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Abstract—We present a consequence relation for graded infer-
ence within the frame of infinite-valued Łukasiewicz semantics.
We consider the premises to be true to at least a certain degree
η and consider as consequences those sentences entailed to have
a degree of truth at least some suitable threshold ζ. We focus
on the study of some aspects and features of the consequence
relation presented and, in particular, on the effect of variations
in the thresholds η, ζ.

I. INTRODUCTION

The motivation of the present paper and the issues it deals
with originated from the study and analysis of the consequence
relation η.ζ . The consequence relation η.ζ was defined in
a simplified version in [8] (for η = ζ) and further studied
and extended in [9], [10] and [11]. Such consequence relation
was mainly motivated by the following argument: Suppose
the set of premises, say Γ, consists of the beliefs of a single
rational agent. As such, a premise can be assigned a degree
of belief that corresponds to the degree to which our agent
believes the sentence to be true (which, in the context of η.ζ ,
we identify with subjective probability). We then fix a lower
bound belief threshold for Γ (η in η.ζ) and another threshold
for the conclusions (ζ in η.ζ) on the basis that it might be
argued that we should be willing to accept as consequences
any other sentences which as a result have, by probability
logic, a degree of belief at least as high as some suitable
threshold ζ (the most natural choice being, arguably, ζ = η).

Much attention is devoted to the function FΓ,θ in [9], [10]
and [11]. For Γ∪{θ} a set of sentences, the function FΓ,θ(η)
is defined as follows: FΓ,θ(η) = sup{ζ | Γη .ζ θ}. FΓ,θ(η)
gives us the highest belief threshold that we can place on θ
that is consistent with any probability measure that assigns a
degree of belief greater than or equal to η to all sentences in Γ.
A representation theorem that fully characterizes the functions
of the form FΓ,θ and thus the sets of pairs (η, ζ) for which
Γη .ζ θ holds is given in the above mentioned references.

In this paper we present the consequence relation η Iζ ,
of the same nature as η.ζ , defined within the frame of
Lukasiewicz semantics (see [3] or [4]). From it we define
the function LΓ,θ, the counterpart of FΓ,θ, and analyse its
behaviour. We will refer to the values η, ζ in the context
of η Iζ as degrees of truth rather than as degrees of belief,
although an interpretation of them in terms of belief is not
discarded.

There are some approaches in the literature to graded
inference in the context of Łukasiewicz semantics, some of
them very recent (see for example [1], [2]). However, all such
approaches (at least those known to the author) differ greatly
from the one we present here.

The paper is structured as follows: Section II contains some
preliminary definitions and notational remarks. Section III
introduces the notion of Łη-consistency. Section IV is devoted
to the study of the functions of the form LΓ,θ and Section V
deals with some characteristic graphs that LΓ,θ can yield, for
suitable Γ∪{θ}. The ultimate goal of the results presented in
all these sections is the representation theorem given in Section
VI, which offers a full characterization of the functions of the
form LΓ,θ.

II. PRELIMINARY DEFINITIONS AND NOTATION

Throughout we will be working with a finite propositional
language L = {p1, ..., pm}, for some m ∈ N. We will denote
by SL the closure of L ∪ {⊥} under the connective ’→’.

We will be using in this paper a large number of abbrevia-
tions which correspond to other common logical connectives
within the context of many-valued logics. We consider the
following abbreviations, for φ, θ ∈ SL:
• ’⊥ → ⊥’ is abbreviated by ’>’
• ’φ→ ⊥’ by ’¬φ’
• ’¬(φ→ ¬θ)’ by ’φ&θ’
• ’¬φ→ θ’ by ’φ∨θ’
• ’φ&(φ→ θ)’ by ’φ ∧ θ’
• ’((φ→ θ)→ θ) ∧ ((θ → φ)→ φ)’ by ’φ ∨ θ’.

Next we define the notion of Ł-valuation.

Definition 1: Let w : SL −→ [0, 1]. We say that w is an
Ł-valuation on L if, for φ, θ ∈ SL, we have what follows:

1) w(φ→ θ) = min{1, 1− w(φ) + w(θ)}
2) w(⊥) = 0
From these two clauses we can define the behaviour of

Ł-valuations for the other connectives introduced above. Let
φ, θ ∈ SL. We have what follows:
• w(>) = 1
• w(¬φ) = 1− w(φ)
• w(φ&θ) = max{0, w(φ) + w(θ)− 1}
• w(φ∨θ) = min{1, w(φ) + w(θ)}
• w(φ ∧ θ) = min{w(φ), w(θ)}



• w(φ ∨ θ) = max{w(φ), w(θ)}

Let Γ = {φ1, ..., φk} ⊆ SL, for some k ∈ N. We will
denote by

∧
Γ the sentence φ1 ∧ ... ∧ φk. Similarly

∨
Γ,
∨

Γ
and &Γ will denote the sentences φ1∨ ...∨φk, φ1∨...∨φk and
φ1&...&φk respectively.

Sentences of the form φ ∧ ... ∧ φ where φ occurs k times,
for some k ∈ N, will be abbreviated by the expression

∧k
θ

(and similarly for the other connectives). It is customary to
refer to &kφ (that is, φ&...&φ, where φ occurs k times) by
φk in the literature and we will follow this convention.

Let φ ∈ SL. We will denote by Lφ = {p1, ..., pk} ⊆ L
the set of propositional variables that occur in φ. We will
sometimes use the notation φ(p1, ..., pk).

Let w be an Ł-valuation on L. We have that

w(φ) = f(w(p1), ..., w(pk))

for some f : [0, 1]k → [0, 1]. We will denote this f by fφ. We
will write sometimes fφ(x1, ..., xk).

Next we state a central theorem in Łukasiewicz logic that
will play an important role in this paper.

Theorem 2: McNaughton’s Theorem (see [7])
In order that a function f : [0, 1]k → [0, 1] be of the form fφ

for some φ ∈ SL it is necessary and sufficient that f satisfy
the following two conditions:

1) f is continuous on [0, 1]k.
2) There are a finite number of distinct polynomials with

integer coefficients λi, 1 ≤ i ≤ µ,

λi = bi +m1ix1 + ...+mkixk,

such that for every (x1, ..., xk), 0 ≤ xi ≤ 1 for all
i ∈ {1, ..., k}, there is λj for some j ∈ {1, ..., µ} such
that f(x1, ..., xk) = λj(x1, ..., xk).

For a proof of this theorem see [7].

III. THE NOTION OF Łη -CONSISTENCY

We now define Łη-consistency and maximal Łη-consistency.

Let Γ ⊆ SL and η ∈ [0, 1].

Definition 3: We say that Γ is Łη-consistent if and only if
there exists an Ł-valuation w on L such that w(

∧
Γ) ≥ η.

Definition 4: We define the notion of maximal consistency
of Γ – denoted mc(Γ) – as follows:

mc(Γ) = sup{η | Γ is Łη-consistent}

We say that Γ is maximally Łη-consistent to mean that
mc(Γ) = η.

These definitions ressemble those of η-consistency and max-
imal η-consistency presented in [5].1 Maximal η-consistency
was defined as a probabilistic measure of the degree of consis-
tency for classical sets of sentences (for more on these notions

1The essential difference being that such notions are defined based on
probability functions in L instead of Ł-valuations.

see [5] or [11]). Our definition of maximal Łη-consistency is
not presented here as a measure for the degree of consistency
of a set of sentences – for which it does not seem to be suited
anyway – but simply as some sort of technical notion that
will be needed in further sections (for more on maximal Łη-
consistency as a measure of inconsistency see [11]).

Notice that Łη-consistency of a set of sentences Γ is the
same as Łη-consistency of the sentence

∧
Γ. We will talk

indistinctively about the consistency of sentences and sets of
sentences.

Proposition 5: mc(Γ) is attained by some Ł-valuation.
Proof: Let mc(Γ) = η. We can define an increasing

sequence {ηn} whose limit is η such that for all n ∈ N
there exists an Ł-valuation wn on L with wn(

∧
Γ) ≥ ηn.

We can characterize every wn by the values it assigns to the
propositional variables in L. We will thus identify wn with
the vector ~wn = (wn(p1), ..., wn(pm)). We need to prove that
there exists an Ł-valuation w on L such that w(

∧
Γ) ≥ η.

We can take a convergent subsequence {~w1
nk
} in the first

coordinates of {~wn}. We know such a convergent subse-
quence needs to exist and converge in the interval [0, 1] by
compactness. Next we can pick a convergent subsequence
{~w2

nk
} in the second coordinates of {~w1

nk
}. As before, such

subsequence needs to exist and converge in the interval [0, 1]
by compactness. We can proceed in the same way for the other
coordinates. The final subsequence, {~w2m

nk
}, will have as limit

an Ł-valuation ~w on L for which w(
∧

Γ) ≥ η.

Proposition 6: For all k ∈ N we can construct a sentence
φ ∈ SL (which we will denote by φ 1

k
) that is maximally

Ł 1
k

-consistent.
Proof: Let us define φ 1

k
as follows:

φ 1
k

= ¬p ∧ pk−1

It can be easily checked that φ 1
k

is maximally Ł 1
k

-
consistent. Consider the Ł-valuation w on L that assigns to
p the value k−1

k . We have that w(φ 1
k

) = 1
k . It is also clear

that any other Ł-valuation w∗ on L for which w∗(p) < k−1
k

or w∗(p) > k−1
k will be such that w∗(φ 1

k
) < 1

k .

Proposition 7: Let r ∈ Q ∩ [0, 1]. We can construct a
sentence φ ∈ SL (which we will denote by φr) that is
maximally Łr-consistent.

Proof: Let r = u
v and p ∈ L. Let us define φr as follows:

φr =
∨u

φ 1
v

By Proposition 6 φ 1
v

is maximally Ł 1
v

-consistent and thus∨u
φ 1

v
is maximally Ł u

v
-consistent.

Although obvious, it is worth mentioning that there exists an
Ł-valuation w on L for which w(φr) = 0. Thus, by continuity
of fφr

, we will have an Ł-valuation w on L such that w(φr) =
λ for each λ ∈ [0, r].



IV. η Iζ AND THE FUNCTION LΓ,θ

Time now to define the consequence relation η Iζ intro-
duced in the first section and, from it, the function LΓ,θ.

Throughout let Γ ∪ {θ} ⊆ SL and η, ζ ∈ [0, 1].

Definition 8: We say that Γ (η, ζ)-implies θ (denoted
Γη Iζ θ) if and only if, for all Ł-valuations w on L, if
w(
∧

Γ) ≥ η then w(θ) ≥ ζ.

Definition 9: The function LΓ,θ : [0, 1] −→ [0, 1] is defined
as follows, for all η ∈ [0, 1]:

LΓ,θ(η) = sup{ζ |Γη Iζ θ}.

As mentioned earlier, LΓ,θ characterizes the pairs (η, ζ) for
which Γη Iζ θ.

A. Some properties of LΓ,θ

Proposition 10: Let Γ be Łη-consistent. There exists an
Ł-valuation w on L such that w(

∧
Γ) ≥ η and w(θ) =

LΓ,θ(η) = ζ.
Proof: We proceed in a way similar to that of the proof

of Proposition 5. We can define a decreasing sequence {ζn}
whose limit is ζ such that for all n ∈ N there exists an Ł-
valuation wn on L with wn(θ) = ζn and wn(

∧
Γ) ≥ η.

As in Proposition 5, we identify wn with the vector ~wn =
(wn(p1), ..., wn(pm)). We have to prove that there exists an
Ł-valuation w on L such that w(θ) = ζ and w(

∧
Γ) ≥ η.

As before, we take a convergent subsequence {~w1
nk
} in

the first coordinates of {~wn}. Next we pick a convergent
subsequence {~w2

nk
} in the second coordinates of {~w1

nk
} and

proceed in the same way for the other coordinates. That all
these subsequences exist and converge in the interval [0, 1]
follows from compactness. The final subsequence, {~w2m

nk
}, will

have as limit an Ł-valuation ~w on L for which w(θ) = ζ and
w(
∧

Γ) ≥ η.

Proposition 11: LΓ,θ is increasing.
Proof: It follows directly from the definition of η Iζ .

For the next proposition assume that mc(Γ) = λ > 0.
Proposition 12: LΓ,θ is left continuous on [0, λ].

Proof: Let us proceed by reductio ad absurdum by
assuming that there exists η ∈ (0, λ] and ε > 0 such that

LΓ,θ(η)− LΓ,θ(x) > ε

for all x ∈ [0, η).
Let ζ = sup {LΓ,θ(x)|x < η}. We can define an increasing

sequence {ηn} with limit η and a sequence {ζn} with limit ζ
such that for all n ∈ N there exists an Ł-valuation wn with
wn(

∧
Γ) = ηn and wn(θ) = ζn. As in previous proofs we

identify wn with the vector ~wn = (wn(p1), ..., wn(pm)).
We proceed as in previous proofs by taking suitable con-

vergent subsequences of {~wn} at each step until we come
to {~w2m

nk
}, which will have as limit an Ł-valuation ~w on L

for which w(Γ) = η and w(θ) = ζ since LΓ,θ is increasing.
Therefore LΓ,θ needs to be continuous from the left at η.

Proposition 13: LΓ,θ is of the following form:

LΓ,θ(η) =

 a1η + b1 if η ≤ λ1

...
akη + bk if λk−1 < η ≤ λk

with ai, bi, λi ∈ Q and k ∈ N, i ∈ {1, ..., k}.
Proof: Let R = 〈R,+,−, <,=, 0, 1〉.2

The set of pairs

{(x, y) ∈ R2| y = LΓ,θ(x)}

is R-definable (notice that, since R is an elementary extension
of the structure Q = 〈Q,+,−, <,=, 0, 1〉, it is Q-definable
too).

The theory of R has quantifier elimination (see for example
[6]). Therefore the set of pairs

{(x, y) ∈ R2| y = LΓ,θ(x)}

is given by a finite boolean combination (which reduces to a
finite union of intersections by the complement and distributive
laws for sets) of sets of the form

{(x, y) ∈ R2| my < nx+ k}

and
{(x, y) ∈ R2| my = nx+ k}

for n,m, k ∈ Z.
Notice that each non-empty intersection of sets of such form

is convex so, since LΓ,θ is a function, such intersection has to
be a line segment (with coefficients and bounds in Q).

That LΓ,θ is left continuous was stated and proved in
Proposition 12.

V. GRAPHS FOR LΓ,θ

In this section we present some characteristic graphs for
LΓ,θ that can be constructed from a suitable set Γ∪{θ} ⊆ SL.
We start with what we call basic graphs and then we go on
to define the compound graphs.

A. Basic graphs

We define five basic types of graphs that LΓ,θ can yield for
suitable sets Γ ∪ {θ}.

Proposition 14: (Type 1)
Let r, s ∈ [0, 1] ∩Q. We can find Γ ∪ {θ} ⊆ SL for which

LΓ,θ is as follows:

LΓ,θ(η) =
{
s if η ≤ r
1 otherwise

Proof: Let 0 < r = u1
v1

and 0 < s = 1− u2
v2
< 1.

Let Γ = {
∨u1φ 1

v1
}, with φ 1

v1
= ¬p∧pv1−1 and p ∈ L. As

seen previously, Γ is maximally Łr-consistent.
On the other hand take φ 1

v2
= ¬q ∧ qv2−1, for q ∈ L,

q 6= p. The sentence
∨u2φ 1

v2
is maximally Ł u2

v2
-consistent.

Thus there is no Ł-valuation w on L such that

w(¬(
∨u2

φ 1
v2

)) < 1− u2

v2
= s.

2Here by ’−’ we mean the map given by x −→ −x.



Set θ = ¬(
∨u2φ 1

v2
). Clearly, for Γ and θ thus defined, LΓ,θ

is as stated above.
For r = 0 we can take

∧
Γ to be an Ł-contradiction. If

s = 0 we can take θ to be an Ł-contradiction and, if s = 1,
an Ł-tautology.

It is worth remarking the importance of a subclass of this
type of graphs; namely, the graph given when s = 0.

Notice that in the above example Γ is not Ł1-consistent.
Later on, in order to prove the representation theorem for
the functions LΓ,θ, we will need to appeal to graphs of this
form for Ł1-consistent sets of premises. From McNaughton’s
Theorem we can claim that there exist sentences

∧
Γ and θ

involving only one propositional variable –say p ∈ L– with∧
Γ Ł1-consistent such that LΓ,θ(η) = 0 for η ≤ r and

LΓ,θ(η) = 1 for η > r, for any r ∈ [0, 1] ∩ Q. To see this
consider for example f∧

Γ(x) and fθ(x) to be of the following
form:

f∧
Γ(x) =


a1x if x ≤ 1+b2

a1+a2

1− (a2x− b2) if 1+b2
a1+a2

< x ≤ 1+b2
a2

a3x− b3 if 1+b2
a2

< x ≤ c
1 otherwise

Here a1, a2, a3, b2, b3 are positive integers and c is a rational
number. Other conditions on these values are that a1( 1+b2

a1+a2
) =

1− (a2( 1+b2
a1+a2

)− b2) = r, 1+ b2 < a2, 1− (a2( 1+b2
a2

)− b2) =
a3( 1+b2

a2
)− b3 = 0 and a3c− b3 = 1.

fθ(x) =

 0 if x ≤ d1

a4x− b4 if d1 < x ≤ d2

1 otherwise

Here a4, b4 are positive integers and d1, d2 are rational
numbers. Other conditions on these values are a4d1− b4 = 0,
a4d2 − b4 = 1 and 1+b2

a1+a2
≤ d1 < d2 ≤ 1+b2

a2
.

For
∧

Γ and θ of this form the function LΓ,θ will be as
desired. Notice that f∧

Γ( 1+b2
a1+a2

) = r, fθ( 1+b2
a1+a2

) = 0 and, for
all x ∈ [0, 1] for which f∧

Γ(x) > r we have that fθ(x) = 1.

Proposition 15: (Type 2)
Let r, s ∈ [0, 1]∩Q, with r < s. We can find Γ∪{θ} ⊆ SL

for which LΓ,θ is of the following form:

LΓ,θ(η) =


0 if η ≤ r
η−r
s−r if r < η < s

1 otherwise

Proof: Let 0 < r = u1
v1
< s = u2

v2
.

Take s− r = u2v1−u1v2
v1v2

and define ψ1 and θ as follows:

ψ1 =
∨u2v1−u1v2

φ 1
v1v2

θ =
∨v1v2

φ 1
v1v2

.

Here φ 1
v1v2

= ¬p ∧ pv1v2−1, for p ∈ L.

Define ψ2 as follows:

ψ2 =
∨u1

φ 1
v1
.

We take φ 1
v1

to be ¬q ∧ qv1−1, for q ∈ L with q 6= p, and
set Γ = {ψ1∨ψ2}.
LΓ,θ is as required. To see this notice that, since ψ2 is

maximally Łr-consistent, LΓ,θ(x) = 0 for all x ∈ [0, r] and
that any Ł-valuation w on L for which w(ψ1) = λ(s − r),
for λ ∈ [0, 1], is such that w(θ) = λ. If r = 0 then we can
dispense with ψ2 and take Γ = {ψ1}.

As with Type 1 McNaughton’s Theorem guarantees the
existence of

∧
Γ Ł1-consistent and θ such that LΓ,θ is as

above. To see this consider φ(p) and θ(p) (with p ∈ L) for
which fφ(x) and fθ(x) are of the following form:

fφ(x) =
{
bx if x ≤ 1

b
1 otherwise

fθ(x) =
{
ax if x ≤ 1

a
1 otherwise

Here a, b ∈ N and a
b = 1

s−r . Notice that L{φ},θ(η) = aη
b

for all η ≤ b
a . We can then set Γ = {φ∨ψ2}, where ψ2 is

as defined above. The function LΓ,θ will be as stated, with Γ
Ł1-consistent.

Proposition 16: (Type 3)
Let r, s ∈ [0, 1]∩Q. We can define Γ∪{θ} ⊆ SL for which

LΓ,θ has the following form:

LΓ,θ(η) =
{

0 if η ≤ r
s(η−r)

1−r otherwise

Proof: Let r = u1
v1

and s = u2
v2

. We have to distinguish
two possible cases here:

Case 1. s
1−r ≤ 1.

Consider s
1−r = u2v1

v2(v1−u1) .
We first define ψ1 and θ as follows:

ψ1 =
∨v2(v1−u1)

φ 1
v2(v1−u1)

,

θ =
∨u2v1

φ 1
v2(v1−u1)

.

Here φ 1
v2(v1−u1)

= ¬p ∧ pv2(v1−u1)−1, for p ∈ L.
Let us now define ψ2 for r > 0 as follows:

ψ2 =
∨u1

φ 1
v1
.

Here φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L with q 6= p. We set
Γ = {ψ1∨ψ2}. We can clearly see that LΓ,θ is as stated.

Notice that if r = 0 then we can dispense with ψ2 and set
Γ = {ψ1}.

Case 2. s
1−r > 1.



Consider 1−r
s = v2(v1−u1)

u2v1
.

We now define ψ1 and θ in the following way:

ψ1 =
∨v2(v1−u1)

φ 1
u2v1

,

θ =
∨u2v1

φ 1
u2v1

with φ 1
u2v1

= ¬p ∧ pu2v1−1, for p ∈ L.

Define ψ2 as in Case 1 and set Γ = {ψ1∨ψ2}. LΓ,θ will be
as stated.

Proposition 17: (Type 4)
Let r, s ∈ [0, 1]∩Q, with r < s. We can define Γ∪{θ} ⊆ SL

for which LΓ,θ(η) = (s− r)η + r.
Proof: Let r = u1

v1
< s = u2

v2
. Take s − r = u2v1−u1v2

v1v2
and define ψ and θ1 as follows:

ψ =
∨v1v2

φ 1
v1v2

,

θ1 =
∨u2v1−u1v2

φ 1
v1v2

,

where φ 1
v1v2

= ¬p ∧ pv1v2−1, for p ∈ L.

Let us define θ2 as follows:

θ2 = ¬(
∨u1

φ 1
v1

).

Here φ 1
v1

= ¬q ∧ qv1−1, with q ∈ L and q 6= p.
By setting θ = θ1∨θ2 and Γ = {ψ} we get LΓ,θ of the

form desired.
If r = 0 then we set θ = θ1.

Proposition 18: (Type 5)
Let r, s ∈ [0, 1]∩Q. We can define Γ∪{θ} ⊆ SL for which

LΓ,θ has the following form:

LΓ,θ(η) =
{
η( 1−r

s ) + r if η ≤ s
1 otherwise

Proof: Let 0 < r = u1
v1

and s = u2
v2

. We have to
distinguish two possible cases:

Case 1. 1−r
s > 1.

Consider s
1−r = u2v1

v2(v1−u1) and define ψ and θ1 as follows:

ψ =
∨u2v1

φ 1
v2(v1−u1)

,

θ1 =
∨v2(v1−u1)

φ 1
v2(v1−u1)

,

with φ 1
v2(v1−u1)

= ¬p ∧ pv2(v1−u1)−1, for p ∈ L.

On the other hand define θ2 as follows:

θ2 = ¬(
∨u1

φ 1
v1

),

with φ 1
v1

= ¬q ∧ qv1−1, for q ∈ L and q 6= p.
Set θ = θ1∨θ2 and Γ = {ψ}. The function LΓ,θ will be as

desired.
If r = 0 then we can set θ = θ1.

As with Type 1 and Type 2, McNaughton’s Theorem
guarantees the existence of sentences

∧
Γ and θ in one variable

(say p ∈ L), with
∧

Γ Ł1-consistent, such that LΓ,θ is of the
required form. Consider for example φ and ψ for which fφ(x)
and fψ(x) are defined as those seen previously for Type 2:

fφ(x) =
{
bx if x ≤ 1

b
1 otherwise

fψ(x) =
{
ax if x ≤ 1

a
1 otherwise

Here a, b ∈ N and a
b = 1−r

s .
Set Γ = {φ} and θ = {ψ∨θ2}, where

θ2 = ¬(
∨u1

φ 1
v1

)

and φ 1
v1

= ¬q ∧ qv1−1, with q ∈ L and q 6= p.
Clearly LΓ,θ will be as stated, with Γ Ł1-consistent.

Case 2. 1−r
s ≤ 1.

Consider 1−r
s = v2(v1−u1)

u2v1
and define ψ and θ1 as follows:

ψ =
∨u2v1

φ 1
u2v1

,

θ1 =
∨v2(v1−u1)

φ 1
u2v1

,

where φ 1
u2v1

= ¬p ∧ pu2v1−1, for p ∈ L.
Define θ2 as in Case 1 and set θ = θ1∨θ2 and Γ = {ψ}.

The function LΓ,θ will be as desired.
For r = 0 we dispense again with θ2.

B. Compound graphs

Let L1, L2 be two disjoint languages and SL1, SL2 their
respective sets of sentences. Take Γ1 ⊆ SL1, Γ2 ⊆ SL2 and
θ1 ∈ SL1, θ2 ∈ SL2. Assume that Γ = Γ1 ∪ Γ2 is maximally
Łλ-consistent.

Proposition 19: For all η ∈ [0, 1],

max{LΓ1,θ1(η),LΓ2,θ2(η)} = LΓ1∪Γ2,θ1∨θ2(η).

Proof: It follows trivially from the interpretation of the
connective ’∨’.

Proposition 20: For all η ∈ [0, λ],

min{LΓ1,θ1(η),LΓ2,θ2(η)} = LΓ1∪Γ2,θ1∧θ2(η).

Proof: It follows trivially from the interpretation of ’∧’.

We can extend these propositions to any finite collection
of sets of sentences Γ1 ⊆ SL1, ...,Γk ⊆ SLk and θ1 ∈
SL1, ..., θk ∈ SLk, for some k ∈ N, with L1, ..., Lk a
collection of pairwise disjoint languages.



VI. REPRESENTATION THEOREM

At this point we have all the intermediate results necessary
for the representation theorem that we finally present in this
section.

Theorem 21: Representation Theorem. The function F :
[0, 1] −→ [0, 1] is of the form LΓ,θ for some Γ∪{θ} ⊆ SL if
and only if F is an increasing function of the following form:

F(x) =

 a1x+ b1 if x ≤ λ1

...
akx+ bk if λk−1 < x ≤ λk

with ai, bi, λi ∈ Q and k ∈ N, i ∈ {1, ..., k}.
Proof: If the function F : [0, 1] −→ [0, 1] is of the form

LΓ,θ for some Γ ∪ {θ} ⊆ SL then we know, by Propositions
11 and 13, that F will be an increasing function of the form
stated in the theorem.

Let us prove now the left implication.

Let F : [0, 1]→ [0, 1] be as stated.
We will denote the line segment given by aix + bi and

λi−1 < x ≤ λi by li, for i ∈ {2, ..., k} (l1 will be the line
segment given by a1x+ b1 and x ≤ λ1).

Let us define Γ and θ for which LΓ,θ(η) = F(η) for all
η ∈ [0, 1].

First, let li be a line segment of F , i ∈ {1, ..., k} (without
loss of generality we can assume that i 6= 1). We can define
Γi ⊆ SL Ł1-consistent and θi ∈ SL for which LΓi,θi

is as
follows:

LΓi,θi
(x) =

 aiλi−1 + bi if x ≤ λi−1

aix+ bi if λi−1 < x ≤ λi
1 otherwise

To see this set

LΓi,θi
(η) = max{L∆1,ψ1(η),max{L∆2,ψ2(η),L∆3,ψ3(η)}}

for all η ∈ [0, 1], with ∆j ⊆ SLj Ł1-consistent and ψj ∈ SLj
for all j ∈ {1, 2, 3}, where L1, L2, L3 are pairwise disjoint
languages.
L∆1,ψ1 and L∆2,ψ2 are of Type 1:

L∆1,ψ1(x) =
{

0 if x ≤ λi
1 otherwise

L∆2,ψ2(x) = aiλi−1 + bi for all x ∈ [0, 1]

The nature of the straight line aix + bi will determine the
type of graph of L∆3,ψ3 . We will choose ∆3 and ψ3 such that
the graph of L∆3,ψ3 contains the straight segment aix + bi,
for λi−1 < x ≤ λi. That L∆3,ψ3 will be of one of the types
described in the previous subsection is clear.

It can easily be seen that

F(η) = L⋃
Γi,

∧
θi

(η) = min{LΓi,θi
(η) | i ∈ {1, ..., k}}

for all η ∈ [0, 1], with Γ1 ⊆ SL1, ...,Γk ⊆ SLk, θ1 ∈
SL1, ..., θk ∈ SLk and L1, ..., Lk a pairwise disjoint collection
of languages.

VII. CONCLUSION

We have introduced the consequence relation η Iζ for
graded inference built upon Łukasiewicz semantics. We have
studied the behaviour of η Iζ in relation to variations of the
thresholds η, ζ through the analysis of the functions of the
form LΓ,θ defined in Section IV, for Γ∪{θ} a set of sentences.
Both in Section IV and Section V we have produced results
necessary for the proof of the representation theorem given
in Section VI, which fully characterizes the functions of the
form just mentioned and thus the pairs of thresholds (η, ζ) for
which Γη Iζ θ holds.

Much is left to be analysed about the consequence relation
η Iζ . A sound and complete proof system for such relation
is yet to be found.
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