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Abstract

In this paper we present a family of measures aimed at determining the
amount of inconsistency in probabilistic knowledge bases. Our approach
to measuring inconsistency is graded in the sense that we consider minimal
adjustments in the degrees of uncertainty (i.e., probabilities in this paper)
of the statements necessary to make the knowledge base consistent. The
computation of the family of measures we present here, in as much as it
yields an adjustment in the probability of each statement that restores
consistency, provides the modeler with possible repairs of the knowledge
base. The case example that motivates our work and on which we test
our approach is the knowledge base of CADIAG-2, a well known medical
expert system.

Keywords: Probabilistic knowledge bases, probabilistic satisfiability, in-
consistency, measures of inconsistency, CADIAG-2.

1 Introduction

In the last few years the amount of literature dealing with aspects of in-
consistency in knowledge bases has grown considerably and has become central
in the field of databases and knowledge-based systems. In this paper we fo-
cus primarily on two aspects of inconsistency in probabilistic knowledge bases:
the evaluation of inconsistency and possible repair strategies in the presence of
inconsistency.

The evaluation of inconsistency in a database helps us understand it better.
In particular, a measure of inconsistency allows us to determine how reliable the
information contained in a database is and how this information could be used
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(for example, for inferential purposes) and even modified or adjusted to meet
consistency. In this paper we present a family of measures aimed at quantifying
the amount of inconsistency in probabilistic knowledge bases. Each measure
in the family that we present here quantifies the amount of inconsistency by
determining how far the knowledge base is from consistency based on a notion of
distance given by a particular p-norm (which we call p-distance). This approach
to quantifying inconsistency connects to possible repairs of the knowledge base
in the sense that the computation of these measures yields an adjustment in the
probability assignments that makes the knowledge base consistent.

Our approach to dealing with inconsistency is thus graded in the sense that
we take into account the amount of adjustment of the degrees of uncertainty (i.e.,
probabilities) in the knowledge base. Alternative, non-graded approaches to
measuring inconsistency in databases (not particularly defined for probabilistic
databases) there are several. Among the most popular we have those based on
the number and composition of the minimal inconsistent subsets contained in
the database (see [9] or [10]). In connection with these approaches to evaluating
inconsistency we have repair strategies based on the removal of statements that
occur in minimal inconsistent subsets of the database (see for example [6], [11]
or [16] for repair strategies of this nature). Graded approaches to quantify
inconsistency in probabilistic knowledge bases we know only [17] and, as will be
made clear later, is essentially different to ours.

Our case example throughout the paper will be a coded version of a frag-
ment of the knowledge base of CADIAG-2 (Computer Assisted DIAGnosis), a
well known rule-based expert system aimed at providing support in diagnostic
decision making in the field of internal medicine. In fact, the work presented in
this paper is mostly motivated by CADIAG-2.

As will be explained later in more detail the knowledge base of CADIAG-2
can be regarded, at least for consistency-checking and evaluation purposes, as
probabilistic. An assumption that we believe to be implicit in CADIAG-2 and in
most (if not all) probabilistic databases is the fact that the probabilities of the
conditioning events in probabilistic conditional statements be strictly greater
than zero. By assuming such fact we are excluding the possibility that a prob-
ability function satisfy1 a conditional statement unless it assigns a probability
strictly greater than zero to its conditioning event. In a large number of papers
that deal with topics related to probabilistic satisfiability such an assumption
is not taken (for example, in [17]).

Our paper is structured as follows: in Section 2 we introduce most of the no-
tation we will be using throughout the paper and some preliminary definitions.
In Section 3 we briefly describe the relevant features of the binary fragment of
the knowledge base of CADIAG-2 that we will be using as our case example.
Section 4 introduces and studies the family of measures of inconsistency an-
nounced above. In Section 5 we deal with some aspects of the computation of
the inconsistency measures presented in Section 4 for the general case and, in

1Precise definitions of all these concepts will be given later.
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Section 6, we focus on our case example and we measure the amount of incon-
sistency of the binary fragment of CADIAG-2’s knowledge base by means of our
inconsistency measures.

2 Preliminary definitions and notation

Throughout this paper we will be working with a finite propositional lan-
guage L = {p1, ..., pl}, for some l ∈ N, and will denote by SL its closure under
boolean connectives. Within the context of CADIAG-2 our language L will rep-
resent the set of medical entities occurring in the inference rules of the system.
Such medical entities fall into two general types: symptoms, findings, signs and
test results (to which we will commonly refer as symptoms) that form the subset
S ⊂ L on the one hand and therapies and diseases (to which we will commonly
refer as diseases) that form the subset D ⊂ L on the other.

We will use the symbols ⊥ and > for classical contradiction and classical
tautology respectively.

Definition 1 Let ω : SL −→ [0, 1]. We say that ω is a probability function on
L if the following two conditions hold, for all θ, φ ∈ SL:

• If |= θ then ω(θ) = 1.

• If |= ¬(θ ∧ φ) then ω(θ ∨ φ) = ω(θ) + ω(φ).2

We can restrict probability functions to the set [0, 1] ∩ Q. Such probability
functions will be called rational.

A probability distribution ω on L can be characterized by the values it
assigns to the expressions of the form

±p1 ∧ ... ∧ ±pl,

which we call states or worlds, where +p and −p stand for p and ¬p respectively.
We denote the set of states in L by W , which we assume to be ordered in some
way, and define Wφ as follows, for φ ∈ SL:

Wφ = {α ∈W | α |= φ}.

Based on this characterization we can identify probability functions on L
with 2l-coordinate vectors in D2l , with

D2l = {(x1, ..., x2l) |xi ≥ 0,
∑
i

xi = 1},

where the coordinate xi stands for the probability assigned to the state αi ∈W .
Sentences in SL can also be identified (up to semantical equivalence) with

2l-coordinate vectors. For φ ∈ SL we can set the 2l-coordinate vector ~rφ as

2Here (and throughout) |= is classical entailment.
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follows: for each i ∈ {1, ..., 2l} and αi ∈ W , riφ = 1 if αi ∈ Wφ and riφ = 0
otherwise.

Let us set K = {φ|θ | φ, θ ∈ SL}, the set of conditional statements in SL.
We define probability on conditional statements in SL from the notion of

unconditional probability in the conventional way. For ω a probability function
on L and φ|θ ∈ K,

ω(φ|θ) =
ω(φ ∧ θ)
ω(θ)

.

We will denote the collection of closed intervals contained in [0, 1] by I.
Intervals of the form [η, η] ∈ I (i.e., real point values in the interval [0, 1]) will
normally be denoted by η itself.

For the next definition let us consider ∆ ⊆ K.

Definition 2 An assignment v on ∆ is a map from ∆ to I.

The assignment v will be said to be point valued if v(φ|θ) ∈ [0, 1] for all
φ|θ ∈ ∆.

We denote the set of assignments on ∆ by V∆ and set

PK = {[∆, v] | ∆ ⊆ K, ∆ 6= ∅, v ∈ V∆}.

We will sometimes write [∆, v] ∈ PK in extended form; i.e., as

{v(φ|θ) = Ω | φ|θ ∈ ∆},

with Ω ∈ I or, more in keeping with the notation later employed for the rules
of CADIAG-2, as

{〈φ|θ,Ω〉 | φ|θ ∈ ∆, v(φ|θ) = Ω}.

Let [∆, v] ∈ PK and ∆′ ⊂ ∆. We denote by v|∆′ the restriction of v on ∆′.
Consider now [∆1, v1], [∆2, v2] ∈ PK and assume that, if φ|θ ∈ ∆1 ∩ ∆2,

v1(φ|θ) = v2(φ|θ). We define the assignment v = v1 + v2 on ∆1 ∪∆2 as follows:
v(φ|θ) = v1(φ|θ) for all φ|θ ∈ ∆1 and v(φ|θ) = v2(φ|θ) for all φ|θ ∈ ∆2.

Definition 3 We say that the probability function ω on L satisfies [∆, v] ∈ PK
(denoted |=ω [∆, v]) if, for all φ|θ ∈ ∆, we have that ω(θ) > 0 and ω(φ|θ) ∈
v(φ|θ).

In that sense we say that [∆, v] is (probabilistically) satisfiable or consistent3

if there exists a probability function ω on L that satisfies [∆, v].

Definition 4 We say that [∆, v] is a minimal unsatisfiable set (or minimal
inconsistent set) if [∆, v] is not satisfiable and, for all ∆′ ⊂ ∆, [∆′, v|∆′ ] is
satisfiable.

3We use both words interchangeably throughout the article.
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In order to prove some results in this paper it will be useful to regard our
language L as a collection of unary predicates or sets in a first-order language
and SL the closure of predicates in L under boolean combinations. For the
next (and last) two definitions of this section we will regard L as a set of unary
predicates.

Definition 5 An interpretation I of L is a pair (DI , νI), where DI is a finite
non-empty set and νI is a map from L×DI to {0, 1}.

A valuation νI can be extended to elements in SL×DI in its conventional
way.

Given an interpretation I of L, we will refer to the elements in DI by latin
characters a, b, c...

For what follows let I be an interpretation of L and [∆, v] ∈ PK.

Definition 6 I is a (probabilistic) model of [∆, v] if, for all φ|θ ∈ ∆, we have
that ∑

a∈DI νI(φ ∧ θ, a)∑
a∈DI νI(θ, a)

∈ v(φ|θ).

3 The knowledge base of CADIAG-2

The medical expert system CADIAG-2 consists of two main components:
the inference engine and the knowledge base. The inference engine is based
on methods of approximate reasoning in fuzzy set theory, in the sense of [18].
Formalisations and analyses of it can be found in, for example, [7] or [15]. The
knowledge base of the system consists of a set of IF-THEN rules intended to
represent relationships between distinct medical entities. The vast majority of
them are binary (i.e., they relate single medical entities) and only such rules are
considered in our paper. The one that follows is an example of a binary rule of
CADIAG-2 (taken from [3]):

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer
with degree of confirmation 0.3

The degree of confirmation refers, intuitively, to the degree to which the an-
tecedent (i.e., ’suspicion of liver metastases by liver palpation’ in the example
above) confirms the consequent (i.e., ’pancreatic cancer ’ above). It is claimed in
part of the literature on CADIAG-2, like for example in [1], that such degrees
of confirmation can be understood as probabilities and the rules themselves as
probabilistic conditional statements. In most of the literature on CADIAG-2
though, like for example in [2] or [3], an alternative, non-probabilistic interpre-
tation for the degrees of confirmation is suggested. However, it is proved in
[12] that the binary fragment of CADIAG-2’s knowledge base is satisfiable in
terms of the suggested non-probabilistic interpretation if and only if it is prob-
abilistically satisfiable. Thus, at least for consistency-checking and evaluation
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purposes, one can regard CADIAG-2’s binary knowledge base as probabilistic
no matter which of these two possible interpretations is to be chosen.

We will represent binary rules in CADIAG-2 by pairs of the form 〈q|p, η〉,
with q|p ∈ K, p, q ∈ L and the degree of confirmation η ∈ [0, 1]. We will denote
the set consisting of such rules by ΦCB ∈ PK.

We can classify rules in ΦCB into three different types: rules in which both
antecedent (or, in probabilistic terms, conditioning event) and consequent (or
conditioned event) are medical entities in S (symptom-symptom), rules in which
both antecedent and consequent are medical entities in D (disease-disease) and
those in which the antecedent is a medical entity in S and the consequent an
entity in D (symptom-disease).4 The degree of confirmation in a rule of the
first two types is a value in the set {0, 1} and it is in this sense that we say that
rules of these types are classical.

Table 1 shows the composition of ΦCB :

Table 1: Composition of ΦCB

Number of symptoms 1761
Number of diseases 341
Number of symptom-symptom rules 720
Number of disease-disease rules 218
Number of symptom-disease rules 17573

4 Measuring inconsistency: p-distance

Our approach to measuring inconsistency for knowledge bases of the form
[∆, v] ∈ PK is based on the quantification of the minimal adjustment that
one needs to make on v in order for [∆, v] to be satisfiable. Such an approach
is similar in nature to that defined in [17]. The main difference between both
approaches rests on the notion of satisfiability for probabilistic conditional state-
ments: null probability for the conditioning event in a probabilistic statement
is allowed in [17] and makes the statement satisfiable by default. Our approach
becomes much more complex in comparison to [17] due mostly to our definition
of satisfiability, which we believe is more natural and intuitive, and to a more
general notion of minimal adjustments.

In order to quantify the minimal adjustment we will rely on the so-called

4CADIAG-2’s knowledge base formally contains values for conditional relations with a
medical entity in D as the antecedent and a medical entity in S as the consequent. However,
such rules are not used by CADIAG-2’s inference mechanism and are not taken into account
for our examples in this paper.
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p-norm which, for a vector ~x ∈ Rm, is given by

‖~x‖p = (

m∑
i=1

|xi|p)
1
p ,

for p ≥ 1 (not necessarily an integer). The most common p-norms are certainly
those of order 1 and 2 (i.e., 1-norm and 2-norm). We also have

‖~x‖∞ = lim
p→∞

(

m∑
i=1

|xi|p)
1
p = max

i
|xi|

among the most common norms, which we will refer to as the ∞-norm and
regard as a p-norm with p =∞. In this context we will abuse notation slightly
and will write [1,∞] for the range of possible values for p.

Let ε ∈ ∗R be a non-zero infinitesimal in the set of hyperreal numbers.5 We
will be working with the set

A = {t, t+ ε,
1

ε
| t ∈ R}.

The reason why we consider ε ∈ ∗R, although it should not come at a surprise
given the notion of satisfiability we are working with, will be made clear below.
As is common, we will denote the standard (i.e., real) part of a finite number
a ∈ A by st(a) (for more on hyperreal numbers and, in general, nonstandard
analysis see for example [8]).

We mention at this point that we are not interested in infinitesimal precision
and thus we do not consider algebraic operations involving infinitesimals. The
consideration of ε as an infinitesimal magnitude suffices for our purposes.

For what follows let [∆, v] ∈ PK and Γ ⊂ ∆, with

∆′ = ∆− Γ = {φ1|θ1, ..., φk|θk},

for some k ∈ N, and v(φi|θi) = [η
i
, ηi] for all i ∈ {1, ..., k}. Γ is intended to

represent the set of conditional statements in ∆ that are regarded as correctly
evaluated by v and that should (arguably) not be considered when assessing the
p-distance of [∆, v].

We define [∆, v~x] to be the set

{v~x(φi|θi) = [η
i
− xi, ηi + xi+k] | i ∈ {1, ..., k}} ∪ {v~x(φ|θ) = v(φ|θ) | φ|θ ∈ Γ},

where xi, xi+k are positive real values satisfying the constraint

0 ≤ η
i
− xi ≤ ηi + xi+k ≤ 1,

for all i ∈ {1, ..., k}.
For the next definitions let [∆, v] ∈ PK and consider [∆, v~x] and Γ ⊂ ∆ as

above, with ~x ∈ R2k and p ∈ [1,∞].

5That is to say, ε is such that 0 < ε < 1
n

for all n ∈ N.
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Definition 7 We define the real set F pΓ([∆, v]) as follows:

F pΓ([∆, v]) = {‖~x‖p | [∆, v~x] is satisfiable}.

Notice that F pΓ([∆, v]) is bounded below for all p ∈ [1,∞] and thus, if it
is not empty, its infimum exists (i.e., inf(F pΓ([∆, v])) exists). Notice also that
inf(F pΓ([∆, v])) corresponds to the p-norm distance between the cartesian prod-
uct

Πφ|θ∈∆v(φ|θ)
and the set given by the point-valued assignments u on ∆ for which [∆, u] is
satisfiable.

Definition 8 We define the p-distance (to consistency) of [∆, v] with respect to
the set Γ –denoted DCpΓ([∆, v])– as follows:

• F pΓ([∆, v]) 6= ∅ and min(F pΓ([∆, v])) = inf(F pΓ([∆, v])) then

DCpΓ([∆, v]) = inf(F pΓ([∆, v])).

• If F pΓ([∆, v]) 6= ∅ and min(F pΓ([∆, v])) does not exist then

DCpΓ([∆, v]) = inf(F pΓ([∆, v])) + ε.

• If F pΓ([∆, v]) = ∅ then we set

DCpΓ([∆, v]) =
1

ε
.

That DCpΓ([∆, v]) is well defined is clear. If [Γ, v|Γ] is unsatisfiable or there
exists a statement of the form φ|⊥ in ∆ then we have that F pΓ([∆, v]) = ∅ and
thus that DCpΓ([∆, v]) = 1

ε . If [Γ, v|Γ] is satisfiable and define Λ to be the set
of probability distributions on L that satisfy [Γ, v|Γ] we have that each ω ∈ Λ
with ω(θi) > 0 for all i ∈ {1, ..., k} satisfies [∆, v~x] for some real values xi, with
i ∈ {1, ..., 2k}, and thus, if any such probability distribution existed, F pΓ([∆, v])
would not be empty. On the other hand, if there were no such probability
distributions then F pΓ([∆, v]) would be empty, in which case we would have
DCpΓ([∆, v]) = 1

ε .

We will write DCp([∆, v]) instead of DCp∅ ([∆, v]) whenever there is no set
Γ ⊂ ∆ with respect to which we are defining the p-distance of [∆, v].

For our next definition let us consider again [∆, v] ∈ PK, with [∆, v~x] and
Γ ⊂ ∆ as above.

Definition 9 We define the set RΓ([∆, v]) of repairs of [∆, v] with respect to Γ
as follows:

RΓ([∆, v]) = {~x ∈ R2k | [∆, v~x] is satisfiable}.

For the next definition let ~x ∈ R2k be a repair in RΓ([∆, v]), for k ∈ N.

Definition 10 We say that ~x is p-optimal if ‖~x‖p = DCpΓ([∆, v]).
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4.1 Properties of DCp

Throughout all this subsection let [∆, v] ∈ PK, with Γ ⊂ ∆ and

∆− Γ = {φ1|θ1, ..., φk|θk},

for some k ∈ N.
First of all notice that it is not generally true that DCpΓ([∆, v]) ∈ R. This is,

as claimed earlier, a consequence of our notion of satisfiability and, more par-
ticularly, the requirement that a conditioning event in a conditional statement
be assigned probability strictly greater than zero. To show this more clearly
with an example, consider the subset [∆, v] given by the following set of rules
in ΦCB :

{〈D36|S157, 0.3〉, 〈D81|S157, 0.15〉, 〈D81|D36, 1〉}.

It is clear that [∆, v] is unsatisfiable. Let us consider the sequence of prob-
ability functions {ωn}n∈N on {D36, D81, S157} characterized by the following
assignments:

• ωn(S157) = 1
n ,

• ωn(D36) = 0.3
n + (1− 1

n ),

• ωn(D81) = 0.15
n + (1− 1

n ),

• ωn(S157 ∧D36) = 0.3
n ,

• ωn(S157 ∧D81) = 0.15
n ,

• ωn(D36 ∧D81) = 0.15
n + (1− 1

n ).

Let limn→∞ ωn = ω. It can be easily shown that such assignments fully
determine ωn and ω as probability functions on the language {D36, D81, S157},
for all n ∈ N.

We have that, for all n ∈ N, ωn(D36|S157) = 0.3, ωn(D81|S157) = 0.15
and ωn(D81|D36) = n−0.85

n−0.7 . It is clear that for any δ > 0 we can find N ∈ N
such that, for all n > N , we have that ωn(D81|D36) > 1 − δ. It is also clear
that ω does not satisfy [∆, v] (in fact, [∆, v] is unsatisfiable). Thus we have that
DCp([∆, v]) = ε for all p ∈ [1,∞].

For the next result let us consider [∆1, v1], [∆2, v2] ∈ PK be such that
v1(φ|θ) = v2(φ|θ), for all φ|θ ∈ ∆1 ∩∆2, and Γ1 ⊂ ∆1, Γ2 ⊂ ∆2.

Proposition 11 For all p ∈ [1,∞] we have that

DCpΓ1
([∆1, v1]) ≤ DCpΓ1∪Γ2

([∆1 ∪∆2, v1 + v2]).

Proof. It follows directly from the definition of DCp. �

For the next proposition let us assume that F pΓ([∆, v]) 6= ∅.

Lemma 12 st(DCpΓ([∆, v])) is continuous and decreasing on p, for p ∈ [1,∞).
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Proof. The result follows from the well known fact that, for general ~x ∈ Rm and
m ∈ N, ‖~x‖p is continuous and decreasing on p. �

For the next results let p1, p2 ∈ [1,∞].

Proposition 13 If p1 < p2 then DCp1

Γ ([∆, v]) ≥ DCp2

Γ ([∆, v]).

Proof. Let us assume that p1 < p2. If DCp2

Γ ([∆, v]) ∈ R then the result follows
from Lemma 12. Let us assume then that DCp2

Γ ([∆, v]) = t + ε /∈ R and that
DCp1

Γ ([∆, v]) = t, for some t ∈ R. Let ~x ∈ RΓ([∆, v]) be a p1-optimal repair of
[∆, v] (i.e., ‖~x‖p1

= t) but notice that, since ‖~x‖p is decreasing on the order p,
we have that ‖~x‖p1 ≥ ‖~x‖p2 and thus DCp1

Γ ([∆, v]) ≥ DCp2

Γ ([∆, v]). �

Proposition 14 DCpΓ([∆, v]) = 0 if and only if [∆, v] is satisfiable.

Proof. This result follows directly from the definition of DCp. �

Proposition 15 Let p ∈ [1,∞). If F pΓ([∆, v]) 6= ∅ then DCpΓ([∆, v]) is at most

k
1
p .

Proof. Consider [∆, v] = {v(q1|q1) = 0, ..., v(qk|qk) = 0}, for q1, ..., qk ∈ L, and
Γ = ∅. First of all notice that qi|qi, qj |qj , for any i, j ∈ {1, ..., k} with i 6= j, are
not equivalent in the sense that we can define a probability function ω on L such
that ω(qi|qi) = 1 but that assigns no probability to qj |qj by setting ω(qj) = 0.

It is clear that, for all p ∈ [1,∞), we will have that DCpΓ([∆, v]) = k
1
p . It is also

clear that this is the biggest p-distance for a probabilistic database in PK given
the premises. �

Corollary 16 If F∞Γ ([∆, v]) 6= ∅ then DC∞Γ ([∆, v]) is at most 1.

Next we want to prove that DCp1 and DCp2 (for p1 6= p2) are essentially
distinct, by which we mean that the difference between DCp1 and DCp2 does
not reduce only to the (possible) difference in magnitude of the values they
assign to a certain knowledge base in PK but also to the ordering they induce
on PK.

Proposition 17 DCp1 and DCp2 induce distinct orderings on PK.

Proof. Let us assume that p1 < p2 and that p1, p2 ∈ [1,∞). Let us consider
the set [∆1, v1] = {v(q|q) = 0}, for q ∈ L. We will have that DCp1([∆1, v1]) =
DCp2([∆1, v1]) = 1. Consider now the set

[∆2, v2] = {v(q1|q1) = 1− λ, v(q2|q2) = 1− λ},

for q1, q2 ∈ L. We will have thatDCp1([∆2, v2]) = λ2
1
p1 and thatDCp2([∆2, v2]) =

λ2
1
p2 . First notice that, for all λ ∈ (0, 1], it is the case that

λ2
1
p1 > λ2

1
p2 .
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Notice also that, since p1 ∈ [1,∞), there needs to exist λ ∈ [0, 1] such that

λ2
1
p1 > 1 > λ2

1
p2

and thus such that

DCp1([∆1, v1]) < DCp1([∆2, v2])

and
DCp2([∆1, v1]) > DCp2([∆2, v2]).

�

In simple words, what Proposition 17 tells us is that, for any two probabilis-
tic knowledge bases [∆1, v1], [∆2, v2] ∈ PK, we can have that [∆1, v1] is more
inconsistent than [∆2, v2] according to DCp1 , for some p1 ∈ [1,∞], but that
[∆1, v1] is less inconsistent than [∆2, v2] according to DCp2 , with p1 6= p2.

4.2 Normalized p-distance

In this subsection we introduce the notion of normalized p-distance. In
order to do so let us consider [∆, v] ∈ PK, with Γ ⊂ ∆ and

∆− Γ = {φ1|θ1, ..., φk|θk},

for some k ∈ N.

Definition 18 Let p ∈ [1,∞). The normalized p-distance (to consistency) of
[∆, v] with respect to Γ –denoted DC

p

Γ([∆, v])– is defined from DCpΓ([∆, v]) as
follows:

• If DCpΓ([∆, v]) is finite (i.e., if DCpΓ([∆, v]) 6= 1
ε ) then we set

DC
p

Γ([∆, v]) =
st(DCpΓ([∆, v]))

k
1
p

+DCpΓ([∆, v])− st(DCpΓ([∆, v])).

• If DCpΓ([∆, v]) = 1
ε then we set DC

p

Γ([∆, v]) = DCpΓ([∆, v]).

The normalized ∞-distance of [∆, v] coincides with its ∞-distance:

DC
∞
Γ ([∆, v]) = DC∞Γ ([∆, v]).

The normalized p-distance gives us the ratio between the value DCpΓ([∆, v])
and the maximum value that DCpΓ([∆, v]) could attain given its cardinality and

configuration (i.e., k
1
p , see Proposition 15). Thus, clearly, DC

p

Γ([∆, v]) is at most
1. The normalized p-distance brings into play the size of the knowledge base
and gives a better ground to compare the amount of inconsistency of distinct
knowledge bases.

For the next results let us assume that F pΓ([∆, v]) 6= ∅.
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Lemma 19 st(DC
p

Γ([∆, v])) is continuous and increasing on p, for p ∈ [1,∞).

Proof. The result follows from the fact that, for general ~x ∈ Rm and m ∈ N,
‖~x‖p
k

1
p

is continuous and increasing on p. �

For the next proposition let p1, p2 ∈ [1,∞].

Proposition 20 If p1 < p2 then DC
p1

Γ ([∆, v]) ≤ DCp2

Γ ([∆, v]).

Proof. Let us assume that p1 < p2. If DC
p1

Γ ([∆, v]) ∈ R then the result follows
from Lemma 19. Let us assume then that DC

p1

Γ ([∆, v]) = t + ε /∈ R and that
DC

p2

Γ ([∆, v]) = t, for some t ∈ R. Let ~x ∈ RΓ([∆, v]) be a p2-optimal repair of

[∆, v] (i.e., ‖~x‖p2 = t) but notice that, since
‖~x‖p
k

1
p

is increasing on p, we have

that
‖~x‖p1

k
1
p1

≤ ‖~x‖p2

k
1
p2

and thus DC
p1

Γ ([∆, v]) ≤ DCp2

Γ ([∆, v]). �

Most results proved about DCp in the previous subsection also hold for
DC

p
. In particular, for p1, p2 ∈ [1,∞] and p1 6= p2, we will also have that DC

p1

and DC
p2

induce distinct orderings on PK and thus that DC
p1

and DC
p2

are
essentially distinct measures in the sense indicated above.

4.3 Examples and some remarks

In this subsection we consider some examples (the first two extracted from
ΦCB) in order to illustrate some diferences in DCp and the p-optimal repairs
for distinct values of p. The values we will focus on are the most common when
dealing with p-norms (i.e., 1, 2 and ∞).

Let us consider for our first example the set [∆, v] ⊂ ΦCB given by the rules

〈D10|S668, 0.8〉, 〈D25|S668, 0.1〉, 〈D70|S668, 0.8〉,

〈D25|D10, 1〉, 〈D25|D70, 1〉

in ΦCB , with S668 ∈ S and D10, D25, D70 ∈ D. Let us assume that the rules
〈D25|D10, 1〉 and 〈D25|D70, 1〉 are believed to be accurate by the modeler and
thus set

Γ = {D25|D10, D25|D70}.

We will have that DC1
Γ([∆, v]) = 0.7, DC2

Γ([∆, v]) ' 0.576 and also that

DC∞Γ ([∆, v]) = 0.35. The normalized distances will be DC
1

Γ([∆, v]) ' 0.23,

DC
2

Γ([∆, v]) ' 0.33 and DC
∞
Γ ([∆, v]) = 0.35.

6’'’ stands here and throughout for ’approximately’. Like in this case, we sometimes
round decimal numbers to two significant figures in order to make comparisons more easily
visualised.
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There is a unique 1-optimal repair in RΓ([∆, v]) and it yields a unique
modification in the assignment of the conditional statement D25|S668 by a
magnitude of 0.7 (i.e., such optimal repair would consist of the replacement
of 〈D25|S668, 0.1〉 for 〈D25|S668, [0.1, 0.8]〉). Notice that, in such repair, the
whole weight of the adjustment rests on a single statement in ΦCB and that,
in the lack of knowledge of how reliable or accurate the assignment v is on the
distinct statements in ∆ − Γ and in the lack of any other rationality criterion
that allows us to discriminate among possible repairs, might not be the most
reasonable repair strategy. Instead, the unique ∞-optimal repair in RΓ([∆, v])
offers in that sense a more balanced approach by inducing an adjustment of
magnitude 0.35 in the assignment on each one of the statements in ∆− Γ. The
unique 2-optimal repair in RΓ([∆, v]) involves an adjustment of magnitude 7

15 in
the assignment on the statement D25|S668 and an adjustment of magnitude 7

30
on both D10|S668 and D70|S668. This simple example favours the view that,
in the lack of knowledge about the reliability of the statements in our knowledge
base and in the lack of any other applicable rationality criterion, large values of
p seem to be more adequate when it comes to considering p-optimal repairs for
our knowledge base.

For our second example consider

[∆, v]k = {v(q1|q1) = 1, ..., v(qk−1|qk−1) = 1, v(qk|qk) = 0},

with q1, ..., qk ∈ L distinct propositional variables, for k ∈ N. Here we will have
that

DC1([∆, v]k) = DC2([∆, v]k) = DC∞([∆, v]k) = 1

and that DC
1
([∆, v]k) = 1

k , DC
2
([∆, v]k) = 1√

k
and DC

∞
([∆, v]k) = 1. DC

∞

assigns to [∆, v]k the highest possible amount of inconsistency in a knowledge
base regardless of the cardinality of [∆, v]k. Examples like this one in which
the repair to restore consistency rests on a small number of statements or on
a severe adjustment in a small number of them brings DC

p
, for big values of

p, to assign high amounts of inconsistency regardless of the cardinality of the
knowledge base. Although arguable, it seems reasonable to consider [∆, v]k1

more inconsistent than [∆, v]k2
whenever k1 < k2 based on the simple fact

that the former is bigger. On that assumption and in the view of examples
like these in which the adjustment of possible optimal repairs of the knowledge
base concentrates on a small number of statements it seems more reasonable to
measure the p-distance to consistency by considering small values of p.

5 Computation of DCp and R

In this section we deal with some issues regarding the computation of DCp

(and thus R) for a general knowledge base [∆, v] ∈ PK. In particular, we show
the connection between its computation and the solution to certain constrained
optimization problems.
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Let us consider [∆, v], with ∆′ = ∆− Γ, Γ ⊂ ∆,

[Γ, v|Γ] = {v(ψ1|χ1) = [λ1, λ1], ..., v(ψj |χj) = [λj , λj ]}

and
[∆′, v|∆′ ] = {v(φ1|θ1) = [η

1
, η1], ..., v(φk|θk) = [η

k
, ηk]},

for some j ∈ {0} ∪ N and k ∈ N.

Consider the following constrained optimization problem with optimization
variable the vector ~x ∈ R2k:

minimize ‖~x‖p (1)

subject to the following constraints:

• (η
i
− xi)~rθi · ~y ≤ ~rθi∧φi

· ~y ≤ (ηi + xi+k)~rθi · ~y for each i ∈ {1, ..., k},

• λi~rχi
· ~y ≤ ~rψi∧χi

· ~y ≤ λi~rχi
· ~y for each i ∈ {1, ..., j},

•
∑2l

i=1 yi = 1,

• yi ≥ 0 for each i ∈ {1, ..., 2l},

• ~rθ · ~y ≥ δ for each φ|θ ∈ ∆ for fixed δ ∈ (0, 1],

• xi ≥ 0 for each i ∈ {1, ..., 2k},

• 0 ≤ η
i
− xi ≤ ηi + xi+k ≤ 1 for each i ∈ {1, ..., k}.

The value attained by the optimization variable ~x in (1) represents a possible
repair of [∆, v] (i.e., an element in RΓ([∆, v])) and the vector ~y a probability
function on L. The value δ is introduced as a lower bound probability threshold
for the conditioning events in the statements in ∆.

We define the constrained optimization problem (2) from (1) by replacing
the constraint

~rθ · ~y ≥ δ for each φ|θ ∈ ∆ for fixed δ ∈ (0, 1],

for the following strict inequality:

~rθ · ~y > 0 for each φ|θ ∈ ∆.

Let us denote the constrained optimization problems (1) and (2) by Cp,δΓ ([∆, v])

and CpΓ([∆, v]). We define SCp,δΓ ([∆, v]), the solution to (1), as follows:

SCp,δΓ ([∆, v]) = inf
~y∈D2l

{‖~x‖p | (~x, ~y) ∈ R2k+2l

is feasible}.

By (~x, ~y) being feasible we mean that (~x, ~y) satisfies the constraints in (1).
The collection of all such vectors is called the feasible set of (1) –see, for example,
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[5] for more on these concepts and, in general, on the terminology and basic

definitions for constrained optimization problems–. Notice that SCp,δΓ ([∆, v])
may not exist.

We define SCpΓ([∆, v]), with respect to the feasible set of (2), in an analogous
way.

It is clear from the definition of F pΓ([∆, v]) that, if F pΓ([∆, v]) 6= ∅,

SCpΓ([∆, v]) = inf F pΓ([∆, v])

and that an optimal point (~x, ~y) ∈ R2k+2l

may not exist (i.e., a point (~x, ~y) at
which SCpΓ([∆, v]), provided it exists, is attained). As is clear, ~x in an optimal
point (~x, ~y) yields a p-optimal repair.

From now we will focus on Cp,δΓ ([∆, v]) and its computation.
For what follows let us set C = {θ ∈ SL | φ|θ ∈ ∆} and define Π[Γ,v|Γ] to be

the set of probability functions on L that satisfy [Γ, v|Γ] (if Γ = ∅ then Π[Γ,v|Γ]

or just Π coincides with the set of probability functions on L).

Definition 21 We say that C is η-consistent with respect to [Γ, v|Γ] if there
exists a probability function ω ∈ Π[Γ,v|Γ] such that ω(θ) ≥ η for all θ ∈ C.

Definition 22 We say that C is maximally η-consistent with respect to [Γ, v|Γ]
if these two conditions hold:

• For all λ < η we have that C is λ-consistent with respect to [Γ, v|Γ].

• For all µ > η we have that C is not µ-consistent with respect to [Γ, v|Γ].

These two definitions are generalizations of the notions of η-consistency and
maximal η-consistency introduced in [13] as measures of consistency of classical
propositional knowledge bases.

We will denote the maximal η-consistency of C with respect to our set [Γ, v|Γ]
by mc[Γ,v|Γ](C) –if Γ = ∅ then we will just write mc(C)– and will use the
abbreviation ω(C) ≥ η to express the fact that ω(θ) ≥ η for all θ ∈ C. If
Π[Γ,v|Γ] = ∅ then mc[Γ,v|Γ] is not defined.

Let us assume now that C is maximally η-consistent with respect to [Γ, v|Γ].
Notice that it is not generally the case that there exists a probability function
ω ∈ Π[Γ,v|Γ] such that ω(C) ≥ η. To see this consider the example where

[Γ, v|Γ] = {〈p|q, 1
2 〉} and C = {¬q}, for p, q ∈ L. It is clear that mc[Γ,v|Γ](C) = 1

and that there is no probability function ω ∈ Π[Γ,v|Γ] such that ω(C) = 1.
However, if Γ = ∅ then it is proved in [13] that mc(C) is a rational number and
attained by some probability function ω on L.

Consider the following constrained optimization problem with optimization
variable t ∈ R:

maximize t

subject to the following constraints:
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• ~rφ · ~y ≥ t for each φ ∈ C,

•
∑2l

i=1 yi = 1,

• yi ≥ 0 for each i ∈ {1, ..., 2l},

• λi~rχi
· ~y ≤ ~rψi∧χi

· ~y ≤ λi~rχi
· ~y for each i ∈ {1, ..., j},

• ~rχ · ~y > 0 for each ψ|χ ∈ Γ.

Notice that if Γ = ∅ then the problem above is a linear program.
The solution to this problem, if it exists, yields mc[Γ,v|Γ](C):

mc[Γ,v|Γ](C) = sup
~y∈D

2l

{t | (t, ~y) ∈ Rt+2l

is feasible}.

Proposition 23 Cp,δΓ ([∆, v]) has an optimal point for all δ ∈ (0,mc[Γ,v|Γ](C)),
provided that mc[Γ,v|Γ](C) > 0.

Proof. First of all notice that, since mc[Γ,v|Γ](C) > 0, the feasible set of

Cp,δΓ ([∆, v]) will not be empty. The existence of SCp,δΓ ([∆, v]) follows from the
fact that the feasible set is a closed set. �

Notice that the vector ~x in an optimal point (~x, ~y) ∈ R2k+2l

of Cp,δΓ ([∆, v])
is a repair of [∆, v] (i.e., ~x ∈ RΓ([∆, v])) –although, of course, not necessarily
p-optimal–.

The next propositions state the relation betweenDCpΓ([∆, v]) and SCp,δΓ ([∆, v]).

Proposition 24 DCpΓ([∆, v]) = 1
ε if and only if, for all δ ∈ (0, 1], SCp,δΓ ([∆, v])

does not exist.

Proof. It follows trivially from the definition of DCp. �

For the next proposition let us assume that mc[Γ,v|Γ](C) > 0. Consider
{δn}n∈N a decreasing sequence that converges to 0, with δn ∈ (0,mc[Γ,v|Γ](C))
for all n ∈ N, and

` = lim
n→∞

SCp,δnΓ ([∆, v]).

Proposition 25 If |SCp,δnΓ ([∆, v]) − `| > 0 for all n ∈ N then DCpΓ([∆, v]) =
`+ ε, otherwise DCpΓ([∆, v]) = `.

Proof. It follows trivially from the definition of the map DCp. �

Corollary 26 If DCpΓ([∆, v]) = ` ∈ R then there exists N ∈ N such that, for

all n,m ≥ N , |SCp,δnΓ ([∆, v])− SCp,δmΓ ([∆, v])| = 0.
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Notice that the constraint functions of the form

(η
i
− xi)~rθi · ~y, (ηi + xi+k)~rθi · ~y

in (1) for each i ∈ {1, ..., k} are not linear. That places our problem Cp,δΓ ([∆, v])
within non-convex optimization grounds and, unfortunately, there seem to be
no effective methods to obtain SCp,δΓ ([∆, v]) for the general case (see for example
[4] or [5] for more on these issues). Nevertheless, there exist methods to deal
with at least small instances of these problems. Such methods normally take
some compromise that could consist, for example, in a simplification of the
problem by means of a modification in the constraints and/or the obtention of
an approximation to the solution at best.

6 Measuring inconsistency in ΦCB

In the companion paper [12] it was shown that ΦCB is unsatisfiable. A
study of the sources of inconsistency was also carried out and we found that,
for a slightly relaxed version of ΦCB given by replacing every rule of the form
〈p|q, η〉 in it with η ∈ (0, 1) for 〈p|q, [η− 0.01, η+ 0.01]〉7 the number of minimal
unsatisfiable subsets is 695. These subsets happen to be also minimal unsatis-
fiable subsets of ΦCB itself (i.e., under the natural, point-valued interpretation
for the rules). We actually know the number of minimal unsatisfiable subsets
of ΦCB itself is much larger yet not all of them have been computed so far (we
refer to [12] for more on these issues).

On a straightforward reading, one could claim that such a large number of
minimal unsatisfiable subsets makes ΦCB highly inconsistent as each inconsis-
tent subset is an inconsistency. Our notion of p-distance constitutes a graded
approach to measuring inconsistency in probabilistic knowledge bases and gives
a very different reading as to how inconsistent ΦCB is.

6.1 Measuring DCp(ΦCB)

The computation of DCp for a general knowledge base [∆, v] ∈ PK is, as we
have seen in the previous section, not a trivial matter. In particular, in order
to compute DCp(ΦCB), we will use some heuristics and will take advantage of
its simple structure, as we will shortly show.

Let [∆, v] ∈ PK be such that, for all φ|θ ∈ ∆, φ, θ ∈ L. We can regard [∆, v]
as a directed graph where the edges and nodes are given by the conditional
statements in ∆ (i.e., the conditional statement φ|θ yields the edge directed
from the node θ to the node φ).

For what follows let us consider the collection of real intervals Ir ⊂ I that
differs from I in that the end points of its members are rational (i.e., for [η1, η2] ∈
Ir we will have that η1, η2 ∈ Q).

7All the degrees of confirmation in the rules of ΦCB contain at most two decimal digits
and so these intervals are well defined.
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For the next lemma let [∆, v] ∈ PKr, where

PKr = {[∆, v] ∈ PK | v(φ|θ) ∈ Ir for all φ|θ ∈ ∆}.

Lemma 27 [∆, v] is satisfiable if and only if there exists a model I of [∆, v].

Proof. That there exists a model I of [∆, v] if and only if [∆, v] is satisfied by
a rational probability function is clear. We need to prove that if a probability
function satisfies [∆, v] then there exists a rational probability function that
satisfies [∆, v].

Let us consider the following linear system with variables the 2l coordinates
of the vector ~y given by the collection of inequalities of the form

η~rθ · ~y ≤ ~rφ∧θ · ~y ≤ η~rθ · ~y,

for all φ|θ ∈ ∆, with v(φ|θ) = [η, η] ∈ Ir.
Along with these inequalities we also consider the constraints ~y ∈ D2l (i.e.,

~y is a probability function on L) and ~rθ · ~y > 0 for each φ|θ ∈ ∆.
We assume that this linear system has a solution (i.e., that there exists a

probability function that satisfies [∆, v]) and thus its solution set is non-empty.
Notice that the set of solutions of the system needs to contain rational solutions
given the nature of its linear constraints and the form of the intervals in Ir.
Thus we can conclude that if a probability function satisfies [∆, v] then there
has to exist a rational probability function that satisfies [∆, v]. �

For the next proposition let [∆, v] ∈ PK be as follows:

• φ, θ ∈ L for all φ|θ ∈ ∆.

• [∆, v] is, as a directed graph, acyclic.

• v(φ|θ) ∈ (0, 1) ∩Q, for all φ|θ ∈ ∆.

Proposition 28 [∆, v] is satisfiable.

Proof. By Lemma 27 the pair [∆, v] will be satisfiable if and only if it has a
model. We aim at constructing a model of [∆, v].

Let C = {v(φ|θ) | (φ|θ) ∈ ∆}. By assumption on [∆, v], C will be a set of
rational values. Let Q be the least commom multiple of the denominators of all
the values in C.

For the construction of I we consider first the set of nodes in [∆, v] that have
no parents, when dealing with [∆, v] as a graph. Let p be a node in [∆, v] with
no parents. We set a collection of Q elements for p, labelled Dp = {ap1, ..., a

p
Q}.

At the nth step in the construction of I we select a node q in [∆, v], with
parents q1, ..., qk (for some k ∈ N) and assume, without loss of generality, that
the sets Dq1 , ..., Dqk have been defined at a previous step. We set a collection

of Q(
∑k
i=1 |Dqi |) elements, labelled Dq = {aq1, ..., a

q

Q(
∑k

i=1 |Dqi
|)}, for q.

We impose some restrictions on the sets of the form Dp, for p ∈ L. We
construct I in a way that, for p, q ∈ L, Dp ∩Dq 6= ∅ if and only if one of p|q, q|p
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is in ∆ or there exists r ∈ L such that p|r, q|r ∈ ∆.8 That this can be achieved
is clear given the restrictions on the cardinality of such sets and the fact that
v(φ|θ) is at most Q−1

Q for all φ|θ ∈ ∆.

For p ∈ L, with parents q1, ..., qk (for some k ∈ N) and sets Dq1 , ..., Dqk

already defined, we will set Dp to have exactly |Dqi |v(p|qi) elements of Dqi , for
each i ∈ {1, ..., k}. The elements of Dqi chosen for Dp could also be elements
of Dqj , for j ∈ {1, ..., i − 1, i + 1, ..., k}, (depending on whether qi and qj are
related in ∆ by a conditional statement or not) but of no other sets thus far
defined. That a suitable definition of Dp can be achieved (considering that the
sets Dq1 , ..., Dqk might not be pairwise disjoint) is clear given the restrictions on

the cardinality of such sets and the fact that 1
Q ≤ v(φ|θ) ≤ Q−1

Q for all φ|θ ∈ ∆.

We define
DI =

⋃
p∈L

Dp

and vI on L×DI as expected. For p ∈ L and a ∈ DI ,

νI(p, a) =

{
1 if a ∈ Dp

0 otherwise

�

Proposition 29 DCp(ΦCB) = ε for all p ∈ [1,∞].

Proof. We know from results in [12] that ΦCB is inconsistent and thus that
DCp(ΦCB) > 0 for all p ∈ [1,∞] (i.e., at least ε). On the other hand ΦCB
is, when regarded as a graph, acyclic and with nodes in L. Replacing 0 and 1
by any values in (0, 1) ∩ Q as close as desired to 0 and 1 in rules of the form
〈q|p, 0〉, 〈q|p, 1〉 ∈ ΦCB respectively guarantees satisfiability, by Proposition 28.
Therefore we can conclude that DCp(ΦCB) = ε for all p ∈ [1,∞]. �

Proposition 29 tells us that the amount of inconsistency in ΦCB , as measured
by DCp, is infinitesimal and thus ΦCB is very close to consistency (i.e., almost
consistent).

By considering the notion of satisfiability taken in [17] (which differs from
that based on Definition 3 in that a probability function ω on L with ω(θ) = 0 is
assumed to satisfy any statement of the form 〈φ|θ,Ω〉, for φ|θ ∈ K and Ω ∈ I) we
would have that ΦCB is satisfiable (for example, one can consider a probability
function ω on L such that ω(¬p1∧ ...∧¬pl) = 1, which satisfies ΦCB). Thus the
amount of inconsistency in ΦCB according to the metric presented in [17] would
be zero. Certainly, in terms of magnitude, there is not much of a difference
between the metric presented in [17] and that given by DCp when it comes to
quantifying the amount of inconsistency of ΦCB (in magnitude, such difference
is just infinitesimal).

8In general, we could impose the condition that distinct sets of the form Dp, for p ∈ L,
should have as little domain elements in common as possible.
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In order to see in more detail the difference between these two approaches
(i.e., that in [17] and ours) let us consider a small fragment of ΦCB , given by
the following subset of rules:

Φ = {〈D21|S1022, 1〉, 〈D20|S1022, 0.1〉, 〈D20|D21, 1〉},

with D20, D21 ∈ D and S1022 ∈ S.
By considering the notion of satisfiability derived from Definition 3 Φ is

unsatisfiable (actually, Φ is a minimal unsatisfiable subset) and DCp(Φ) = ε
whereas according to the notion of satisfiability in [17] Φ is satisfiable (for ex-
ample, consider the probability distribution ω on {D21, S1022, D20} such that
ω(¬D21 ∧ ¬D20 ∧ ¬S1022) = 1, which would correspond, in set theoretical or
first order terms, to the empty model). Beyond magnitudes or degrees of incon-
sistency, it is important to appreciate the qualitative difference between these
two approaches for our particular example. DCp acknowledges the unsatisfia-
bility of Φ (and, we believe, modelers would agree in that Φ should be regarded
as unsatisfiable and thus as non-desirable) whereas the approach in [17] does
not.

Let us assume now that the conditional D20|D21 is regarded as well eval-
uated (i.e., that 〈D20|D21, 1〉 is regarded by the modeler as a reliable piece
of information). We will have in this case that DC1

Γ(Φ) = 0.9 (witn normal-

ized measure DC
1

Γ(Φ) = 0.3), where Γ = {D20|D21}, and thus that there is a
considerable difference between our approach and that of [17] also in terms of
magnitude in this particular example.

7 Conclusion

We have presented and analyzed a family of measures (p-measures) aimed
at helping the modeler in evaluating inconsistency in probabilistic knowledge
bases. Unlike most approaches to measuring inconsistency in the literature,
ours is graded in the sense that we take into account minimal adjustments in
the degrees of uncertainty (i.e., probabilities) that make the knowledge base
consistent. We have also seen that the computation of the measures here pre-
sented yield possible repairs to bring or restore consistency in such knowledge
bases.

There is still much left to be done in relation to the family of measures
presented here. In particular, a deeper understanding of the differences among
distinct p-measures (and, by extension, among the possible repairs they yield),
both on theoretical and practical grounds, would be desirable. This task is left
for future work and, hopefully, will constitute the core of a future paper.
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