
position η in A{X ← λx.F} we have the formula F (t) that is dominated by
more than one weak quantifier, say among them are (Qx1), (Qx2). F contains
strongly quantified variables, so its skolemization will contain a skolem term
f(. . . , x1, . . . , x2, . . .). F ∗ must not contain variables that are quantified in
A, so x1, x2 must be introduced in f by substitution when applying λx.F ∗.
But f is a new function symbol, so t cannot contain f , so if t contains both
x1 and x2, then it has at the head some function symbol g, but the function
symbol in the skolemization of F that is directly above x1, x2 is f , so we
arrive at a contradiction.
Regarding (2b): We may assume that exactly one weak quantifier dominates
X. Let X occur at position η in A. Then X occurs as t ∈ X with t 6= z.
F contains non-dummy strong quantifiers w.r.t. A{X ← λx.F}, so in the
skolemization of F in A{X ← λx.F}, there will be a skolem term f(z, . . .).
In A, z is bound, so z must be introduced in f by substitution when applying
λx.F ∗. But t 6= z, so if t contains z, it will be below some function symbol
g, but z is directly below f , so we again have a contradiction.

For ∃2 : r the proof is symmetric.

Clearly, the class of skolemizable proofs includes the class of QFC-proofs, but
it is not much larger.

So in extending the CERES2 method to stronger comprehension, we will
have to develop new techniques for dealing with projections containing strong
quantifier rules. A promising approach is to use strong quantifier rules which
introduce a quantifier not from a free variable but from a skolem term as in [8].

6 CERES2 Example

We will now apply the CERES2 method to a QFC-proof ϕ. The proof under
consideration is a proof of the theorem

∑n
i=0 i = n(n+1)

2 by the least number
principle. As axioms the proof uses the following axioms of arithmetic:

` x ∗ 0 = 0, ` 0 ∗ x = 0,
` x ∗ y = y ∗ x, ` x+ y = y + x,
` x+ (y + z) = (x+ y) + z, ` (x+ y) + z = x+ (y + z),
` x ∗ 1 = x, ` x ∗ (y + 1) = x+ x ∗ y,
` x = x, ` x ∗ (y + z) = x ∗ y + x ∗ z

22

where x, y, z are arbitrary terms, and the following axioms that represent the
recursive definition of the series:

` Σ(n+ 1) = Σ(n) + (n+ 1) ; ` Σ(0) = 0

For the following, we define 2 ≡ 1 + 1. In the proof, ? denotes the ancestors of a
cut, double lines indicate applications of propositional rules, and structural rules
except cut are omitted.

ϕ :=

ϕ1

.

.

.

LNP ` IND?

ϕ2

.

.

.

IND? ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)
cut

LNP ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)

where

LNP ≡ (∀Y)((∃z)z ∈ Y → 0 ∈ Y ∨ (∃z)(z /∈ Y ∧ z + 1 ∈ Y))
IND ≡ (∀X)(0 ∈ X ∧ (∀y)(y ∈ X → y + 1 ∈ X)→ (∀y)y ∈ X)

This proof uses the fact that the least number principle implies induction as a
lemma; the use of this lemma will be removed by application of the CERES2

method, yielding a new proof that shows that the least number principle implies
the theorem, without the use of induction.

The proof ϕ1 specified below is exactly the proof of this lemma, and it is
a formalization of the following argument: Assume the least number principle,
and assume that for an arbitrary set X , 0 ∈ X and if y ∈ X , then y + 1 ∈ X ,
and assume for contradiction that X 6= N. Then the set X̄ = {x | x /∈ X} (or
λx.x /∈ X in the lambda notation) is not empty, so by the least number principle
either

1. 0 ∈ X̄ . But 0 ∈ X by assumption, so 0 /∈ X̄ .
2. There is a z s.t. z /∈ X̄ and z + 1 ∈ X̄ . But then z ∈ X and by assumption
z + 1 ∈ X , so z + 1 /∈ X̄ .

So ϕ1 is

y0 ∈ X0 ` y0 ∈ X?
0

∀ : r, ∃ : r
` (∀y)y ∈ X?

0 , (∃z)z /∈ X0 ϕ1
1 →: l

0 ∈ X?
0 , (∀y)(y ∈ X0 → y + 1 ∈ X0)

?, LNPσ ` (∀y)y ∈ X?
0

∀2 : l λx.x /∈ X0
LNP ` 0 ∈ X0 ∧ (∀y)(y ∈ X0 → y + 1 ∈ X0) → (∀y)y ∈ X?

0
∀2 : r

LNP ` IND?

where

LNPσ ≡ (∃z)z /∈ X0 → 0 /∈ X0 ∨ (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0)

The proof ϕ1
1 is

23

0 ∈ X?
0 ` 0 ∈ X0

¬ : l
0 ∈ X?

0 , 0 /∈ X0 `

z0 ∈ X0 ` z0 ∈ X?
0 z0 + 1 ∈ X?

0 ` z0 + 1 ∈ X0

z0 ∈ X0 → z0 + 1 ∈ X?
0 ,¬z0 /∈ X0 ∧ z0 + 1 /∈ X0 `

∃, ∀ : l
(∀y)(y ∈ X0 → y + 1 ∈ X0)

?, (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0) `
∨ : l

0 ∈ X?
0 , (∀y)(y ∈ X0 → y + 1 ∈ X0)

?, 0 /∈ X0 ∨ (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0) `

This completes the left hand side of the cut, showing that the least number
principle implies induction. The right hand side of the cut is a formalization of
the following induction proof of

∑n
i=0 i = n(n+1)

2 : The induction base is trivial.
For the induction step we want to show

n+1∑
i=0

i = n+ 1 +
n∑
i=0

i =
(n+ 1)((n+ 1) + 1)

2

By the induction hypothesis this reduces to showing

n+ 1 +
n(n+ 1)

2
=

(n+ 1)((n+ 1) + 1)
2

which clearly holds.
The formalization of this argument is the proof ϕ2:

ϕ1
2

2 ∗Σ(n0) = n0 ∗ (n0 + 1)? ` 2 ∗Σ(n0) = n0 ∗ (n0 + 1)
∀ : r, ∀ : l

(∀x)2 ∗Σ(x) = x ∗ (x+ 1)? ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)
→: l

IND?
σ ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)

∀2 : l λx.2 ∗Σ(x) = x ∗ (x+ 1)
IND? ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)

where

INDσ ≡ 2 ∗Σ(0) = 0 ∗ (0 + 1) ∧ (∀x)(2 ∗Σ(x) = x ∗ (x+ 1)→
2 ∗Σ(x+ 1) = (x+ 1) ∗ ((x+ 1) + 1))→ (∀x)2 ∗Σ(x) = x ∗ (x+ 1)

We continue with ϕ1
2 — from this point on, we will omit ? as all formula occur-

rences in the following proofs are cut ancestors:

` Σ(0) = 0

` 2 ∗ 0 = 0 ` 0 = 0 ∗ (0 + 1)
=: r2

` 2 ∗ 0 = 0 ∗ (0 + 1)
=: r2

` 2 ∗Σ(0) = 0 ∗ (0 + 1) ϕ2
2 ∧

` 2 ∗Σ(0) = 0 ∗ (0 + 1) ∧ (∀x)(2 ∗Σ(x) = x ∗ (x+ 1) → 2 ∗Σ(x+ 1) = (x+ 1) ∗ ((x+ 1) + 1))

Note that the left branch of ϕ1
2 proves the induction base. The proof ϕ2

2 will in
turn show the induction step:

` Σ(x0 + 1) = Σ(x0) + (x0 + 1) ϕ=
1 =: r2

2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗Σ(x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)
∀ : r

` (∀x)(2 ∗Σ(x) = x ∗ (x+ 1) → 2 ∗Σ(x+ 1) = (x+ 1) ∗ ((x+ 1) + 1))

We apply the distributivity of multiplication in ϕ=
1 :

` 2 ∗ (Σ(x0) + (x0 + 1)) = (2 ∗Σ(x0) + 2 ∗ (x0 + 1)) ϕ=
2 =: r2

2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗ (Σ(x0) + (x0 + 1)) = (x0 + 1) ∗ ((x0 + 1) + 1)

24

and apply the induction hypothesis to the equation in ϕ=
2 :

A ` A

ϕ=
3
.
.
.

` x0 ∗ (x0 + 1) + 2 ∗ (x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)
=: r2

2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗Σ(x0) + 2 ∗ (x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)

where A ≡ 2 ∗ Σ(x0) = x0 ∗ (x0 + 1). For lack of space we will not exhibit the
proof ϕ=

3 , it is easy to see that it can be constructed using the axioms given
above and equality rules. This completes the proof ϕ.

Skolemization of ϕ yields a proof ϕsk of the sequent

(∀Y)((∃z)z ∈ Y → 0 ∈ Y ∨ (f(Y) /∈ Y ∧ f(Y) + 1 ∈ Y)) ` 2 ∗Σ(s) = s ∗ (s+ 1)

where f, s are the skolem symbols. In the proof, the skolem term f(λx.x /∈
X0) replaces the eigenvariable z0 and the skolem term s replaces the eigenvariable
n0.

Remark 1. In all models of arithmetic and the left hand side of the sequent, a
suitable interpretation of f will be a function γ : P (N) 7→ N such that for all
S ∈ P (N) with S 6= ∅, 0 /∈ S, we have γ(S) = min(S)− 1. This is an example for
the natural interpretation of skolem symbols, which in practice is often possible.

The characteristic clause set CL(ϕsk) can be written as:

CL(ϕsk) = CL(ϕ1
sk) ∪ CL(ϕ2

sk)

CL(ϕ1
sk) = ({0 ∈ X0 `} × {` f(λx.x /∈ X0) ∈ X0; f(λx.x /∈ X0) + 1 ∈ X0})

×{` y0 ∈ X0}

CL(ϕ2
sk) = {2 ∗Σ(s) = s ∗ (s+ 1) `} ∪ {` Σ(x0 + 1) = Σ(x0) + (x0 + 1)}

∪{2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗Σ(x0) = x0 ∗ (x0 + 1)}
∪{` Σ(0) = 0} ∪ PAXS

where PAXS is the set of axioms of arithmetic that are used in the proof ϕ1
2.

Modulo subsumption and tautology deletion, the characteristic clause set is:

CL(ϕsk) = { 0 ∈ X0 ` f(λx.x /∈ X0) ∈ X0, y0 ∈ X0; (I1)
0 ∈ X0, f(λx.x /∈ X0) + 1 ∈ X0 ` y0 ∈ X0; (I2)
2 ∗Σ(s) = s ∗ (s+ 1) `; (T1)
` Σ(x0 + 1) = Σ(x0) + (x0 + 1); (S1)
` Σ(0) = 0} (S2)
∪PAX ′

S

where PAX ′
S is PAXS after subsumption and tautology deletion.

25

6.1 Refutation of the characteristic clause set

We now define a resolution refutation of the characteristic clause set CL(ϕsk),
using the resolution calculus from Section 4.

The clauses (I1) and (I2) correspond to the induction axiom, while the clause
(T1) is the negated theorem. For the refutation we will need the following in-
stances of the induction clauses produced from the substitution
σ = 〈{y0 ← s}, {X0 ← λx.2 ∗Σ(x) = x ∗ (x+ 1)}〉:

(I1′) 2 ∗Σ(0) = 0 ∗ (0 + 1)
` 2 ∗Σ(f(T)) = f(T) ∗ (f(T) + 1), 2 ∗Σ(s) = s ∗ (s+ 1)

(I2′) 2 ∗Σ(0) = 0 ∗ (0 + 1), 2 ∗Σ(f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1)
` 2 ∗Σ(s) = s ∗ (s+ 1)

where T ≡ λx.¬2 ∗Σ(x) = x ∗ (x+ 1). We start by deriving the induction base
using resolution, for this we need the clauses

(A1) ` 2 ∗ 0 = 0 ; (A2) ` 0 = 0 ∗ (0 + 1)

Note that (A1), (A2) ∈ PAXS . We now use paramodulation from (S2) into (A1)
to derive

(IB1) ` 2 ∗Σ(0) = 0

Paramodulation from (IB1) into (A2) then yields

(IB) ` 2 ∗Σ(0) = 0 ∗ (0 + 1)

We now resolve both (I1′) and (I2′) first with (IB) and then with (T1) to obtain

(IH) ` 2 ∗Σ(f(T)) = f(T) ∗ (f(T) + 1)
(IG) 2 ∗Σ(f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

Note that (IH) corresponds to the induction hypothesis in the original proof,
while (IG) is the negation of what was proved in the induction step. Towards a
contradiction, we paramodulate (IG) with an instance of the second part of the
definition of the series, (S1), and get

(C1) 2 ∗ (Σ(f(T)) + (f(T) + 1)) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

From clauses from PAXS , it is easy to derive (using paramodulation exclusively)
the clause

(C2) ` 2 ∗ (Σ(x0) + (x0 + 1)) = 2 ∗Σ(x0) + 2 ∗ (x0 + 1)

Paramodulation from an instance of (C2) into (C1) yields

(C3) 2 ∗Σ(f(T)) + 2 ∗ (f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

26

We can now use paramodulation to obtain from (C3) and (IH) the clause

(C4) (f(T) ∗ (f(T) + 1)) + 2 ∗ (f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

which is a wrong arithmetical statement. From clauses in PAXS it is now easy
to derive the dual clause (modulo substitution)

(C5) ` x0 ∗ (x0 + 1) + 2 ∗ (x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)

We can now resolve (C4) with an instance of (C5) to obtain the empty se-
quent and complete the refutation. Note that although the clauses used in the
refutation correspond to the induction axiom, the proof constructed from the
refutation will be a proof by the least number principle. This will become clear
in the next section.

6.2 Interpretation of the ACNF

By the construction of the projections, the end-sequent of every projection con-
tains the end-sequent of ϕsk. When combining the projections, we insert con-
tractions at the end of the proof to contract the multiple occurrences of formulas
introduced in this way. To ease the presentation of the ACNF, we drop weaken-
ings that are later contracted in this way as they are redundant.

Additionally, the construction given in Lemma 2 leads to trivial cuts, as all
the instances used in the refutation come from substitutions that do not contain
logical connectives, which means that the transformation to clause form is trivial.
These cuts are also left out in the following. Again, we will simply omit structural
rules other than cut in the presentation.

We use the following abbreviations:

A(x) ≡ 2 ∗Σ(x) = x ∗ (x+ 1)
A′(x) ≡ 2 ∗Σ(x) 6= x ∗ (x+ 1)
T ≡ λx.A′(x)
THsk ≡ A(s)
LNP sk ≡ (∀Y)((∃z)z ∈ Y → 0 ∈ Y ∨ (f(Y) /∈ Y ∧ f(Y) + 1 ∈ Y))

LNP sk expresses that for all sets Y, if Y is not empty, then either 0 is in Y or
the function f is such that f(Y) is the predecessor of the least element of Y.

With this in mind, we now give the LKDe2-proof ψ from step 5 in Defini-
tion 12 with regard to ϕsk, proceeding in a top-down way and alternating the
formal proof parts with their respective informal interpretations.

ϕ[(I1′)] :=

THsk ` THsk

¬ : r
` ¬THsk, THsk

∃ : r
` (∃z)A′(z), THsk

A(0) ` A(0)
¬ : l

A(0), A′(0) `

A(f(T)) ` A(f(T))
¬ : l,¬ : r

¬A′(f(T)) ` A(f(T))
∧ : l1

¬A′(f(T)) ∧ A′(f(T) + 1) ` A(f(T))
∨ : l

A(0), A′(0) ∨ (¬A′(f(T)) ∧ A′(f(T) + 1)) ` A(f(T))
→: l

A(0), ((∃z)A′(z) → (A′(0) ∨ (¬A′(f(T)) ∧ A′(f(T) + 1)))) ` THsk, A(f(T))
∀2 : l λx.A′(x)

A(0), LNP sk ` THsk, A(f(T))

27

Let X = {x | A′(x)} and X̄ = {x | A(x)} (note that X is the informal coun-
terpart to T , and s ∈ X̄ is the informal version of the theorem). ϕ[(I1′)] shows
that, assuming 0 ∈ X̄ and LNP sk, then either s ∈ X̄ or f(X) ∈ X̄ . It proceeds
by the following case distinction:

1. X is empty. Then X̄ contains all elements, so in particular s ∈ X̄ .
2. X is not empty. By applying LNP sk to X , we can distinguish the cases

(a) 0 ∈ X . But then, 0 /∈ X̄ , which contradicts our assumption.
(b) f(X) is the predecessor of the least number in X . Then f(X) /∈ X , and

therefore f(X) ∈ X̄ .

ϕ[(I2′)] :=

THsk ` THsk

¬ : r
` ¬THsk, THsk

∃ : r
` (∃z)A′(z), THsk

A(0) ` A(0)
¬ : l

A(0), A′(0) `

A(f(T) + 1) ` A(f(T) + 1)
¬ : l

A(f(T) + 1), A′(f(T) + 1) `
∧ : l2

A(f(T) + 1),¬A′(f(T)) ∧ A′(f(T) + 1) `
∨ : l

A(0), A(f(T) + 1), A′(0) ∨ (¬A′(f(T)) ∧ A′(f(T) + 1)) `
→: l

A(0), A(f(T) + 1), ((∃z)A′(z) → (A′(0) ∨ (¬A′(f(T)) ∧ A′(f(T) + 1)))) ` THsk

∀2 : l λx.A′(x)
A(0), A(f(T) + 1), LNP sk ` THsk

ϕ[(I2′)] shows that, assuming 0 ∈ X̄ , f(X)+1 ∈ X̄ , and LNP sk, then s ∈ X̄ . The
argument is the same as the argument of ϕ[(I1′)], except for case 2b: Assume
that f(X) is the predecessor of the least number in X . Then f(X) + 1 ∈ X ,
which contradicts our assumption.

ψIB :=

` Σ(0) = 0 ` 2 ∗ 0 = 0
=: r2

` 2 ∗Σ(0) = 0 ` 0 = 0 ∗ (0 + 1)
=: r2

` 2 ∗Σ(0) = 0 ∗ (0 + 1)

Using basic arithmetic and the definition of Σ(0), we show that 0 ∈ X̄ .
ψIG :=

ψIB ϕ[(I2′)]
cut

2 ∗Σ(f(T) + 1) = (f(T) + 1) ∗ (f(T) + 1) + 1), LNP sk ` THsk THsk ` THsk

cut
2 ∗Σ(f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1), LNP sk ` THsk

From 0 ∈ X̄ and what was proved in ϕ[(I2′)], we now know that f(X) + 1 ∈ X̄
and LNP sk imply s ∈ X̄ .

ψ2 :=

` Σ(f(T) + 1) = Σ(f(T)) + (f(T) + 1) ψIG
=: l1

2 ∗ (Σ(f(T)) + (f(T) + 1)) = (f(T) + 1) ∗ ((f(T) + 1) + 1), LNP sk ` THsk

ψ1 :=

ψ2 ` 2 ∗ (Σ(f(T)) + (f(T) + 1)) = 2 ∗Σ(f(T)) + 2 ∗ (f(T) + 1)
=: l1

2 ∗Σ(f(T)) + 2 ∗ (f(T) + 1) = (f(T) + 1) + ((f(T) + 1) + 1), LNP sk ` THsk

28

From the second part of the definition of Σ, it follows that f(X) + 1 ∈ X̄ is
equivalent to 2 ∗ (Σ(f(X)) + (f(X) + 1)) = (f(X) + 1) ∗ ((f(X) + 1) + 1). This
in turn is equivalent to

2 ∗Σ(f(X)) + 2 ∗ (f(X) + 1) = (f(X) + 1) ∗ ((f(X) + 1) + 1).

ψIH :=

ψIB ϕ[(I1′)]
cut

LNP sk ` 2 ∗Σ(f(T)) = f(T) ∗ (f(T) + 1), THsk THsk ` THsk

cut
LNP sk ` 2 ∗Σ(f(T)) = f(T) ∗ (f(T) + 1), THsk

From the fact that 0 ∈ X̄ and what we showed in ϕ[(I1′)], we conclude that
LNP sk implies either f(X) ∈ X̄ or s ∈ X̄ . In the following, ψ= is a proof of

` f(T) ∗ (f(T) + 1) + 2 ∗ (f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1).

ψ :=

ψ=

ψIH ψ1
=: l1

f(T) ∗ (f(T) + 1) + 2 ∗ (f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1), LNP sk ` THsk

cut
LNP sk ` THsk

Assume LNP sk, then from ψIH , we know that either f(X) ∈ X̄ or s ∈ X̄ . If the
latter holds, we are done, so assume the former holds. From ψ1, we know then
that

2 ∗Σ(f(X)) + 2 ∗ (f(X) + 1) = (f(X) + 1) + ((f(X) + 1) + 1)

implies the desired theorem, and by the definition X̄ , we know that 2∗Σ(f(X)) =
f(X) ∗ (f(X) + 1), so the first equation is equivalent to

f(X) ∗ (f(X) + 1) + 2 ∗ (f(X) + 1) = (f(X) + 1) ∗ ((f(X) + 1) + 1).

But this equation is arithmetically valid, so we have shown that s ∈ X̄ .
Reviewing the input proof from Section 6, we realize that the method of proof

used there was an inductive argument showing that all numbers are in X̄ . In the
ACNF, this argument reappears as a proof by the least number principle (in the
form of the proofs ϕ[(I1′)] and ϕ[(I2′)]), showing directly that no numbers are
in X .

7 Conclusion

In this paper, we presented the extension of the cut-elimination method CERES
from first-order logic to the class of QFC-proofs (in skolem form). Using CERES2,
we analyzed an example proof and discussed the resulting ACNF.

The benefits of CERES2 over traditional cut-elimination methods are two-
fold: Firstly, the characteristic clause set can be regarded as the kernel of the

29

proof with cuts and as such can provide valuable information that a human
could not easily read off of a formal proof (for some evidence supporting this,
see [10] and [11]). Secondly, due to the use of a resolution calculus at the core
of CERES2, theoretical and practical advances in higher-order theorem proving
may enhance the power of the method. There is still much to be done:

1. We are working on extending CERES2 to larger classes of proofs and
2. investigating the use of existing higher-order resolution calculi (see e.g. [12])

with CERES2

3. For semi-automated application of the method, it will be necessary to replace
the unrestricted substitution of our resolution calculus by unification (see e.g.
[13]).

4. The existing ANSI C++ implementation of CERES is being extended to
CERES2. This will allow practical application of the method to larger and
more interesting proofs.

References

1. Kohlenbach, U.: Effective bounds from ineffective proofs in analysis: an application
of functional interpretation and majorization. Journal of Symbolic Logic 57(4)
(1992) 1239–1273

2. Baaz, M., Leitsch, A.: Towards a clausal analysis of cut-elimination. Journal of
Symbolic Computation 41 (2006) 381–410

3. Baaz, M., Leitsch, A.: Cut-elimination and Redundancy-elimination by Resolution.
Journal of Symbolic Computation 29(2) (2000) 149–176

4. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic
5(2) (1940) 56–68

5. Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. 4th edn. Cam-
bridge University Press, Cambridge, UK (2002)

6. Andrews, P.B.: Resolution in Type Theory. Journal of Symbolic Logic 36(3) (1971)
414–432

7. Baaz, M., Leitsch, A.: Cut normal forms and proof complexity. Annals of Pure
and Applied Logic 97(1–3) (1999) 127–177

8. Miller, D.A.: A compact representation of proofs. Studia Logica 46(4) (1987)
347–370

9. Danos, V., Joinet, J.B., Schellinx, H.: A New Deconstructive Logic: Linear Logic.
Journal of Symbolic Logic 62(3) (1997) 755–807

10. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: An Analysis of
Fürstenberg’s Proof of the Infinity of Primes. to appear in Theoretical Computer
Science (2008)

11. Hetzl, S.: Characteristic Clause Sets and Proof Transformations. PhD thesis,
Vienna University of Technology (2007)

12. Benzmüller, C.: Comparing approaches to resolution based higher-order theorem
proving. Synthese 133(1–2) (2002) 203–335

13. Dowek, G.: Higher-order unification and matching. In: Handbook of automated
reasoning. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The
Netherlands (2001) 1009–1062

30

