A Parametrical Similarity Saturation Based
Decision Procedure for a Fragment of FTL

Regimantas Pliuskevicius

Institute of Mathematics and Informatics,
Akademijos 4, Vilnius 2600, LITHUANIA,
regis@ktl.mii.lt

Abstract. A simple saturation based decision procedure for a fragment
of a first-order linear temporal logic with function symbols and temporal
operators Next and Always is presented. The main part of the presented
decision procedure consists of two decidable procedures which allow us to
construct a fully formal inductive proof. The soundness and completeness
of the proposed decision procedure are proved.

1 Introduction

First-order temporal logic (F'TL, in short) is a very expressive language.
Unfortunately, FTL is incomplete, in general [14]. But it becomes com-
plete [7, 15] after adding an w-type rule. The sequent version of this
infinitary rule of inference is of the following shape:

I - A AT = A0A;...;T — A, OFA; ...
I'->AO0A

(— Ow)-

The rule of inference (— O,) expresses the semantics of the temporal
operator Always (formula O A means: “A is true now and will be true in all
future states of time”). Some fragments of the first-order linear temporal
logic are finitary complete and/or decidable. In these cases instead of the
w-type rule (— O,) one can use the following finitary rule:

I'—-ALI—-0oLI— A (= 0)
r—-AoA ’

This rule corresponds to the induction axiom: A AO(A D 0 A) D OA.
The formula I is called an invariant formula and has a close relation with
invariant formulas in Hoare logic and dynamic logic.

Recently in [6] the decidability of so-called monodic fragments of FT'L
(without function symbols) has been proved. The aim of this paper is to



present a simple deduction-based decision procedure PSSat for a non-
monodic fragment of FT'L with function symbols. The objects of consider-
ation of the proposed procedure PSSat are so-called parametrical similar
sequents (PS-sequents, in short). The PS-sequents are of the following
simple form ¥, 0 — 0°A, where 0° € {&,0}, ¥ consists of atomic
formulas, 0Of2 consists of the so-called kernel formulas. PS-sequents are
somewhat specialization of Fisher’s normal form [4]. The exact notion of
PS-sequents is presented in Definition 5 (see Section 2). As in [8-13] the
proposed decision procedure PSSat is based on the saturation method.
Usually the saturation (see, e.g., [5]) means computing the closure of a
given set of sequents under a set R of rules. The presence of the existen-
tial quantifier and function symbols in kernel formulas force us to use the
so-called parametrical similarity saturation.

The proposed decision procedure PSSat consists of a preliminary step
and the main part. In the preliminary step we try automatically to reduce
a given PS-sequent to so-called semi-saturated PS-sequent.

The main part of PSSat consists of two decidable procedures Re¥(S)
and HRe*(S). These procedures allow us to construct a fully formal in-
ductive proof. The computation of ReF(S) provides the base case and
then we can use HReF(S) to prove the inductive step. The procedures
ReF(S) and HRe*(S) effectively replace the w-type rule (— O,) and the
finitary invariant-type rule (— O). Both procedures do not contain any
logical rules and instead of temporal rules contain two so-called separa-
tion rules (IS) and (GIS) which introduce some substitution operation.
These separation rules allow us to construct a derivation of any P.S- se-
quent in a form of rather simple tree. The separation rule (GIS) allows
us to construct an inductive hypothesis automatically.

As in [8-13], the notions of calculus and deduction-based decision
procedure are identical.

The paper is organized as follows. In Section 2, a sound and w-
complete (for PS-sequents) loop-free infinitary calculus G, is presented.
In section 3, the preliminary step and the main part of PSSat are de-
scribed and decidability of PSSat is established. In section 4, a decidable
invariant calculus PSIN is presented. It is stated that G, - S <=
PSSat+ S <= PSIN F S. From this fact the soundness and com-
pleteness of the calculi PSSat and PSIN are obtained. In section 5,
conclusions, related works and future investigations are shortly discussed.



2 Loop-free infinitary calculus G,

An inference rule (i) of some sequent calculus is called a loop rule if
the premise (premises) of the rule (i) contains the main formula (or a
modification of the main formula) of the rule. Loop rules may be a reason
of severe problems in the proof search and make it difficult to find decision
procedures. The proposed decision procedures PSSat are justified using
loop-free infinitary calculus G.,.

We assume that all the predicate symbols are flexible (i.e., change
their value in time), and functions are rigid (i.e., with time-independent
meanings). For simplicity we consider only two-place predicate symbols
and only one-place function symbols. A term and a formula are defined in
the usual way. An atomic formula is an expression of the form P(t¢1, %),
where P is a predicate symbol, ¢1,%s are terms.

In the first-order linear temporal logic, we have that O(4A ® B) =
0OA®OB(® € {D,A,V}) and OcA = c0A(c € {—,0,Vz,3z}). Relying
on these equivalences, we can consider occurrences of the Next operator
O only entering the formula OFP(t1,t2) (k-time Next atomic formula
P(t1,t2)). For the sake of simplicity, we ”eliminate” the Next operator
and the formula OF P(t1,t,) is abbreviated as P¥(t1,13) (i.e., as an atomic
formula with the index k).

The main tool for eliminating the loop rules is a transformation of
some formulas and/or joining of some rules. We used this idea to construct
an infinitary calculus with loop-free rules.

To construct a loop-free infinitary calculus, let us introduce PS*-
sequents. First we introduce kernel formulas.

Definition 1 (kernel formula). A formula OA is a kernel formula, if

04 = I:IVJ?l.’IIQ(E(.’L‘l,.'L'Q) D) HyPl(f(ah),y)); where f(ml) = fl(f2 s (fn(~771
))--2), fi (1 <i<n)isa function symbol.

Definition 2 (PS*-sequent, induction-free PS*-sequent, non-re-
peating conditions). A sequent S is a PS*-sequent, if S = X, 00 —
0°A, where X consists of atomic formulas; 02 consists of kernel formulas;
A= Z.Z uES (i) (°i € {2,309}, Ui = Yin, vips ki > 0); 0° € {@,0},
if 0° = & then S is an induction-free PS*-sequent. Fach PS*-sequent
must satisfy the following

Non-repeating conditions:

(a) let VT 122 (Ei(21,72) D JyP(f(z1),v)) € O and OVz122(Ej (21,
22) D EItul(g(zl),u)) € 02, then Vij (E; # E; and P; # Pj);



(b) if Q(t1,t2) € X, then Q(p1,p2) & X for each terms ti,p; (1 €
{1,2}).

Remark 1. Atomic formulas from X correspond to so-called “start” for-
mulas, kernel formulas correspond to “next” (or “step”) formulas, and
the succedent formula OA corresponds to so-called “sometimes” formulas
from Fisher’s normal form [4].

The shape of PS*-sequents allow us to construct a loop-free infinitary
calculus. First we introduce the following operation.

Definition 3 (operation (+)). Let ¥,02 — 0°A be a PS*-sequent
and E(t1,ty) € X. Let OVz122(E(z1,20) D JyP (f(z1,y))) ¢ 082, then
(E(t1,t2))T = @. Let OVz122(E(21,22) D JyP (f(z1,y))) € 0N, then
(E(t1,t2))t = P(f(z*),b) (where z* is a new variable and the value of
this variable is the term t1; b is a new constant, called an eigen-constant
of the operation (+)). A substitution z* < t1, is written alongside to the
result of the operation (4) and it is used to find the similarity substitution
(see Lemma 7 and Algorithm (SS)). Let X = Ex, ..., E,, then (X)T =
(BT, (Bp)™T.

Ezample 1. Let X = R(a,b), P(a,c), E(e,d); 02 = oVz122(E(z1,22) D
P (f(z1),y)), OVz1,22 (P(z1,22) D FuE'(g(z1),u)). Then (X)* =
E(g(z3,),b1), P(f(z%),b2); {z7; + a, x3; < e}, where b, by are eigen-
constants of the operation (+).

Definition 4 (calculi G, G). A calculus G, is defined by the following
postulates.
Aziom:

I, Efi(fi(a1), f2(a2)) = j\i/lﬂzjlzszfj (91(2j1), G2(252))

where 35 such that E;-cj = E¥ and the term fi(ax) (k € {1,2}) is an

2
instance of the term gi(zix) (for example, f(g(a)) is the instance of the

term f(z)).
Rules:
I' 5 AT — AL, ;T — Ak, ...
I - oA (= o)
(2)*, 00 - AL
I
Yo — A (75),

where X, 082 — A is an induction-free PS*-sequent which is not an axiom;
A= _T\r/l1 Elo_iEf" (7:); A~! denotes the formula which is obtained from A,
1=



replacing the formula Ezkl (7i) by E;ci*l(gji), moreover, if k; —1 < 0 then
the i-th disjunctive component is omitted.
A calculus G is obtained from G, by dropping the rule (— 0O,).

Remark 2. The axiom replaces the loop-type rule (— 3). The rule (I5)

incorporates the logical rules (D—), (3 —), the traditional loop-type

Ir—A Lo

m (+1), Wthh 1S

admissible in G, and which corresponds to the traditional rule for the
Ir—A

Y. o - QA"

rules (V —), (0 —) and the following rule

Next operation

Lemma 1. The calculus G is decidable.

Proof. Follows from invertibility in G of the rule (1.S) and decidability of
the axiom.

Theorem 1 (soundness and w-completeness of G,). Let S be a
PS*-sequent then VM I+ S <— G, F S.

Proof. Analogously as in [13].

This ends the description of the loop-free infinitary calculus G|, .

3 Description of decidable saturation based decision
procedure PSSat

In this section, we describe a preliminary step and the main part of the
proposed decision procedure PSSat. The procedure PSSat will be ap-
plied to so-called periodic PS*-sequents (PS-sequents, in short). This pe-
riodic condition essentially simplifies saturation procedures Re*(S) and
HRe*(S) (see below) of PSSat.

Definition 5 (PS-sequent). A PS*-sequent S = X,08 — 0°A is a
PS-sequent, if the kernel formulas from 02 satisfy the following
Periodic condition:

002 = oVzyz12(E1 (211, 712) D I B3 (fi(z11),v1)),
OVZ21To2( B2 (Ta1, T22) D o B3 (Fo(z21). 92)),
VT 1802 (En (Tn1, Tn2) D ElynE}l+1(fn($n1)ayn))
and E1 = En—|—1-



Let us define the generalized integrated separation rule (GI.S) which
is applied to any non-induction-free PS-sequent.

Definition 6 (generalized integrated separation rule: (GIS), suc-
cessful applications of (GIS)). Let S = ¥,0f2 — 0B be a PS-sequent
and (X)) means the same as in the definition of (IS). Then the gener-
alized integrated separation rule (GIS) is as follows:

»Y,0 — B;(X)*t,02 - oB
X.,0 —-oB

If the left premise of (GIS), i.e., the sequent S1 = X,08 — B is such
that G + S1, we say that a bottom-up application of (GIS) is successful.

The notation (GIS)(S) = So means that after successful bottom-up
applications of (GIS), we get a sequent So as the right premise of (GIS).

(GIS).

Remark 3. The rule (GIS) incorporates the rules (IS), (+1) and the
following rule
I' - A;I' — oAl

I - oA (= 2.
Using the fact that G, - 04 = A A 0A! and from the admissibility of

(cut) in G, we get that the rule (— O') is admissible and invertible in
G-

Lemma 2. The rule (GIS) is admissible and invertible in the calculus

Gy.

Proof. Using admissibility and invertibility of (— O'), admissibility of
(+1) and applying analogous reasonings as in [13].

Now we present a preliminary step of the calculus PSSat. The aim of
this preliminary step is to obtain a so-called semi-saturated P.S-sequent.
To define the preliminary step, let us introduce the following notions.

Definition 7 (rank of PS-sequent: r(S)). Let S = X,00 — OB be
a PS-sequent and E = Q(f(a),c) be any atomic formula from X. Let us
define the rank of E (in symbols: r(E)): r(E) = 0, if OVz1z2(P(z1,72) D
FyQ (f(x1),y)) € 082, otherwise, 7(E) = 1. Let S = Ey,...,E,,00 —
n
OB, then r(S) = > r(E;).
=1
Ezample 2. Let 02 = oVz1z2(P(71,z2) D Q' (f(x1),v)). Then if E =
Q(f(a),c), then r(F) = 0, and if E = Q(a,c), then r(E) = 1 or if
E= Q(f(a)ag(c))a then T(E) =1



Definition 8. (semi-saturated PS-sequent). Let S be a PS-sequent, then
S is a semi-saturated PS-sequent if r(S) = 0.

Definition 9 (preliminary step of PSSat, successful preliminary
step). Let r(S) > 0, then the preliminary step of PSSat consists of a
bottom-up application of (GIS), by means of which the semi-saturated
PS-sequent is obtained. If r(S) = 0, then the preliminary step is missing.
The preliminary step is successful, if the bottom-up application of (GIS)
is successful.

Lemma 3. The problem of constructing a semi-saturated PS-sequent S*
from an arbitrary PS-sequent S is decidable.

Proof. Follows from the decidability of the calculus G.

Ezample 3. Let X,02 be the same as in Example 1, A = Jujvi E(uy,v1).
Then S = X ,00 — 0A and r(S) = 3. Bottom-up applying (GIS) to S
we get that preliminary step is successful and the semi-saturated PS-
sequent is as follows §* = (X)*,062 — 0OA, where (X)* is the same as in
Example 1.

Now we are going to define the basic procedure of PSSat. The pro-
cedure will be called as k-th resolvent of the semi-saturated PS-sequent
S (in short: Re*(S)).

First we define a halting parameter for Re*(S), namely, a similarity
index.

Definition 10. (similarity index: p(S))). Let S = X,0602 — 0OA be a PS-
sequent and |082| be the number of kernel formulas in OS2, then p(S) =
|o82|.

Now we define ReF(S), the parametrical part of ReF(S) and existential
closure of the parametrical part of Re(S).

Definition 11. (k-th resolvent: Re*(S), favourable procedure ReF(S),
parametrical part of ReF(S)), existential closure of the of Re*(S)). Let
S be a semi-saturated PS-sequent. Then Re®(S) = S. Let ReF(S) =
S, = X,082 — 0A, then ReFt1(S) is defined in the following way:

1. Let us bottom-up apply the rule (GIS) to Sk, and Ski,Sko be the
left and right premises of the application of (GIS).

2. If G ¥/ Sii1, then ReFTY(S) =L (false) and the calculation of
ReFt1(8) is stopped.



3. Let G & Sg1 (it means that the bottom-up application of (GIS) is
successful). Then Re*t1(S) = Sy = (X)F,00 — 0A; (2)t is called a
parametrical part of ReFT1(S). Let (X)T = E1(fi(a1),b1), - - -, Em(fm(am),
bm) (b1,--., by are the eigen-constants of the operation (+)) be a paramet-
rical part of Re¥T1(S). Then 3z1x9 Ey(fi(21),22), - .., 37120 Epy(frn (1),
x3) is an existential closure of the parametrical part of Re**1(S).

4. If Re*t1(S) = Spo and k + 1 = |082|, then the calculation of
ReF1(S) is finished.

The notation Re*(S) #1 (k < p(S)), where p(S) is the similarity
index of S, means that all the bottom-up applications of (GIS) in the
calculation of ReF(S) are successful. In this case, we say that ReF(S) is
favourable for the semi-saturated PS-sequent S.

Lemma 4. The problem of calculation of Re*(S) is decidable, i.e. for
any semi-saturated PS-sequent S the computation of Re*(S) always ter-
minates.

Proof. Follows from the decidability of G and the definition of Re*(S).

Lemma 5 (composition of Ref(S))). Let Re™(S) = S,, Re™(S,) =
S* and Re™(S) #1 (n < p(S)), Re™(Sy,) #L (m < p(S)). Then Re'(S) =
S*, where | = n + m.

Proof. By induction on [.

Lemma 6 (decomposition of Ref(S))). Let Re"t™(S) = §*
and Re™™™(S) #1 (k < p(S)), then for each n and m there exists a
sequent Sy, such that Re™(S) = S, and Re™(S,) = S*.

Proof. By induction on n + m.

Now we can state the main property (so-called basic loop property)
of the procedure Re*(S). First we define some notions.

Definition 12 (parametrically identical PS-sequents). Two for-
mulas are parametrically identical (in symbols: A ~ A*) if A, A* differ
only by the corresponding occurrences of eigen-constants of the operation
(+). Two PS-sequents S1 and Sy are parametrically identical (in symbols:
S1 = So) if S1,S2 consist of parametrically identical formulas.

Definition 13 (similarity substitution o). Let S be a semi-saturated
PS-sequent, then a substitution o is called similarity substitution if So =
Re*(S), where k = p(S).



Lemma 7 (basic loop property). Let S be a semi-saturated PS-sequent,
Re'(S) #1 (1 < p(S)) and Re*(S) = S*, where k = p(S). Then So ~ S*.

Proof. Using decomposition and composition properties of Re!(S), and
applying induction on p(S).

From the proof of Lemma 7 a way for constructing the similarity
substitution o can be extracted. Below an algorithm for generating the
similarity substitution o is presented.

Algorithm (SS) (algorithm for constructing the similarity substitu-
tion). Let S = Q1(g1(x7),b11),...,Qr(gr(z}),b1,),002 — OA be a semi-
saturated PS-sequent and p(S) = k. From Lemma 7 it follows that
Rek(S) = S = Ql(gl(mkl)a br1, )a T aQr(gr(xkr)abkr)v 0§ — 0OA. The
algorithm (SS) consists of three steps.

(1) Let o1 be a sequence of substitutions obtained during the con-
struction of Re*(S) = Sy.

(2) In o0; replace all the intermediate variables between =z} and zy;
(1 <4 < r) by the corresponding values. Continue these transforma-
tions until a sequence ¢* containing r substitutions of the shape zy;
Gki(- .. gi(zf)...) (1 <i <rand gy consists of the function symbols from
g;) is obtained.

(3) In o replace the variables zy; by the variables z} (1 < i < 7).
Then, the desired similarity substitution ¢ has the shape o := {z} +

Ge1( o qu(z?) o), oo @f < ger(c o gr(2)) .. ) )

Lemma 8. The algorithm (SS) is correct, it terminates and calculates
the unique similarity substitution.

Proof. Follows from description of the Algorithm (S.5).

Ezample 4. Let S be the following semi-saturated PS-sequent: S =
Q(f(x7,b1)), R(g(x3,b2)), E(h(x},b3)), Of2 — OA, where 02 = OVz;2;
(E(z1,21) D Q' (f(z1),51)), Vz220(Q(72,22) D JyaR'(9(w2),%2)),
OVr323(R(23,23) D JyzE(h(z3),43)); A = Juivi E(uy,v1). In order to
verify that S satisfies the basic loop property let us construct Re*(S).
Since |082| = 3, k = 3. It is easy to verify that Re‘(S) # L (i € {1,2,3}).
Therefore we indicate only a temporal premise of the rule (GIS) and
substitutions generated by means of the operation (+):

S3 = Q(f(z13),b13), R(g(w23),b23), E(h(33),b33), So;
{z13 < h(z12), T23  f(z22), T33 ¢ g(x32)}



E(h(z12),b12), Q(f(722),b22), R(g(z32),b32), So;
{z12  g(z11), ®22 ¢ h(x21), w32 < f(x31)}

R(g(z11),b11), E(h(z21),b21), Q(f(w31),b31), So;
{z11 « f(21), 221 < 9(253), 31 < h(z3)}
),

S = Q(f(xi)abl)a R(Q(J’;) ) (h(J? b3)1 So

where Sy = 0f2 — OA.

Let us now construct a similarity substitution o. Let o; be the se-
quence of the substitutions obtained during the construction of Re3(S) =
Sg, i.e., g1 = {LEU — f(x’{), o1 g(w§), T3] < h(.’l?;), T19 < g(xn),
Tog < h(x21), z32 < f(231), T13 < h(z12), T23 < f(z22), 33 < g(w32)}.
Let us eliminate the intermediate variables ;1 and x;2 (1 < ¢ < 3). First,
let us eliminate the variables z;2 (1 < i < 3), i.e., replace the variables
zio by the corresponding values of these variables. So, instead of the se-
quence o1 we get o9 = {z11 + f(z7), 21 < g(x3), 31 + h(z}), 13
h(g(z11)), w23 < f(h(z21)), z33 < g(f(z31))}. In the same manner, let us
eliminate the variables z;; (1 < i < 3). So, instead of the sequence oy we
get o3 = {z13 < h(g(f(2]))), w23 < f(h(g(z3))), w33 < g(f(h(z3)))}-
Now, by adding z} = z;3 (1 < i < 3) to o3 we get the desired sim-
ilarity substitution o = {z} « h(g(f(z7))), x5 < f(h(g9(z3))), =3 <
g(f(h(z3)))}- So, So ~ S5 and S satisfies the basic loop property.

Lemma 9. Let S be a semi-saturated PS-sequent. Then the problem of
testing that S satisfies the basic loop property is decidable.

Proof. Follows from decidability of G, the Algorithm (SS) and definition
of Re(S).

Remark 4. Let S satisfy the basic loop property. Then the PS- sequent
So is an inductive hypothesis which is generated using the procedure
ReF(S) automatically.

Now we define hypothetical k-th resolvent (HReF(S), in symbols).
The halting parameter for HReF(S) is the same as for Re*(S), namely,
k = p(S), i.e., the similarity index of S. First let us construct the sub-
stitution o™ in the following way. Let o = {2 «+ fi(z}),...,z}, +
fm(ﬁ_(::n)}a then 0" = {z7 « fI'(2]),..., 2], « fn( m)}, where fi(z}) =
@; fr(z) = fi(f 1(2*)), therefore 0° = @ and ¢! = 0. For example if

o =z" + f(g(z*)), then 0% = z* + f(g(f(g(z*))))-



Definition 14 (hypothetical k-th resolvent: HRe*(S)). Let S be a
semi-saturated PS-sequent, o be the similarity substitution, and m an
arbitrary natural number, then HRe%(S) = So™. Let HRe*(S) = Sy,
then HRe**1(S) is defined in the same way as ReFT1(S).

Lemma 10 (hypothetical loop property). Let S be a semi-saturated
PS-sequent and HRe*(S) # L (k < p(S)). Let m be an arbitrary natural
number, o be the similarity substitution, HRe°(S) = So™ = S* and
HRe (S) = S**, where | = p(S). Then S*o ~ S**.

Lemma 11. Let S be a semi-saturated PS-sequent. Then the problem of
testing that S satisfies the hypothetical loop property is decidable.

Proof. Follows from decidability of G, the Algorithm (SS) and definition
of HRe*(S).

Definition 15 (calculus PSSat, PS-sequent derivable in PSSat).
A calculus PSSat consists of preliminary step and procedures Re*(S), and
HRe*(S). A PS-sequent S is derivable in PSSat (in symbols, PSSat -
S) if (1) GIS(S) = S*, where r(S*) = 0; (2) S* satisfies the basic and
hypothetical loop properties; otherwise PSSat ¥ S.

Theorem 2. The calculus PSSat is decidable for the class of PS-sequents.
Proof. Follows from Lemmas 3, 9, and 11.

Ezample 5. (a) Let S be the same semi-saturated PS-sequent as in Ex-
ample 4. In Example 4 the similarity substitution ¢ was constructed and
we get that S satisfies the basic loop property, i.e., So ~ Re3(S). As-
sume that HRe%(S) = So™. Analogously as in Example 4 we get that
HRe3(S) =~ So™*tL. Therefore S satisfies the hypothetical loop property.
Hence, using Example 4, we get PSSat - S.

(b) Let S = E(a,c),002 — OA, where 02 = Vzz(E(z,z) D JyE"
(f(z),v)); A= Fu1E(a,u1)VIusE(f(a),us). It is easy to verify that PS-
sequent S can be reduced (using the preliminary step of PSSat) to the
semi-saturated PS-sequent S* = E(f(z*),b1),002 — 0A and z* + a. Let
us verify (using the procedure Re(S*)) that S* satisfies the basic loop
property. Since |082| = 1, k = 1. It is easy to verify that the bottom-up
application of (GIS) in the calculation of Re!(S*) is successful. Therefore
the construction of Re!(S*) is as follows:

Re'(S8*) = E(f(x1),b2),002 - 0A  {z; « f(z*)}
S* = E(f(z*)), b)), 02 — 0A




Therefore the similarity substitution o = {z* « f(z*)}, S*0c =
Re!(S*) and S* satisfies the basic loop property. Let us try to calculate
HRe'(S*). Let HRe(S*) = S*o™. Since G ¥ E(f™*(x1),b2), 002 — A,
HRe'(S) = L. Therefore PSSat ¥ S.

4 Foundation of the calculus PSSat

In order to justify the decidable calculus PSSat, we introduce a so-called
invariant calculus PSIN. First we introduce some simple calculi.

Definition 16 (calculi Log, Gt and G*). A calculus Log is obtained
from the calculi G replacing the rule (IS) by the traditional invertible
logical rules (— A), (— V).

Calculus Gt are obtained from the calculi G by adding

1) the aziom I''OA — A,0A';

2) the traditional invertible logical rules (3 =), (A =), (V. =), (= A),
(= V).

Calculus Gt are obtained from the calculus G by dropping the az-
iom I', 0A — A,0AL

Lemma 12. The calculi J € {Log, G*,G**} are decidable.

Proof. Follows from decidability of G and invertibility of logical rules
3 =), (A=), (V=2), (= A), (= V).

Definition 17 (invariant calculus PSIN). An invariant calculus PSIN
is obtained from the calculus G by adding the following rule:
X0 =TI, T =TI I—>A(_>D)
XY, o2 »>0A

The rule (— O) satisfies the following conditions:
(1) the conclusion of (— 0O), i.e., the PS-sequent X, 082 — OA satis-
fies the basic loop property;

—1
(2) I = T_VO(EIEi)/\ A (OR)"; 3% is the existential closure of the para-
3=

metrical parts of Re'(S); X; is the parametrical part of Re*(S), k €
{1,...,7}, r = |0R|, i.e., the number of kernel formulas in 0R); I'"
is the conjunction of formulas from I';

(3) the left premise of (— O), i.e., the sequent S; = X, 002 — I, is
such that Log F Si;

(4) the middle premise of (— 0O), i.c., the sequent Sy = I — I, is
such that Gt + So;



(5) the right premise of (— O), i.e., the sequent S3 =1 — A, is such
that Gt+ F Ss.

Lemma 13. The problem of finding the invariant formula I in the rule
(— ) is decidable.

Proof. Follows from Lemmas 4 and 9.
Lemma 14. The calculus PSIN is decidable for the class of PS-sequents.
Proof. Follows from invertibility of the rule (— 0) and Lemmas 12, 13.

Ezample 6. (a) Let S be the same semi-saturated PS-sequent as in Ex-
ample 4. Using the Example 4 we get that the invariant formula I is of
the following form

I = F2122Q(f (%1), 32) A Iy1yaR(g(y1),y2)) A 3z120E(h(21), 22))
V(Fuiue R(g(u1), uz) A FviveE(h(v1),v2)) A Jwiwe Q(f (w1),ws))
V(3zsz4 E(h(z3), 74) A JysyaQ(f (y3), ya)) A Jz324R(g(23), 24)) A OS2

It is easy to verify that
Log Q(f(‘TT)a bl)a R(g(‘rz)a b2))’ E(h($§)7 b3))a o —1I (1)
GtFI-T (2)
GHEI— A (3)
Applying (— O) to (1), (2), (3) we get PSIN F S.

(b) Let S* be the semi-saturated PS-sequent obtained in Example
5(b). Using Example 5(b) we get that the invariant formula I is of the
following form: I = 32120 E(f(21), 22) A Of2. It is easy to verify that

Logt E(f(z*),b1),002 — I (1)
GtFI-T (2)
But G** ¥ I — A. Therefore PSIN ¥ S*.

Theorem 3. Let S be a PS-sequent. Then PSSat - § <= PSIN
S — G,FS.

Proof. Analogously as in [8, 12].

Theorem 4 (soundness and completeness of calculi PSSat and
PSIN). Let S be a PS-sequent. Then VM = S iff I = S where I €
{PSSat, PSIN}.

Proof. Follows from Theorems 1, 3.



5 Conclusions, related works and future investigations

In this paper we present the deduction-based decision procedure PSSat
for PS-sequents. The procedure is based on parametrical similarity sat-
uration. The main feature of the proposed procedure is the automatic
verification of the loop properties (see Lemmas 7, 10).

The main part of PSSat consists of two decidable procedures Re*(S)
and HRe*(S). These procedures allows us to construct a fully formal
inductive proof. The computation of Re¥(S) provides the base case and
then we can use HRe*(S) to prove the inductive step. The procedure
ReF(S) allows us to construct an inductive hypothesis automatically.

The construction of automated reasoning procedures for F'T'L be-
comes topical for various applications of computer science and artificial
intelligence. Unfortunately, investigations on deductive reasoning proce-
dures for F'T'L are not sufficiently developed. Let us indicate some works.

— Degtyarev, Fisher [3] have presented a resolution-like procedure for
some fragments of F'T'L. This resolution procedure is different from
our saturation-based procedure.

— An interesting deductive temporal procedure, called STeP system, has
been developed at the Stanford University [2]. The STeP system uses
some interactive tools.

— A resolution based proof procedure of Abadi and Manna [1] is not
applicable for automated reasoning in the F'T'L, because it demands
an unrestricted cut rule. The same situation is observed in Gentzen
and Hilbert style systems of Szalas [16].

— The project (guided by Prof. M. Fisher) ” Analysis and mechanization
of decidable first-order temporal logic” in Liverpool University (UK)
jointly with London Imperial College is worked out.

The presented decision procedure can be generalized for more complex
fragments of FT'L (e.g. including branching kernel formulas without non-
repeating and non-periodic conditions) which will be considered in the
next papers.
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