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Abstract. The Logic of Approximate Entailment (LAE), introduced

in R. Rodrı́guez’s Ph.D. Thesis, uses a graded version of the classical

consequence relation. In LAE, reasoning about facts is possible even

if relationships between them hold only approximately.

Here, we consider a modification of LAE. Namely, we introduce

an additional binary connective ր expressing the relative proximity

of a proposition when compared to another one. We propose a proof

system for the new logic and show finite strong completeness. Cer-

tain common problems with the axiomatisation of logics for approx-

imate reasoning are shown to be avoidable in the extended language.

1 Introduction

Approximate reasoning, proposed originally by E. Ruspini in his

seminal paper [9], aims at a formalisation of implicative relation-

ships between facts for the case that these relationships do not nec-

essarily hold strictly. The framework that he proposed is as simple

as convincing. To model the statement that a proposition α implies

another one β to a possibly non-one degree d, a set of worlds W is

endowed with a similarity relation s; α and β being interpreted by

A ⊆ W and B ⊆ W , respectively, the statement α
d
⇒ β is satisfied

if A ⊆ Ud(B). Here, Ud(B) contains all worlds similar to B to the

degree at least d.

Logics for metric spaces have been studied in the past in various

contexts. Among the more recent examples, we may mention the pa-

pers [11, 10]. Here, we follow the lines of research on logics that

are associated with approximate reasoning. For an overview over the

field to which we intend to contribute, we refer to [6]. Among the

proposed formalisms we find, for instance, logics that use a graded

modal operator to express similarity [4, 3]. An alternative possibil-

ity is to use a graded entailment relation; this idea appears in [2, 3]

and was systematically developped in R. Rodrı́guez Thesis [8]. The

Logic of Approximate Entailment, or LAE for short, is in the centre

of our own interest.

The expressive power of LAE is lower than in case of the modal

logics. Here, we even go one step further and restrict the expressive-

ness of the language once more. Our motivation is the following.

Our ultimate aim is to develop logics for the automatic generation

of arguments as done by expert systems; the medical expert system

CADIAG-2 [1] is an example. System like CADIAG-2 are not based

on probability theory; they are rather designed to produce a chain

of arguments which could originate from a human expert. Here, the

inference relation appears exclusively at the outermost level; implica-

tions do not occur as proper subformulas. In fact, to allow the nesting
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of relational implication would significantly complicate the interpre-

tation of automatically generated arguments. In the present work, we

are interested to avoid this complication as well. This is why we deal

only with statements of the form “fact A suggests fact B (to a possi-

bly restricted extent)”.

The completeness proof does not become easier by the restriction

of the language. The typical technical difficulties arise also in the

present framework. Recall that completeness theorems exist for LAE

[8, 5]. For the “pure” version of LAE, however, based on a countable

number of propositions and an arbitrary similarity space, an axioma-

tisation has not yet been found. By now, certain additional condi-

tions have been used, most remarkably finiteness of the language and

of the model. This restriction cannot easily be removed. A conjunc-

tion of all variables, each of which can be negated, has been called

a m.e.c.; in the presence of an infinite number of variables, axioms

containing m.e.c.’s are not usable.

To find an axiomatisation for LAE requires in fact a solution

for two problems. When, in the completeness proof, we construct

a model of a theory of LAE we must (1) ensure the symmetry of

the similarity relation, and (2) achieve that the degree of provability

of one proposition from another one leads to a Hausdorff similarity.

Both problems can be overcome by means of m.e.c.’s.

The present contribution is meant as a step towards an axiomati-

sation of LAE in a more general framework. That is, the two axiom

schemes of the proof system in [8] that contain m.e.c.’s is no longer

used. However, we offer a progress only in case of one of these ax-

iom schemes. The second one is avoided by a simple generalisation

of the model and a more elegant solution would requires surely not

less of an effort than in the present case.

We tackle problem (2). The key idea of the present approach is

to use a new connective, in addition to conjunction, disjunction, and

negation. The connective has a comparative character and is denoted

by ր; a proposition α ր β holds in all worlds that are similar to α

at least to the degree to which they are similar to β. Problem (1), in

contrast, remains unsolved. To overcome it, we simply give up the

requirement of the symmetry of the similarity relation; we work with

a quasisimilarity relation.

A connective of a similar type like ր can be found in other areas

of logic as well. A comparative connective is present, for instance, in

logics of preference; see, e.g., von Wright’s monograph [12].

Furthermore, the connective ր might be found to have some re-

semblance with the implication connective → in fuzzy logic. How-

ever, this resemblance mainly exists on the formal level; otherwise

the two concepts are not comparable, simply because the settings are

different. Our setting uses a notion of proximity and α ր β holds

whenever α is closer than β. In fuzzy logic, α → β is the weakest

proposition implying β when combined with α. We note that, in par-



ticular, that the problem of interpreting the implication in fuzzy logic

in an intuitively satisfactory manner is not inherited.

2 The logic LAEC

Our setting for approximate reasoning follows the lines of the papers

[2, 4, 8, 6]. The basic framework consists, first of all, of a non-empty

set W , called the set of possible worlds. Second, W is endowed with

a quasisimilarity relation, which reflects the assumption that a given

world may more or less resemble to another one.

In contrast to earlier papers on the topic, we allow the similarity

to be non-symmetric. In spite of the afore mentioned proof-technical

background, we can say that this choice is in line with applications

where similarity models an agent’s subjective estimations. In this

case, indeed, it is reasonable to have a degree telling how close a

property w is when seen from v, and a second one for the converse

viewpoint.

Definition 2.1. Let W be any non-empty set; let [0, 1] be the real unit

interval; and let ⊙ be the Łukasiewicz t-norm. A function s : W ×
W → [0, 1] is called a quasisimilarity relation on s w.r.t. ⊙ if, for

any u, v, w ∈ W ,

(S1) s(u, u) = 1 (reflexivity),

(S2) s(u, v) = 1 implies u = v (separability),

(S3) s(u, v)⊙ s(v, w) ≤ s(u,w) (⊙-transitivity).

In this case, we call (W,s) a quasisimilarity space. The similarity of

a world w ∈ W with a set A ⊆ W of worlds is then defined by

k(w,A) = sup
a∈A

s(w,a).

Finally, for A ⊆ W and d ∈ [0, 1] we put

Ud(A) = {w ∈ W : k(w,A) ≥ d}.

In what follows, we will use the following well-known notion.

Given a quasisimilarity s : W × W → [0, 1], there is a natural way

to measure the similarity between two subsets of W . The Hausdorff

quasisimilarity induced by s is given by

h(A,B) = inf
a∈A

k(a,B)

= inf
a∈A

sup
b∈B

s(a, b)

for A,B ⊆ W . Note that this measure of the difference between two

sets was also used by Ruspini in his influential paper [9].

Definition 2.2. Let (W, s) be a quasisimilarity space. For any pair

A,B ⊆ W , we define

AրB = {w ∈ W : k(w,A) ≥ k(w,B)}.

We define the Logic of Approximate Entailment with Comparison,

or LAEC for short, model-theoretically as follows.

Definition 2.3. The propositional formulas of LAEC are built up

from a countable set of variables ϕ0, ϕ1, . . . and the constants ⊥,⊤
by means of the binary operators ∧, ∨, and ր, and the unary operator

¬. The set of propositional formulas is denoted by F . A conditional

formula of LAEC is a triple consisting of two propositional formulas

α and β as well as a value d ∈ [0, 1], denoted

α
d
⇒ β.

Let (W, s) be a quasisimilarity space. An evaluation for LAEC is

a structure-preserving mapping v from F to (W,s). A conditional

formula α
d
⇒ β is satisfied by an evaluation v if

v(α) ⊆ Ud(v(β)).

A theory of LAEC is a set of conditional formulas. We say that a

theory T semantically entails a conditional formula α
d
⇒ β if all

evaluations satisfying all elements of T also satisfy α
d
⇒ β.

We present now a calculus for LAEC. Whereas the content of the

rules (at least those that do not involve ր) reflects the content of

the axioms used in earlier papers on LAE, the chosen style of the

syntax is inspired by the Gentzen-style proof systems that have been

developped in fuzzy logic during the last years [7].

In what follows, a CPL tautology is meant to be a formula that

arises from a tautology of classical propositional logic by uniform

replacement of its atoms by propositional formulas of LAEC.

We note furthermore that, for c ∈ [0, 1], c⊙ c is abbreviated as c2.

Definition 2.4. The rules and axioms of LAEC are, for any α, γ, β ∈
F , for any finite set Γ ⊆ F , and for any c, d ∈ [0, 1], the following:

Γ, α, β
d
⇒ γ

Γ, α ∧ β
d
⇒ γ

Γ
d
⇒ β

Γ, α
d
⇒ β

Γ, α
d
⇒ γ Γ, β

d
⇒ γ

Γ, α ∨ β
d
⇒ γ

Γ
d
⇒ α

Γ
d
⇒ α ∨ β

Γ
c
⇒ β ր α Γ

d
⇒ α

Γ
c2⊙d
⇒ β

α
1
⇒ β

⊤
1
⇒ β ր α

α
1
⇒ αր β αր β, β ր γ

1
⇒ αր γ

Γ, αր β
d
⇒ γ Γ, (¬α ∧ β)ր α

d
⇒ γ

Γ
d
⇒ γ

Γ
c
⇒ α α

d
⇒ γ

Γ
c⊙d
⇒ γ

Γ
c
⇒ α

Γ
d
⇒ α

, where d ≤ c
Γ

d
⇒ ⊥

Γ
1
⇒ ⊥

, where d > 0

α
0
⇒ β

α
1
⇒ β

α ∧ ¬β
1
⇒ ⊥

α
1
⇒ β, where ¬α ∨ β is a CPL tautology

The notion of proof of a conditional formula α
d
⇒ β from a theory

T is defined as usual; we write T ⊢ α
d
⇒ β if it exists.

A theory T is called consistent if T does not prove ⊤
1
⇒ ⊥.

To illustrate how statements in LAEC read, we consider the fol-

lowing example:

Lemma 1. The following rule is derivable in LAEC:

Γ
d
⇒ α ∨ β

Γ, αր β
d
⇒ α

Proof. We just note that both αր β, α
1
⇒ α and αրβ, β

1
⇒ α are

provable in LAEC.

In words, we can express Lemma 1 as follows: If some world w

has a similarity ≥ d to α or β and w has a greater similarity to α

than to β, then w has the similarity ≥ d to α.



3 Completeness for LAEC

The proof of the completeness theorem requires some preparations.

Lemma 2. The following rules are derivable in LAEC:

α
1
⇒ β

αր γ
1
⇒ β ր γ

β
1
⇒ α

γ ր α
1
⇒ γ ր β

Γ
d
⇒ β ր α

Γ, α
d2
⇒ β

Γ, β ր α
d
⇒ γ Γ, αր β

d
⇒ γ

Γ
d
⇒ γ

Γ
d
⇒ α ∨ β

Γ, αր β
d
⇒ α

In what follows, ⌈r⌉, where r ∈ R
+, denotes the smallest natural

number greater than or equal to r.

Definition 3.1. Let T be a theory of LAEC, and let α, β be propo-

sitional formulas. We define the provability degree of the pair α, β

w.r.t. T by

pT (α, β) = sup {t ∈ [0, 1] : T ⊢ α
t
⇒ β}.

Furthermore, by the density of pT , denoted by density(pT ), we

mean the infimum of all differences between distinct elements of the

range of pT .

If the theory T is understood, we will write p instead of pT .

We note that, in the following proofs, we consider [0, 1] as a lattice

and write ∧, ∨ for the minimum and maximum operations, respec-

tively.

Lemma 3. Let T be a consistent finite theory of LAEC such that

T does not prove the conditional formula ζ
e
⇒ η. Then there is a

consistent theory T ′ ⊇ T such that the following holds:

(E1) T ′ does not prove ζ
e
⇒ η.

(E2) For any sequence (εi)i∈N in F such that T proves ε1
1
⇒ ε0,

ε2
1
⇒ ε1, . . ., and for any pair α, β ∈ F such that T proves

α ∧ β
1
⇒ ⊥ and ε ∧ (α ∨ β)

1
⇒ ⊥,

∧
i
p(εi, α) 6=

∧
i
p(εi, β).

(E3) There is an l ∈ [0, 1) such that, for any pair α, β ∈ F , either

p(α, β) = 1 or p(α, β) ≤ l.

Proof. Note first that e > 0. Let ē ∈ [0, 1] the largest value < e

such that T ⊢ ζ
ē
⇒ η. Such a value exists because T ⊢ ζ

0
⇒ η

and because T , and consequently the range of pT , is finite. Put ϑ =
(ē− e) ∧ density(pT ).

Let (αi, βi), i < ω, be all pairs of formulas α and β such that T

proves α ∧ β
1
⇒ ⊥. We will define a sequence of consistent finite

theories

T = T1 = T 0
1 ⊆ . . . ⊆ T k1

1 =

= T2 = T 0
2 ⊆ . . . ⊆ T k2

2 =

= . . .

and along with each theory T j
i , we will define values ϑ

j
i with the

following properties:

(1) ϑ
j
i ≤ 1

4
density(p

T
j−1

i

);

(2) ϑ
j
i ≤ 1

4
ϑ
j−1

i ;

(3) |p
T

j

i

(γ, δ)− p
T

j−1

i

(γ, δ)| ≤ ϑ
j−1

i for any γ, δ ∈ F ,

where 1 ≤ j ≤ ki.

Let T1 = T 0
1 = T and ϑ1 = ϑ0

1 = ϑ. Assume that, for i ≥ 1,

Ti = T 0
i and ϑi = ϑ0

i are already defined. Let Vi = {v0i , . . . , v
ki
i }

be the range of pTi
, where v1i < . . . < v

ki
i = 1. Let T ki+1

i = Ti

and ϑ
ki+1

i = ϑi. For j = 1, . . . , ki, let

Gj
i = {ε ∈ F : T ⊢ ε ∧ (αi ∨ βi)

1
⇒ ⊥ and

pTi
(ε, αi) = pTi

(ε, βi) = v
j
i }

and

ϑ
j
i =

1

4⌈ 1

1−v
j

i

⌉
(ϑj−1

i ∧ density(p
T

j−1

i

)).

T j
i = T j−1

i ∪ {ε
v
j
i
+ϑ

j
i⇒ αi : ε ∈ Gj

i }.

Properties (1) and (2) are obviously fulfilled. Let furthermore γ, δ ∈
F and consider a proof of γ

c
⇒ δ from T j

i , where c = p
T

j
i

(γ, δ).

Then there is a proof of γ
c′

⇒ δ from T j+1

i , where c′ = (c−nϑ
j
i )∨0,

where 0 ≤ n ≤ ⌈ 1

1−v
j

i

⌉. Then c′ is the largest element ≤ c in the

range of p
T

j−1

i

, hence c′ = p
T

j−1

i

(γ, δ), and (3) follows.

Let T ′ =
⋃

i Ti. Let γ, δ ∈ F ; then for any i, j, we have

|p
T

j

i

(γ, δ)− pT ′(γ, δ)| ≤ 1

3
density(p

T
j+1

i

).

In particular, |pT (γ, δ) − pT ′(γ, δ) ≤ 1

3
ϑ|. Claim (E1) and (E3)

follow as well as the consistency of T ′.

To show (E2), let ε0, ε1, . . . and α, β ∈ F be as indicated. Note

that, since all Ti are finite, pTi
(εl, α), l = 0, 1, . . ., is eventually

constant. There are two possibilities:

Case 1. For some i and j and some m ≥ 1, |pTi
(εl, α) −

pTi
(εl, β)| = d > 0 for all l ≥ m. Then |pT ′(εl, α)−pT ′(εl, β)| ≥

1

3
d for all l ≥ m, and claim (E2) follows.

Case 2. For all i, pTi
(εl, α) = pTi

(εl, β) eventually. This is then

in particular the case for the i that indexes the pair (α, β). Let m

and j be such that pTi
(εl, α) = pTi

(εl, β) = v
j
i for all l ≥ m.

Then εm ∈ Gj
i for all m ≥ l. It follows p

T
j
i

(εm, β) = vij and

p
T

j
i

(εm, α) = v
j
i − ϑ

j
i . But this implies that the difference remains

strictly positive for all extensions of T j
i ; a contradiction. Thus Case

2 never occurs.

Theorem 3.1. Let T be a consistent finite theory of LAEC. Then T
proves a conditional formula ζ

e
⇒ η if and only if T semantically

entails ζ
e
⇒ η.

Proof. It is not difficult to check the soundness. To prove the com-

pleteness, assume that T does not prove ζ
e
⇒ η. By Lemma 3, we

can assume that T fulfills the following conditions instead of the

indicated ones: T is consistent, does not prove ζ
e
⇒ η, and has prop-

erties (E2) and (E3).

For α, β ∈ F , let α 4 β if T ⊢ α
1
⇒ β, and let α ≈ β if α 4 β

and β 4 α. Then ≈ is an equivalence relation, and it is not difficult

to see that ≈ is compatible with ∧, ∨, and ¬. By Lemma 2, ≈ is

also compatible with ր. Endowed with the induced operations and

the classes of ⊥ and ⊤, the quotient (〈F〉;∧,∨,¬,ր, 〈⊥〉, 〈⊤〉), is



a Boolean algebra endowed with the additional operation ր. Note

that F and thus also 〈F〉 is countable.

As our first step, we establish some facts about the provability

degree p. Clearly, for any α, β ∈ F and d ∈ [0, 1], T ⊢ α
d
⇒ β

implies d ≤ pT (α, β), and d < pT (α, β) implies T ⊢ α
d
⇒ β.

It is furthermore easily seen that, for any α1, α2, β ∈ F ,

p(α1 ∨ α2, β) = p(α1, β) ∧ p(α2, β).

Furthermore, for any α, β1, β2, there are α1, α2 such that α ≈ α1 ∨
α2 and

p(α, β1 ∨ β2) = p(α1, β1) ∧ p(α2, β2).

Indeed, we may choose α ∧ (β1 ր β2) for α1 and α ∧ (β2 ր β1)
for α2.

Let W be the set of prime filters of 〈F〉. Due to the consistency of

T , W is non-empty. For w ∈ W and α ∈ F , we write w ⊳ α for

〈α〉 ∈ w. Then ι : 〈F〉 → PW, 〈α〉 7→ {w ∈ W : w ⊳ α} is an

injective homomorphism of Boolean algebras.

For w ∈ W and α ∈ F , we put

k(w,α) = sup
w⊳ε

p(ε, α),

and for v, w ∈ W , put

s(v,w) = inf
w⊳δ

k(v, δ).

It is not difficult to check that s : W×W → [0, 1] is reflexive and ⊙-

transitive. To see that also separability holds for s, that is, to see that

s is actually a quasisimilarity, assume s(v, w) = 1, but v 6= w, for

some v, w ∈ W . Then k(v, δ) = 1 for some w ⊳ δ such that v 6⊳ δ.

Consequently, for any ϑ < 1, there is an ε such that δ ∧ ε ≈ ⊥ and

p(ε, δ) > ϑ. But p(ε, δ) < 1 then, and a contradiction to property

(E3) arises.

Note that p can be viewed as a function on 〈F〉 instead of F , and

consequently also as a function on ι(〈F〉), a Boolean subalgebra of

PW . Adopting the latter view, we claim that p coincides with the

Hausdorff quasisimilarity induced by s. To see this, we first show

k(w,α ∨ β) = k(w,α) ∨ k(w, β)

for any w ∈ W and α, β ∈ F . Clearly, k(w,α ∨ β) ≥ k(w,α) ∨
k(w, β). Furthermore, by definition k(w,α∨β) = supw⊳ε p(ε, α∨
β), hence for any ϑ > 0 there is a particular ε′ such that w ⊳ ε′ and

k(w,α ∨ β) − ϑ ≤ p(ε′, α ∨ β). Then p(ε′, α ∨ β) = p(ε′1, α) ∧
p(ε′2, β), where ε′1 ∨ ε′2 ≈ ε′. We assume, w.l.o.g., that w ⊳ ε′1,

and we conclude k(w,α ∨ β)− ϑ ≤ p(ε′1, α) ≤ supw⊳ε p(ε, α) =
k(w,α) ≤ k(p, α) ∨ k(w, β), that is, k(w,α ∨ β) ≤ k(p,α) ∧
k(w, β).

We next show

k(v, α) = sup
w⊳α

s(v,w)

for v ∈ W and α ∈ F . Assume first that α ≈ ⊥. Then k(v, α) =
k(v,⊥) = supw⊳ε p(ε,⊥) = 0 because ε ∈ w for some w ∈ W

implies ε 6≈ ⊥, hence T 0 ε
d
⇒ ⊥ for any d > 0. Furthermore, there

is no prime filter w ∈ W containing 〈α〉 = 〈⊥〉; hence the claim

follows.

Assume that α 6≈ ⊥. Then we obviously have k(v, α) ≥
infw⊳δ k(v, δ) = s(v, w) for all w ⊳ α. Now, note that for any χ ∈
F , k(p, α) = k(p, (α∧χ)∨(α∧¬χ)) = k(p,α∧χ)∨k(p,α∧¬χ);
it follows that there is a sequence α = α0 < α1 < . . . that is a basis

of a filter w ⊳ α such that k(v, αi) = k(v, α) for all i, in particular

k(v, α) = s(v,w).

The last step to show that p is induced by s is the proof of

p(α,β) = inf
w⊳α

k(w, β).

In case that α ≈ ⊥, there is no w ∈ W such that w ⊳ α, and

the claim is verified noting that p(⊥, β) = 1. Assume that α 6≈ ⊥.

Obviously, p(α, β) ≤ maxw⊳ε p(ε, β) = k(w, β) for all w ⊳ α.

Similarly as above, we choose a sequence α = α0 < α1 < . . . that

is a basis of a filter w ⊳ α such that p(α, β) = p(αi, β) for all i.

Then p(α, β) = k(w, β).
Consider now again the Boolean homomorphism ι. We have to

show that

ι(αր β) = {w ∈ W : k(w,α) ≥ k(w, β)}.

Indeed, w ⊳ αր β implies k(w, α) ≥ k(w, β). Furthermore, from

k(w,α) > k(w, β) it follows w ⊳ α ր β. In case that k(w,α) =
k(w, β) = 1, we have seen above that w ⊳ α and w ⊳ β and thus

w ⊳ αր β. Finally, k(w,α) = k(w, β) < 1 contradicts condition

(E2) of Lemma 3 above.

The proof is complete that (W,s) provides a model for LAEC.

Furthermore, it is easily verified that all elements of T are satisfied

and that ζ
e
⇒ η is not satisfied.

4 Conclusion

We have presented a logic for approximate reasoning – LAEC, the

Logic of Approximate Entailment with Comparison. LAEC differs

from LAE, the Logic of Approximate Entailment, in that it contains

a connective that is non-standard in approximate reasoning: the com-

parative connective ր. A further difference between LAEC and LAE

is that our models are quasisimilarity spaces rather than similarity

spaces. We have presented a Gentzen-type proof system for LAEC

and have proven its completeness for finite theories.

The rules are transparent and allow a straightforward interpreta-

tion, the new ones for ր included. Formulas of special syntactical

form are not required.

There is a lot of room for further research. Most desirably, it

should be examined if the possibly non-symmetric similarity spaces,

allowed in the present approach, can be excluded.

In fact, we do not know if the symmetry of the similarity relation

would actually matter. That is, we are not sure if the calculus pre-

sented here is not already complete also for the symmetric case. We

are not able to provide an example to show the difference.

Another topic concerns proof-theory. This is an aspect that, ac-

cording to our impression, has been largely neglected for logics of

the type discussed here. However, if such logics are to be used for

expert systems, the question of an automatic proof search, decidabil-

ity and the like should be examined as well.
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