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Abstract— We contrast the concept underlying t-norm-based
propositional fuzzy logics with the problem to whose solution fuzzy
logics are frequently suggested as helpful – namely, to find amodel
of reasoning with vague information. We argue that fuzzy logics are
useful as long as truth values can be identified with the meaning of
the considered propositions. This, however, is rarely the case in prac-
tice; hence we see the need to broaden the concept underlyingthis
important class of logics and try fresh approaches. In particular,
we should flexibilise the formalism to allow that propositions do not
arise in the same context, but are just known to be related in some
way.
We tackle the problem tentatively. We define a set of rules which, as
we assume, are minimally required to enable us to argue aboutvague
propositions whose content is not taken into account. Our choice of
rules reflects the practical requirements of a certain expert system on
which we work.
Although we deal here with fuzzy logic in a very direct sense,we
arrive at calculi completely different from the t-norm-based ones.
Without incorporating truth degrees explicitly, we are ledto Belnap’s
logic, which can, but need not, be endowed with a semantics based
on graded truth degrees. When formalising also truth degrees, we
get a logic which can be based on what we call metric De-Morgan
lattices.

Keywords— t-norm-based fuzzy logics, reasoning under vague-
ness, medical expert system, De-Morgan lattices, metric De-Morgan
lattices

1 T-norm-based fuzzy logic for
reasoning about vague information – a trap

Fuzzy logics are distinguished from classical logic by the in-
corporation of an extended set of truth values. In the standard
case, the value0 is used to express falsity, the value1 is used
to express trueness, and all remaining real values in between
these two limit points are added in order to cope with the fact
that objects may fulfil a property to an intermediate degree.
We arrive naturally at the idea to evaluate propositions in the
real unit interval, whose most basic feature is its linear order.

The connectives used in fuzzy logics consequently need to
be interpreted by operations on[0, 1]. Typically, a conjunction
is present, which is typically interpreted by a left-continuous
t-norm. Sometimes, an involutive negation is present as well,
conveniently interpreted by the standard negation1 − ·. A
further connective, which logicians, in contrast to engineers,
generally consider as the most basic one, is the implication,
which is typically interpreted by the residuum belonging tothe
t-norm. Finally, the logic may or may not offer the possibility
to express explicitly to which degree a proposition holds.

Based on this approach, more than just a few logics have
been defined and intensively studied. Monographs of basic

importance include [14, 13] as well as, as regards the explic-
itation of truth degrees, [18]. We remark that we certainly do
not address all logics which have been called “fuzzy” in the
literature; this would be impossible as it seems that nowadays
any logic has a “fuzzy” counterpart. Here, we just speak about
logics of the indicated type.

We wish to address in this note the peculiar relationship be-
tween t-norm-based fuzzy logics and a problem which is reg-
ularly mentioned in discussions on the fundamentals of fuzzy
logics: how to formalise reasoning when the referred infor-
mation is possibly vague. The discussion on the very nature
of fuzzy logics is old. An aim has been to develop fuzzy log-
ics, as they are, from clear, meaningful principles; see, among
many papers, e.g. [9, 10, 21, 22]. Here, we want to approach
once the subject from the other side, namely, from the point of
view of a specific application: an appropriate formalisation of
justifiable reasoning can simply be a practical need.

Let us first try to formulate our concern in an abstract way.
We assume to be given a set of propositions whose content
does not matter. This means that for the derivation of con-
sequences, the meaning is not taken into account and can be
assumed to be unknown. We just know that the propositions
refer to the observable or unobservable properties of some-
body or something, describable in, possibly scientific, natu-
ral language. Important for us, the propositions express the
presence of some property which can be vague, where, as
usual, vagueness is characterised by the possibility of border-
line cases. Moreover, we assume to have some knowledge
about the mutual relationships. These relationships may ex-
press that some property is more general than another one, or
a causal implication based on experience; again, we do not
require the relationships to hold necessarily strict. Whatwe
are finally interested in, is to find a formal framework which
tells us how to derive new information from the one we have
to our disposal. Since the outlined situation is very general,
the framework must be very general as well; we wonder, so to
say, about a minimal logic for reasoning under vagueness.

The described problem is not purely academic and in partic-
ular not part of any “ivory-tower” philosophical theory, but has
a practical background. We work towards an appropriate for-
malisation of a medical expert system [7]. The system which
we are to analyse is called Cadiag-2, the second generation of
the expert systems Cadiag – “Computer-AssistedDiagnosis”,
and aims at the differential diagnostic decision support inpa-
tient care [1, 2]. Cadiag-2 processes both vague and uncer-
tain data; we restrict here to the first case only. The proces-
sion of uncertain data calls for a probabilistic logic and causes
completely different problems than those discussed here; for
probability theory, well-founded calculi exist, whose unpleas-



ant feature, however, can be a too high complexity as well as
incomprehensible inference rules.

As we intend to formalise propositions disregarding their
content, our problem is clearly a case for a propositional logic.
As mentioned, many propositional fuzzy logics have been pro-
posed in the past, based on different ways how to endow the
real unit interval with a structure. Moreover, a wide range
of logics has been introduced related to the problem which
we address here, in particular different versions of “logics of
argumentation”. For a comprehensive overview and a large
collection of references, we recommend the handbook [12].
Here, we just mimic the first steps towards the generally much
more sophisticated and often more specialised systems found
in the literature. What we have in mind is to concentrate exclu-
sively on the aspect of vagueness, to proceed in a way which
can hardly be further generalised, and to see how the result
relates to t-norm-based fuzzy logics.

The set of eligible propositional logics is much restrictedby
one basic requirement, dictated by the intended application:
all constituents of the formal logic need to have a counterpart
on the informal level. Specifically, there must exist a plausible
way how to think about each connective which appears in the
logic’s language, most easily obtained by a clear correlation
with a natural-language expression. Moreover, if a proposi-
tion is provable from others, there must exist a proof in a proof
system such that each step is comprehensible as a plausible ar-
gument, rather than a pure manipulation of strings; in the best
case, each step can easily be translated to an explanation in
natural language, exhibiting the causal or logical relationship
on which the argument is based.

A fuzzy logic of the above-indicated kind does not meet
any of these requirements. To see the problem, let us assume
that we actually can find a logic fitting to our needs. We ac-
tually feel that it is natural to assume so; after all, we wish
to formalise possibly vague statements, and these are appro-
priately evaluated on a linear continuous scale. So let us see
how the logic could look like. We need a conjunction∧ and
a negation∼; the interpretation by the infimum and the stan-
dard negation, respectively, will do in our case. We note that
the interpretation of truth values is not our subject here, and
our particular choices for the connectives provide just an ex-
ample. Moreover, we need to express truth degrees explicitly;
to this end, we add constantsr̄ for each rationalr ∈ [0, 1]. So
far, we do not encounter problems.

The first serious problem comes with the implication.
Let us tentatively add the connective→ interpreted by the
residuum belonging to∧. Note that we then arrive at the logic
RGL∼, the Gödel logic enriched with the standard negation
and truth constants [8]. Now, there is a natural way how to
think about a statement “α → β”: we interpret it as “α im-
pliesβ”. However, this clarity disappears as soon as we nest
implications on the left side, like in “(α → β) → γ”. If our
reference, a set of propositions, has a priori the structureof a
residuated lattice, we can say thatα→β denotes the weakest
element which, together withα, impliesβ. But in our case,
there is no such structure available; we recall that we do not
wish to assume any a priori structure as we would have to
analyse the propositions by content then.

We note that this critics is related to the discussion out of
which relevance logics arose [3]. Furthermore, a discussion in

which the role of the implication connective in fuzzy logicsis
opposed to the needs of certain applications, can be found in
[4].

For us, there is a reasonable way how to proceed: to drop
the implication as a generally applicable connective. To this
end, we consider in [7] a logic in which the implication al-
ways appears at the only place at which it can be appropri-
ately called an implication: on the outermost level. Namely,
we consider pairs of implication-free formulas, with the in-
tended meaning that the left one denotes a proposition which
is stronger then the right one. Thus we leave the area of t-
norm-based logics and enter the field of lattice word problems.
Namely, our model is the following algebraK, a Kleene alge-
bra with added constants:([0, 1];∧,∨,∼, (r̄)r∈Q[0,1]).

We arrive at a logic, which we callGZL, whose formal
expressions possess straightforward interpretations. How-
ever, we encounter the second and even more serious prob-
lem when considering a proof system forGZL. Following the
lines of [5], we have in [7] presented a proof system based
on sequents-of-relations. Unfortunately, our requirement that
proof steps should be comprehensible in an informal way, is
far from being fulfilled. Consider theK-tautology

α ∧∼α → β ∨ ∼β. (1)

In its proof, we have to make necessarily use of the possibility
to use multisets of relations, namely,

α ⇒ β | β ⇒ α (2)

will appear in the proof. However,α andβ refer to arbitrary
facts, and the tentative translation “α impliesβ, or β implies
α” is nonsense. Note that the problem concerns the proved
result as well; (1) cannot be interpreted as a statement which
anybody would ever tell.

The deeper reason for this difficulty is the semantics. An
element of[0, 1] is intended to be the truth degree of a propo-
sition; but it is treated like its meaning. What we might think
as being associated to a property, telling that the propertydoes
not fully apply, is already the property itself. As a conse-
quence, when using[0, 1] as a model, we may be led to the
situation that we compare something by strength what by con-
tent would never be comparable. A valid statement of the form
“α → β” is not really translatable to “fromα we can con-
cludeβ”, but only thatα is under all circumstances assigned
a smaller truth value thanβ, and based on this interpretation,
(2) becomes indeed meaningful and just expresses the linear
order of the truth degrees. However, this interpretation isnot
what we want.

The interpretation in the linearly ordered set of reals may
certainly be useful at other places. A requirement comes into
play which we have frequently argued for: to put fuzzy logics
on firm grounds, we need first to be aware of the nature of what
we reason about. In case of t-norm-based fuzzy logic, we rea-
son about a set of propositions which has the internal structure
of a residuated lattice, as it is the case for universes of fuzzy
sets. The same, by the way, applies to classical propositional
logic, which exactly reasons about a collection of proposi-
tions endowed a priori with the structure of a Boolean algebra;
the popular claims about a “general validity” of this logic are
meaningless.



For us, the only way out is to restrict the calculus forGZL

to those inferences which are not in conflict with our intended
interpretation: the sequentα ⇒ β should mean thatα is a
statement stronger thanβ. We can achieve this is by not al-
lowing multisets of relations, but only single relations. The
interesting observation in [7] is that by means of this restric-
tion, we get – not exactly but, say – very close to the logic
which is actually used for the expert system which we exam-
ine.

The observation that the logic which we need arises by a
certain restriction of a t-norm-based fuzzy logic, might becon-
sidered interesting, but not really satisfying. It rather suggests
that the conceptual differences between the logic underlying
systems like Cadiag-2 or similar expert systems on the one
hand, and fuzzy logics on the other hand, cannot be bridged.

2 A minimal logic for reasoning under
vagueness, without explicit degrees

The problem how to formalise ways to argue about vague
propositions of unspecified content and their mutual interrela-
tions, calls for alternative solutions. Let us opt for the syntac-
tical approach; we will assemble some inference rules which
translate to argumentation steps in a straightforward way.We
will then check if some semantics with a reasonable interpre-
tation can be found ex post, taking all imaginable possibilities
into account and in particular not restricting ourselves tostruc-
tures known from fuzzy logics or fuzzy set theory.

We note that this procedure seems to be in sharp contrast
to the guiding principles of mathematical modelling which we
have defended earlier, namely the principle that prior to any
formalisation, the structure of reference needs to be specified
first, in a way that the meaning of all its constituents is clear.
However, in the present case, we do not do metamathemat-
ics, we do not examine ways how structures of a certain type
are generally examined in a sound way; we do mathematics.
Namely, it is the way of reasoning itself which is our object
of investigation, and we do not share the opinion that rules for
proper argumentation are fixed and thus can be derived from
some higher-level truth. Intuitively acceptable inference rules
will rather constitute a structure over a set of atomic proposi-
tions, and we do not assume a canonical answer how it may
look like. In any case, we examine a logic as a mathematical
object, the notion “logic” just being a name for it.

As indicated, there is not really a canonical way to select
rules. One may argue against certain rules shown below, or
feel that there is something missing. A discussion would not
be fruitful if no guidelines were provided. We keep with the
application in medicine; the rules shown below are extracted
from those essential for the medical expert system with whose
formalisation we are concerned.

In this section, we consider the case that we do not deal with
truth values explicitly. We define the propositional logicDML

as follows.

Definition 2.1 The propositionsof DML are built up from a
set of symbolsϕ1, ϕ2, . . . and the two constants̄0, 1̄ by means
of the binary connectives∧,∨ and the unary connective∼;
the set of propositions is denoted byFL. The implicationsof
DML are ordered pairs of propositions, denoted byα → β,
whereα, β ∈ FL; the set of implications is denoted byFI .

Moreover, asequentis an ordered pair of a non-empty fi-
nite set of propositions and a single proposition, notated by
γ1, . . . , γk ⇒ δ. The axioms and rules ofDML are the fol-
lowing, for any propositionsα, β, γ and sequentΓ:

0̄ ⇒ α α ⇒ α α ⇒ 1̄

Γ ⇒ α α ⇒ β

Γ ⇒ β

Γ ⇒ α

Γ, β ⇒ α

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β

Γ, α, β ⇒ γ

Γ, α ∧ β ⇒ γ

Γ, α ⇒ γ Γ, β ⇒ γ

Γ, α ∨ β ⇒ γ

Γ ⇒ α

Γ ⇒ α ∨ β

Γ ⇒ β

Γ ⇒ α ∨ β

α ⇒ β

∼β ⇒ ∼α

∼α ⇒ β

∼β ⇒ α

α ⇒ ∼β

β ⇒ ∼α

The notion of a proof of a sequent from a finite set of sequents
is defined in the expected way. Atheoryof DML is a finite set
of implications. An implicationα→β is called provable from
T = {α1 →β1, . . . , αn →βn} if there is a proof ofα ⇒ β

from {α1 ⇒ β1, . . . , αn ⇒ βn}, in signsT ⊢ α→β.

As to be expected, a sequentγ1, . . . , γk ⇒ δ is meant to
express that “γ1 and ... andγk imply δ”.

Note that this logic again does not contain the implication
as a connective, and it does contain a negation. Moreover, the
calculus is sound, but not complete, with respect to classical
two-valued interpretations; again (1) is not derivable. For the
lack of the implication connective, also the comparison with
intuitionistic logic is (probably) not well possible.

But a semantics is easily found, sinceDML is Belnap’s
logic of De-Morgan lattices;DML differs only slightly from
the calculus presented in [11]. A structure(M ;∧,∨,∼, 0, 1)
is a De-Morgan lattice if (i)(M ;∧,∨, 0, 1) is a distributive
lattice and (ii)∼ is an order-reversing and involutive unary op-
eration. De-Morgan lattices are subalgebras of direct products
of the algebra(M4;∧,∨,∼, 0, 1), where(M4;∧,∨, 0, 1) is
the four-element Boolean lattice and∼ maps each of the two
atoms to itself [16]. It follows that we can provide a seman-
tics based onM4; we note that assigning one of the four truth
values to a propositionϕ is usually interpreted as thatϕ is
known to be true, false, neither true nor false, both true and
false, respectively.

Most remarkably, fuzziness does not appear. However, the
algebraM4 possesses a natural “fuzzified” extension, and we
may alternatively baseDML on a kind of fuzzy semantics. To
make the comparison possible, we consider the pairVc and
Vf ; note that the algebraVc is isomorphic toM4.

Definition 2.2 Let Vc = {(s, t) : s, t ∈ {0, 1}}, endowed
with the componentwise natural order and the operation∼ de-
fined by

∼ (s, t) = (1 − t, 1 − s) (3)

for s, t ∈ {0, 1}. A crisp evaluationof DML is a mapping
v : FL → Vc preserving∧,∨,∼ and mappinḡ0 to (0, 0) and
1̄ to (1, 1). An implicationα → β is then said to besatisfied
by v if v(α) ≤ v(β). A theoryT is said tocrisply entailan
implicationα→β if the latter is satisfied by all crisp evalua-
tions satisfying every element ofT ; we writeT |=c α→β in
this case.



Furthermore, letVf = {(s, t) : s, t ∈ [0, 1]}, endowed with
the componentwise natural order and the operation∼, which
is again defined by (3), where however this times, t ∈ [0, 1].
We definefuzzy evaluations, satisfaction, andfuzzy entailment
similarly as above.

Theorem 2.3 LetT be a theory andα→β an implication of
DML. ThenT ⊢ α→β if and only ifT |=c α→β if and only
if T |=f α→β.

Proof. Completeness in the indicated sense, but with re-
spect to arbitrary De-Morgan lattices, holds due to [11, The-
orem 4.11, (A1)]. But any De-Morgan lattice is a subalgebra
of a direct product of copies ofVc, or alternatively, of a direct
product of copies ofVf . �

As regards the interpretation of the semantics which we
have proposed forDML, the situation is surprising with re-
spect to the fuzzy variant. There is a close connection ofDML

to a logic which has been proposed in the context of decision
making, based on the observation that we often consider sep-
arately the arguments in favour and the arguments against a
possible decision [19].

On the other hand, the fact that we can work, without the
need to change the inference rules, with crisp truth values as
well, is somewhat disillusioning. The reasoning is the same
if we assume our propositions to refer to vague or crisp prop-
erties. The situation certainly changes when we include truth
degrees, as to be done next.

3 A minimal logic for reasoning under
vagueness, with explicit degrees

The logicDML discussed in the last section is intended to be
useful for reasoning about relationships between statements
involving vagueness. The vagueness, however, cannot be ad-
dressed directly; and the logic can actually equally well con-
sidered as a logic not concerning vagueness. Moreover, a pos-
sible non-strictness of the relationships themselves is not ex-
pressible.

In applications, it can be desirable to have the possibility
to denote a vague property by one single symbol, to which
the degree of presence is explicitly attached. In this chapter,
we attempt to formulate a calculus similarly toDML, but with
explicit reference to truth degrees.

This problem is much more involved. We believe that there
are many possibilities, and that the decision which is the best
is even more difficult than in the above case.

According to a common procedure, we could enrich the lan-
guage by truth constants. We will not follow this way; apart
from the fact that we have not succeeded to produce a rea-
sonable result concerning a logicDML enriched with truth
constants, the idea is actually not well in accordance with the
guidelines formulated above: truth constants should not be
mixed with the meaning of a proposition. So we will use the
two sharp truth constants only, representing falsity and true-
ness.

Truth constants should appear on a separate level. We pro-
pose to make a graded implication the basic syntactical con-
stituent:

α
t
→ β,

with the intended meaning thatα impliesβ to a degree≥ t ∈
[0, 1], whereα and β are propositions ofDML. As an ex-
ample, letα denote a crisp proposition like “having a body
temperature of37.8◦C”, and letβ denote “having fever”; then
the statement would hold with, say,t = 0.8.

In general,α andβ are meant to refer to any vague property.
Then eithert refers to the compatibility ofα with β. Alterna-
tively, we can mean thatα andβ are causally related; then the
smallert is, the less strict is this relationship. Finally, we may
also deal with single properties. Namely, the expressions

1̄
t
→ δ and δ

t
→ 0̄ (4)

may serve to express thatδ holds to the degreet, orδ is refused
with the degreet, respectively.

To formulate inference rules is not straightforward; in the
present context, our aim can only be plausibility. The basic
question is which truth degree is, by tendency, assumed af-
ter two successive inference steps which are both based on a
non-strict relationship. To examine this problem is even more
difficult than to make a reasonable choice with regard to the
truth values themselves, a problem which has been studied nu-
merous times, see e.g. [15, 17]. It would clearly be desirable
to have methods at hand to examine also the present situation
empirically, in analogy to the procedure followed in [15].

Only the case of implications of the formα
1
→ β is clear;

they are supposed to express strict relationships, and for them,
the rules ofDML should be applicable. Furthermore, the de-
grees are assumed to be lower bounds, hence an implication
is the less expressive the smaller the indicated truth degree is.

Statements of the formα
0
→ β do not express anything.

So let us see how the set of rules for our refined logic could

look like. For implicationsα
1
→ β, we will use the rules of

DML. For implications of the formα
t
→ β, wheret < 1, the

rules ofDML introducing∧ or∨ are not generalisable though;
the degree of the conclusion cannot be assumed to be calcula-
ble from the degrees of the assumptions. However, what we
should be able to say is, if we replaceα by a stronger propo-
sition, orβ by a weaker proposition, then the relationship be-
tweenα andβ should be characterised by a higher truth value,
so thatt will still be a lower bound. Next, assume that we have
provedα

s
→ β andβ

t
→ γ; thenα

u
→ γ will be derivable as

well, and we have to offer a way to calculate the degreeu from
s andt. As mentioned above, a well-founded decision is im-
possible, hence just like in case of the design of a fuzzy logic,
a pragmatic solution is needed here. We opt for the operation
dual to the truncated addition: we take here the Łukasiewicz
t-norm⊙ : [0, 1]2 → [0, 1], (a, b) 7→ (a + b − 1) ∨ 0.

We specify the propositional logicArgL as follows.

Definition 3.1 The setFL of propositionsis defined like for
DML. An implication of ArgL consists of ordered triples of

two propositions and a rational valuet ∈ [0, 1]; we writeα
t
→

β, whereα, β ∈ FL; the set of implications is denoted byFI .
Moreover, asequentis an ordered triple consisting of a non-

empty finite set of propositions, a single proposition, and a
rational valuet ∈ [0, 1]; we write

γ1, . . . , γk
t
⇒ δ.



Thecrisprules ofArgL are those ofDML, the symbol⇒ being

replaced at all places by
1
⇒.

Thefuzzyrules ofArgL are the following:

Γ
s
⇒ α α

t
⇒ β

Γ
s⊙t
⇒ β

Γ
t
⇒ α

Γ
s
⇒ α

, wheres ≤ t

Γ, α
t
⇒ δ

Γ, α ∧ β
t
⇒ δ

Γ
t
⇒ α

Γ
t
⇒ α ∨ β

The notion of aproof, a theory, theprovability of an implica-
tion from a theory, is defined similarly like forDML.

To associate to this calculus a reasonable semantics, is the
next challenge. Only one point seems to be certain – we are
not led to fuzzy sets. The only remarkable fact is that a t-norm
is involved; for connections between t-norms and a somewhat
similar setting, see [6, 20].

Let us consider the following structures, so-to-say the
algebraic counterpart ofArgL. Here, ⊕ : [0, 1]2 →
[0, 1], (a, b) 7→ (a + b) ∧ 1 is the t-conorm associated to
⊙.

Definition 3.2 A structure (A;∧,∨,∼, 0, 1, d) is called a
metric De-Morgan latticeif (A;∧,∨,∼, 0, 1) is a De-Morgan
lattice andd : A × A → [0, 1] is such that (i)d(a, b) = 0 if
and only ifa ≤ b and (ii)d(a, c) ≤ d(a, b) ⊕ d(b, c).

An evaluationof ArgL in a metric De-Morgan latticeA is
a mappingv : FL → A preserving∧,∨,∼ and the con-

stants. An implicationα
t
→ β is satisfiedby an evaluation

v if d(v(α), v(β)) ≤ 1 − t. Semantic entailment is defined as
usual.

Let us consider the following instructive example. Let
(A;∧,∨,∼, 0, 1) be a Boolean algebra, and letµ : A → [0, 1]
be a strictly positive submeasure onA, meaning that, fora, b ∈
A, (i) µ(0) = 0, (ii) µ(a) > 0 if a > 0, (iii) a ≤ b implies
µ(a) ≤ µ(b), (iv) µ(1) = 1, and (v)µ(a ∨ b) ≤ µ(a) ⊕ µ(b).
Furthermore, putd(a, b) = µ(a ∧ ∼b). Then we may check
that(A;∧,∨,∼, 0, 1, d) is a metric De-Morgan lattice.

Theorem 3.3 Let T be a theory andα
t
→ β an implication

of ArgL, wheret ∈ (0, 1]. ThenT ⊢ α
t
→ β if and only if

T |= α
t
→ β.

Proof. The “only if” part is easy; just define the satisfac-
tion of sequents by identifying the set on the left side with its
conjunction.

For the “if” part, assume thatT does not prove the implica-
tion γ

s
→ δ.

Let A be the quotient ofFL w.r.t. the equivalence relation

⇔, whereα ⇔ β if α
1
→ β andβ

1
→ α are provable from

T . ThenA is naturally endowed with the structure of a De-
Morgan lattice.

For α, β ∈ FL, let d([α], [β]) = 1 − t, wheret ∈ [0, 1]

is maximal such thatT ⊢ α
t
→ β. Endowed withd, A is a

metric De-Morgan lattice. By construction, the elements ofT
are satisfied by the natural embedding ofFL into A, but not
γ

s
→ δ. �

Needless to comment, our formalism comes closer to mea-
sure theory than to fuzzy set theory.

From the interpretational point of view, the semantics based
on metric De-Morgan lattices is to be clarified though. Note
that only the special case of a Boolean algebra with a submea-
sure offers an intuitively well comprehensible picture.

4 Conclusion

T-norm-based propositional fuzzy logics are frequently dis-
cussed as a suitable tool to model reasoning under vagueness.
We have stressed that this is the case as long as the proposi-
tions which are formalised share the same reference; namely,
they must be modellable by a system of fuzzy sets over a com-
mon universe.

If propositions are arbitrary, we run into difficulties when
trying to apply techniques of fuzzy logics. This is, for exam-
ple, the case for the medical expert system Cadiag-2, whose
knowledge base contains information on logical and causal re-
lationships between entities which are processed regardless of
their meaning. We have risen the question how to define, in
this general setting, a minimal frame for what we could call
formalised argumentations. As a proposal, we have designed
two minimal, but for our needs fully sufficient, systems; we
have done so purely syntactically, allowing only rules witha
clear interpretation.

The first version concerns reasoning without explicit ref-
erence to truth degrees; what comes out is the De-Morgan
logic, which allows for interpretations without any connec-
tion to fuzziness. The second version incorporates truth val-
ues, but the calculus which comes out, still is by no means re-
lated to t-norm-based fuzzy logic. The semantics which can be
defined ex post are De-Morgan lattices endowed with a non-
symmetric distance function.

Our calculi are qualified in that they allow to reproduce the
inference mechanism of Cadiag-2. The further elaboration on
details of the calculus is work to be done, as well as the anal-
ysis of the newly introduced notion of a metric De-Morgan
lattice.
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Gödel Logic, in: Proceedings of the 31st International



Symposium on Multiple-Valued Logic (Warsaw 2001),
IEEE Computer Society; 181–186, 2001.

[6] B. De Baets, R. Mesiar, Pseudo-metrics andT -
equivalences,J. Fuzzy Math., 5:471–481, 1997.

[7] A. Ciabattoni, T. Vetterlein, On the (fuzzy) logical con-
tent of Cadiag-2, submitted.

[8] F. Esteva, Ll. Godo, P. Hájek, M. Navara, Residuated
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