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Abstract. Strong completeness, which is almost automatic at the ground
level for the tableau method and for path dissolution, is a question for
many path-based calculi, most notably for cg-resolution. Because of the
destructive nature of cg-resolution, many results, including complete-
ness, require non-trivial proofs; others hold only if the calculus is re-
stricted. Norbert Eisinger’s famous example showed that unrestricted cg-
resolution is not strongly complete. One restricted form of cg-resolution —
ordered resolution — is.

In this paper, a relatively simple proof of the ground confluence of unre-
stricted cg-resolution is presented and strengthened to exclude tautology
creation. In addition, ordered cg-resolution (and ordered set resolution)
are shown to be compatible with a unit preference strategy, while pre-
serving strong completeness.

Keywords: Completeness, strong completeness, connection-graph resolution,
ordered resolution, unit preference, subsumption, link deletion.

1 Introduction

Strong completeness — carefully defined in Section 2 but, roughly speaking,
an inference system is strongly complete if any sequence of steps eventually
terminates — is almost automatic at the ground level for the tableau method
and for path dissolution, but it is a question for many path-based calculi, most
notably for cg-resolution. Because of the destructive nature of cg-resolution,
many results, including completeness, require non-trivial proofs; others hold only
if the calculus is restricted. Norbert Eisinger’s [9] famous example showed that
unrestricted cg-resolution is not strongly complete. One restricted form of cg-
resolution — ordered resolution — is (see, for example, [11]).

Refutation confluent, non-destructive, complete calculi combined with ap-
propriate fairness strategies are always strongly complete. This is also true for a
complete destructive calculus, but the appropriate fairness strategy may entail
substantial backtracking. When inference steps are complex as in cg-resolution



(as opposed to Prolog), backtracking is likely to be expensive and thus eliminate
the search space advantages of a destructive calculus.

Connection graph resolution (cg-resolution) was introduced by Kowalski [15]
in 1975. It is a modification of resolution in which links are deleted upon activa-
tion, thus restricting the search space. The possiblity of a substantial reduction
in the size of the search space led to extensive research into its properties. Some
of the early work included Brown [7], who investigated a variant of the system
based on semantic trees, and Siekmann and Stephan [20], who studied a related
idea using a minimal unsatisfiable kernel. But investigators quickly discovered
that the behavior of cg-resolution is rather elusive. Determining and verifying
its properties has been fraught with difficulties, some of which will be explored
in this paper.

Most researchers assumed cg-resolution to be complete and hoped it was
strongly complete, but it was six years before completeness was actually proved.
Both the semantic tree and excess literal techniques seemed to be insufficient,
and the first proof did not appear until Bibel’s seminal paper [4] in 1981. The
crucial advance he made was introducing the notion of spanning and observing
that cg-resolution steps preserve spanning (see Section 3). His proof requires
that, throughout a refutation, the connection graph is “almost” fully connected,
primarily to ensure that tautologies may always be deleted. But he did not prove
confluence; i.e. his proof admits the possibility that a sequence of link activations
will yield a connection graph for which a proof is no longer available. Bibel [5]
established completeness for the first-order case, but only if the “copy-rule”
is available. The graphs are again almost fully connected, and derivations are
constructed so that tautologies are removable.

Several of Siekmann’s students attacked the problem. Smolka [24] estab-
lished first-order confluence for the unit-refutable class with tautology deletion.!
Eisinger [10] provided an intricate collection of results for the first-order case
that imply ground confluence (without mention of tautology avoidance).

In Section 3.2, a variation of the Anderson-Bledsoe [1] excess literal technique
is employed to prove that cg-resolution is complete. It is simpler than the proof
in Bibel’s 1981 paper, much simpler than Eisinger’s construction, and requires
only a spanning set of links. Confluence is an immediate consequence. This result
is generalized in Section 3.3 to show that tautologies need never be created (but
not that they can always be deleted if they are already present!).

More than one author? has tried to prove strong completeness of cg-resolution.
There were several failed attempts at proving strong completeness for unre-
stricted cg-resolution before Eisinger’s famous counterexample [9,10] dispelled

! Very recent discussions with Siekmann and with Eisinger, for which the authors are
grateful, have revealed that in [25], Smolka developed ground confluence for the non
unit-refutable case. The results are unpublished, appearing only in German in his
diploma thesis. We believe the development here to be useful, not only to give these
insights wider accessability, but also because they are carefully crafted to support
the main results on unit preference.

2 The intersection of that club with the authors of this paper is non-empty.



that notion. He showed that even a quite restrictive concept of fairness cannot
prevent cyclic derivations. Investigations with other restrictions that might ad-
mit strong completeness have generally met with failure. This is in contrast to
some calculi — the tableau method and path dissolution, for example — that
also delete links (either explicitly or implicitly) but are easily seen to be strongly
complete.

FEisinger’s example is a bit complicated: It cycles after sixty-six steps. In
1987, Bibel [5] found a simpler example. He noted that a fairness condition
would eliminate his example but not Eisinger’s. Resolution with free selection
function is not complete, and any example that demonstrates its incompleteness
is easily seen also to be a counterexample to strong completeness of unrestricted
cg-resolution.

Ordered resolution predates cg-resolution and is attributed to Reynolds [18].
Variations have been proven complete by Kowalski and Hayes [13], by Joyner [12]
and by Bachmair and Ganzinger [2]. Bachmair and Ganzinger also proved strong
completeness. Ordered resolution is the basis of modern saturation-based calculi
that are used in many successful automated deduction systems. Ordered reso-
lution is related to cg-resolution insofar as it was shown to be a special case of
cg-resolution in [11]. This proves strong completeness for ordered cg-resolution.
In Section 3.4, that result is generalized to admit activation of links to unit
clauses even when unordered. Noteworthy is the inclusion of ¢g-subsumption by
units and by unit resolvents (but not in general). This result in turn implies
that ordered resolution with unordered unit link activations is strongly com-
plete, providing, at least as far as the authors are aware, the first combination
of unit preference with an ordering restriction.

Attention is restricted to the ground case in this paper; some remarks about
the first-order level are made at the end.

2 Strong Completeness

To properly define strong completeness, it is important to be clear on the distinc-
tion between inference system or calculus, and proof procedure. Kowalski [14] was
perhaps the first to draw this distinction carefully in the deduction literature.
The former is a formal language along with rules of inference that define admis-
sible operations on formulas of that language. Thus, given any set of formulas
and an inference system, there is a (usually finite) set of admissible inference
steps that can be applied to produce a new set of formulas.

A proof procedure, on the other hand, is an inference system combined with a
search strategy. A search strategy is a deterministic process that, when presented
with the set of admissible steps for a given formula set, chooses the next step
to be performed. If a (refutation based) proof procedure is complete, then it
terminates after a finite number of steps when applied to an unsatisfiable set of
formulas; i.e., a complete proof procedure is automatically “strongly complete.”

An inference system, or calculus, is strongly complete if every proof procedure
consisting of that calculus and an arbitrary search strategy is complete. In other



words, termination is guaranteed even if, at each step, the choice from among
admissible steps is arbitrary.®

The confusion that often arises with the notion of strong completeness is
usually due to ambiguities regarding “restrictions” or “refinements” of various
inference rules. One must first decide whether the calculus includes such restric-
tions, or if instead they are part of the search strategy.

One can always start with a complete proof procedure and embed the search
strategy into the formal definition of the original calculus to produce a strongly
complete calculus. The question of whether strong completeness is interesting
for the resulting calculus is subjective. On the other hand, establishing strong
completeness for a destructive calculus is typically desirable but often difficult.

In [10], Eisinger characterizes cg-resolution with respect to several proper-
ties including refutation soundness, refutation completeness, and refutation con-
fluence. Informally, refutation soundness means that the empty clause can be
derived only from initial graphs that are unsatisfiable. Refutation completeness
means that for every unsatisfiable initial connection graph there exists a refu-
tation. Refutation confluence means that if G' is an unsatisfiable initial graph
and both G and G5 can be derived from G, then there is a graph G’ such that
G' is derivable from both G; and G». Non-destructive calculi are automatically
confluent, and thus refutation completeness is the issue of primary interest.

For cg-resolution, refutation soundness is inherited from ordinary resolution
and is immediate.* But because cg-resolution operates destructively and only
on links that are present, unsatisfiability alone is insufficient for discussion of
properties such as confluence. The sentence {{p}, {P}} is unsatisfiable but not
refutable if the associated link set is empty. The crucial point is that the existence
or inevitability of refutations from a given state must be analyzed with respect
to properties of the link set as well as with respect to unsatisfiability.

Since cg-resolution is complete, it may be combined with backtracking to
form a strongly complete proof procedure. But the base calculus is destructive,
and a single backtracking step would require “unresolving” — i.e., restoration of
a deleted link, the deletion of the resolvent and its links, and the restoration of
any clauses that were removed by purity. To say the least, this would be estheti-
cally distasteful, not to mention enormously inefficient. (Of course, backtracking
in Prolog is efficient because it amounts to retreating from one simple step in a
linear proof.)

Another example of a strongly complete strategy is Bibel’s original proof of
the completeness of cg-resolution. It not only provided the first completeness
proof for the basic calculus but also gave a terminating search strategy. Pred-
icates are ordered, and only links of maximal order are selected by the search
strategy. (The set of maximal links is different from the set of ordered links —
see Section 3.4.) Declaring activations of maximal links to be the only admissible

3 Repeated identical steps are implicitly disallowed, although this is typically not pos-
sible with a destructive calculus.

4 This is in general not the case for the cg-purity rule, because a clause that is pure
in the cg sense is not necessarily pure in the ordinary sense.



steps defines a calculus, and termination is assured in the absence of a search
strategy. However, this calculus forces a very large space of partial proofs, many
of which are eventually one step away from a refutation long before that one
step is carried out.

3 Ordered and Connection Graph Resolution

A multiset over a set L is a mapping M from £ to the non-negative integers;
M is finite if M (l) = 0 for all but finitely many [ € £. Conceptually, a multiset
is a collection of any number (including zero) of occurrences of the elements of
L. The set £ may be treated as a multiset by letting M () =1for alll € £. If
< is a strict partial order (i.e., an irreflexive, transitive relation) on £, then <
can be extended to multisets. If M and M’ are distinct multisets over £, then
M'" < M if whenever thereis an [ in £ with M (l) < M'(l), there is an I’ in £ with
I <1l"and M'(I') < M(I"). In other words, to diminish a multiset, remove one
occurrence of an element and replace it with any finite number of occurrences of
smaller elements. Well-foundedness and totality of < are inherited by a (finite)
multiset extension; a good source for this material is [8].

Assume a countable propositional signature (i.e., atom set). Since a clause
may be treated as a multiset of literals, any total order on literals defines an order
on clauses. The largest literal in each clause is called the head of the clause. If
each atom immediately precedes its negation in the literal ordering, then the
ordering is said to be an atom ordering.

To define ordered and connection graph resolution, it is convenient to begin
with a definition of ordinary resolution. A link in a set of clauses S is a set
{1,1}, where the complementary literals I and [ occur in distinct clauses of S. An
occurrence of the literal [ in the clause C' may be written /¢, and {Ic,Ip} denotes
the link {I,1} for which [ € C,1 € D. Then the clause E = (C—{lc})U(D—{Ip})
is the resolvent of S with respect to the link {lc,Ip}; the link is said to be
activated. A link between heads of clauses is called an ordered link. If an ordered
link is activated, its resolvent is said to be ordered, and the resolution procedure
that requires every resolvent to be ordered is called ordered resolution.

Links are sets of ordered literals and hence are ordered as well. This order can
in turn be extended to multisets of links. All orderings are well-founded because
the number of distinct clauses and links is finite.

A resolution derivation of a clause E from a clause set S is a finite sequence
of clauses Dy, Ds, ..., D, = E such that D; is a resolvent of SU{D1,...,D;_1}
for all 1 <14 < n. Such a derivation may also be viewed as the sequence of clause
sets S, S U {D1},S U {Dy,Ds},.... An ordered resolution derivation is one in
which each resolution step is ordered.

Connection graph resolution is essentially ordinary resolution with link dele-
tion. As a result, it is necessary to keep track of which links are present. Thus,
a connection graph (c-graph) is defined to be a pair (S, L), where S is a finite
multiset of clauses, and £ is a set of links in . The clauses of a c-graph are
technically a multiset because identical copies of clauses may have different as-
sociated links. As usual, O denotes any c-graph whose clause set contains the



empty clause.? The connection graph containing all possible links is called the
full graph of the clause set S.

The notions of path and spanning are key to cg-resolution. A conjunctive
path or c-path through a clause set S is a set of literal occurrences containing
exactly one literal from each clause in S. A c-graph G = (S, £) is said to be
spanned by £ if S # and each c-path through S contains a link from £; it is
minimally spanned if removal of any clause and its associated links produces a
graph that is not spanned. Observe that a spanned formula is unsatisfiable, and
a formula is unsatisfiable if and only if it is spanned by the full set of links. Note,
however, that a link set £ may span S and yet not be full. Intuitively, if £ spans
S, then £ contains enough information to demonstrate the unsatisfiability of S.

Example. Consider the c-graph containing the clauses A = {p,q}, B = {p,q},
C = {p,q}, D = {p,q} and containing all links except the two between A and
B. Observe first that the clause set is minimally unsatisfiable; that is, any three
of the clauses is satisfiable. Yet the c-graph is spanned but not full.

To define connection graph resolution, let G = (S, £) be a connection graph,
let L = {lg,Ip} be a link in £, and let E be the clause obtained by resolving
on L. As indicated by our notation, we denote by Iy a literal I’ in the resolvent
E that was present in C' (I;;) or in D (I%;) or in both. Then connection graph
resolution on the link L produces the connection graph G' = (§',L£'), where
S§'=SU{E}, and

L= (L—A{LY U{(p,T'r) | (c,VF) € L or (Ip,I'r) € L)} -

The clause FE is called a cg-resolvent. The links added to £ to obtain £’ are called
inherited links. The definition above can be referred to as full inheritance — all
links to parent literals are inherited. Spanning can be preserved under more
restrictive inheritance rules, but for the remainder of this paper full inheritance
will be assumed.

If G = Go,G1,...,G, = H is a sequence of c-graphs such that each G; is
produced from G;_; by cg-resolution, then # is said to be obtained from G by a
cg-resolution derivation.

Let us emphasize that what distinguishes cg-resolution from ordinary resolu-
tion is, given a c-graph G = (S, £), only the links in £ may be cg-resolved upon.
A key property of cg-resolution is that each step preserves spanning.

Lemma 1 (Spanning Lemma). If a link in a spanned connection graph is
cg-resolved upon, then the resulting connection graph is spanned. O

A literal occurrence ! in a c-graph G = (S, L) is called pure in G if [ is
unlinked; i.e., if no link in £ contains the occurrence . The clause C' is purein G
if it contains a pure literal. A clause that contains complementary literals is called
a tautology. Pure clauses and tautologies are of interest because of the Pure Rule
and the TAUT Lemma, which delete such clauses under some circumstances.
The next lemma (and Lemma 1) are from Bibel’s 1981 paper [4].

% In the presence of a subsumption rule, this graph can be assumed to be ({0}, §).



Lemma 2 (TAUT Lemma). If G = (S,L) is a spanned connection graph,
if C € S is a tautology containing the literal occurrences lc and lo, and if
C together with the associated links are deleted from G, then the resulting
connection graph is spanned provided that the following condition is met:

{ip, 16} | {{Ip,lc} {lo, s} S LY C L.

O
3.1 The Pure Rule and Subsumption

The next lemma is the Pure Rule for connection graphs [4]; its proof of spanning
preservation is essentially identical to a proof of unsatisfiability preservation for
the Pure Rule of ordinary resolution and is straightforward.

Lemma 3 (Pure Rule). Let (S, L) be spanned and contain the clause C' =
AU{lc}, where ¢ is pure. Then (S', £') is spanned, where &' = S — {C'} and
L' is the result of removing from £ all links that meet clause C. O

In the next lemma, and in subsequent developments, objects are removed
from the clauses of a connection graph. In such situations, it is implicitly assumed
that links associated with the removed objects are also removed. The lemma is
from [11].

Lemma 4. Let (S, £) with C € S be a minimally spanned c-graph, and suppose
C={p}U{q,.--,qn}, where n > 0. Obtain G' = (§', L") from G by deleting p
from C. Then G' is spanned, and every minimally spanned subset of S’ contains
C'" = {q1,.--,qn} but contains no clauses that contain an unlinked p. More
generally, p may be removed from all clauses in S to produce a spanned c-graph
with one fewer atom. O

The classical notion of subsumption carries over to the connection graph set-
ting in a spanning-preserving manner [4]. However, it must be modified because
link sets may not be full. The modification is straightforward. Suppose that the
connection graph (S, L) contains clauses C and D, and that C C D; ie., C
“classically” subsumes D. For each literal I in C, let Lit;, denote the set of
literal occurrences linked to I in £. Suppose further that for every literal Io,
Lit;, DO Lit;,,. Then the clause C is said to cg-subsume clause D. The require-
ments on the links are necessary to ensure that spanning is preserved when a
subsumed clause is removed.

Consider the following example:

(1) a V ¢
(2) <a vV b
(3) a VvV (E
(4) ¢



Clause (5) does not cg-subsume (1). Indeed, if (5) is removed, subsequent
purity deletions lead to the (satisfiable) graph in which the clause set is empty.

Lemma 5 (Cg-subsumption). Suppose that (S, £) is spanned and contains
clauses C' and D, and suppose that C c¢g-subsumes D. Then (S, £') is spanned,
where ' = S — {D}, and L' is the result of removing from £ all links that meet
clause D. 0

3.2 Completeness

Bibel’s 1981 paper introduced spanning and proved completeness; it was an im-
portant step forward in understanding connection graph resolution. The new
proof presented here fills in some non-trivial gaps for the ground case that have
persisted and that are outlined in [9, 10]. Although ground confluence can be de-
duced from [24,10], the new proof is direct and is easily strengthened to prohibit
tautology creation.

The induction in Theorem 1 below requires Lemma 6 (a proof of which can
be found in [11]). The reason is that proof steps known to exist for a clause set
S’ must be applied to a larger set S. Any link used in refuting S’ must therefore
be present when needed in S. This is initially the case but could potentially
fail if the Pure Rule initiated a “cascade” of purity deletions that remove an
essential link from S before the link is activated. Such a cascade cannot occur
in the ground case, because clauses become pure only from links deleted after
activation. Intuitively, for each link removed from a non-parent clause because
a parent becomes pure, there is an inherited link to the resolvent.

Lemma 6. A ground clause may become pure only from a cg-resolution step
activating the sole link to one of its literals. O

Theorem 1. Connection-graph resolution is refutation complete for spanned
ground connection graphs. In particular, since cg-resolution steps preserve span-
ning, cg-resolution is confluent.

Proof. Let (S, L) be a connection graph spanned by £; we must show that there
is a refutation of S using cg-resolution. We proceed by induction on the number
n of distinct atoms in S. If there are none, then S contains the empty clause,
and we are done. Otherwise, assume that all spanned connection graphs with at
most n atoms can be refuted with cg-resolution, and suppose that S has n + 1.

If S is not minimally spanned, then restrict attention to a minimally spanned
subset. Let p be any atom in S; we begin by deriving the unit clause {p} from
S. If § contains {p}, we have it; otherwise, by Lemma 4, we can remove all
occurrences of p in S, producing the spanned connection graph (S',£’). By the
induction hypothesis, there is a refutation of &’. By Lemma 6, this refutation
can be applied® to S and produces either the empty clause, in which case the
proof is complete, or the unit clause {p}, as promised.

6 Saying that the refutation of S’ is “being applied” to the clause set S means that
each resolution step involving a clause C' € S’ is applied to the clause C € S that
produced C’. This is always possible, because C' C C.



The unit {p} cannot be pure because no occurrence of p in S was pure, and
no resolution step involved any clause from S that contained p. In particular,
there are no new clauses containing 7. Let C = {p} U C’ be a clause that is
linked to p. The cg-resolvent of {p} and C is C’, which c¢g-subsumes C, since
every link to C’ is inherited directly from a link to C. By activating all links to
{p}, a minimally spanned subset of the resulting connection graph is a spanned
clause set in which the number of occurrences of p has been reduced (but not
necessarily to zero, because there might be occurrences of p other than in the
unit clauses {p}).

This process can be iterated. Each iteration produces a unit {p} (or the empty
clause). Links to the unit {p} are activated, reducing the number of occurrences
of P, while preserving spanning. Since the number of occurrences of p is reduced
with each iteration, this process terminates. Eventually a spanned graph with
no occurrences of p is produced. By the Pure Rule, a minimally spanned subset
contains no occurrences of p. Since this minimally spanned subset has at most
n distinct atoms, by the induction hypothesis, there is a refutation with cg-
resolution. O

Note that the notion of cg-subsumption is employed in the proof above,
but not as part of the inference machinery. The unit cg-resolutions between
the derived unit {p} and clauses containing p produce cg-subsuming clauses.
The existence of minimally spanned clause sets that do not contain the parent
clauses with p is the key point. No claim was made that the subsumed clauses
were in fact deleted.

It is not at all clear that Theorem 1 can be strengthened to include cg-
subsumption. Lemma 6, which guarantees the absence of cascading purity, is
crucial for the application to S of the refutation of &'. But cg-subsumption,
unlike cg-resolution, only deletes links; no new links that can prevent a cascade
effect are inherited once a subsumed clause is deleted. Suppose for example that,
when applying the refutation of S’ to S, a clause is produced that cg-subsumes
a clause R = {p} U E. In &', R was never resolved upon. However, if it were
deleted in S by cg-subsumption, it is possible that a clause in S containing p
and used in the proof could become pure.

3.3 Tautologies

Tautologies provide another example of the subtleties of the cg-resolution calcu-
lus. Ideally, they would simply be removed, which in turn would imply they need
never be created. However, the TAUT Lemma may not apply to a spanned graph
that is not fully linked, in which case tautologies cannot be removed if spanning
is to be maintained. However, Theorem 2 below, which holds for any spanned
graph, does guarantee that the creation of new tautologies can be avoided, even
if existing ones might be required for a proof.

There are two ways to create a tautology. To understand how, consider the
following example. If we resolve {A, B, D} with tautology {E, E, D} we pro-
duce a new tautology {4, B, E, E} by copy. If instead we resolve {A, B, D} with
{4, D, E} we produce a new tautology {B, D, D, E} by link. Tautologies that are



already present may not always be avoided. As a result, it is not terribly inter-
esting to avoid tautology creation by copy. Tautology creation by link, however,
is avoidable.

Suppose we add to the hypotheses of Theorem 1 the assumption that links
whose activations would produce tautologies by link are never selected. It is easy
to adjust the proof of that theorem to accommodate the additional hypothesis.
Obviously the base case is unaffected, and the induction hypothesis produces
a refutation of S’ by cg-resolution in which no tautology is created by link.
Clauses in the refutation of S’ do not contain p. Since adding p back into any
such clause cannot create a tautology, the derivation of the unit {p} is tautology
free. Generating the cg-resolvents of the unit {p} with clauses containing p also
will not produce a tautology by link. Therefore, as in the proof of Theorem 1,
a spanned graph with no occurrences of p is produced. As a result, we have a
spanned connection graph with at most n distinct atoms, and by the induction
hypothesis, there is a refutation free of tautology creation by link. This proves

Theorem 2. Connection-graph resolution restricted to link activations that do
not create tautologies by link is refutation complete for spanned ground connec-
tion graphs. O

3.4 Strong Completeness for Unit Preference Ordered Resolution

In [11] it is shown that ordered resolution is a special case of cg-resolution’;
essentially the same can be said for ordered resolution with a unit preference
strategy and limited use of subsumption. The key is Lemma 7 below. We begin
with some basic definitions.

It is easy to see that some ordered links are present in any spanned connection
graph since the path containing the maximal element from each clause must
contain a link. We say that the connection graph (S, £) is semi-full if whenever
a link is missing from £, the cg-resolvent is in S. In other words, every link
missing from £ has been activated. In this paper we are only concerned with
connection graphs that are semi-full with respect to ordered links in the sense
that the only missing links are ordered. Henceforward, the term semi-full implies
that only ordered links are missing; in particular, any literal that is not the head
of its clause is fully linked.

In [11] pure clauses arise only after the last link to a head literal is activated.
As a result, such a clause could not subsequently participate in an ordered cg-
resolution step. Thus there is no distinction between deleting such a clause as
pure or ignoring it because ordered links to it can no longer exist. Implicit in [11]
was retention of such clauses for bookkeeping purposes. In this paper we make
it explicit: A clause that is pure because the head is pure will be retained. Such
clauses may be deleted by cg-subsumption or if another literal becomes pure.

The next lemma says that every ordered link not yet activated must be
present. It is essentially Lemma 5 from [11]; it is restated here using the notion
of semi-full.

" This observation was made independently by Harald Ganzinger.



Lemma 7. Let G be a semi-full connection graph, and suppose that the literals
of G have a total ordering. Suppose further that # = (S, £) is obtained from G
by an ordered cg-resolution step. Then H is semi-full.

Proof. Observe first that all resolvents of activated links are present: All were
present in G, and the resolvent of the activated link is in S. Thus, if H is not
semi-full, there is some ordered link {Ig,lr} in S that is not in £ and has not
been activated. Since G was semi-full, this link must have been deleted in an
earlier ordered cg-resolution step and inherited as deleted by the last resolution
step. Hence, at least one of the two clauses E, F, say E = {l} U E', was the
resolvent, of clauses C' and D. Then [ cannot be maximal in its parent, nor can
any occurrence of it be maximal in any of its ancestors. Thus, the link {! E,ZF}
can never have been activated and hence could never have been deleted. O

The strategy of restricting cg-resolution to ordered links was adopted in [11]
because strong completeness could be proved. Here unit preference is added
because it provides a better inference rule — after all, it is almost always an
advantage to activate links to unit clauses — and because it still admits a proof
of strong completeness. The key is maintaining semi-fullness. Specifically, we
will show that unit preference ordered cg-resolution will eventually yield a sat-
urated connection graph that is semi-full. We then prove that, if the formula is
unsatisfiable, the empty clause must be present.

Unit preference ordered cg-resolution is defined with the following additions
to ordered cg-resolution. First, a clause that is pure because the head is pure is
retained. Secondly, if a unit clause {p} is present in a connection graph G, then
a complete unit step is performed using {p}: All clauses that are cg-subsumed by
the unit are deleted from G. Then {p} is resolved against every clause to which it
is linked. Each resolvent automatically cg-subsumes the other parent, and that
parent is deleted. Note that if {p} is fully linked, then it necessarily cg-subsumes
every clause that contains the literal p, in particular, there is only one copy of
{p}. In that case, a complete unit step will produce a connection graph with no
occurrences of p (nor of p). If the initial connection graph is full, then every unit
clause is fully linked. The next lemma says that if semi-fullness is maintained
during a deduction, unit clauses created by ordered cg-resolution steps will be
fully linked.

Lemma 8. Let G be a semi-full connection graph, and suppose that the unit
clause {p} is the resolvent of an ordered cg-resolution step. Then {p} is fully
linked.

Proof. The literal p cannot be the head of either parent clause since the res-
olution step is ordered. Since the connection graph is semi-full, occurrences of
p in the parents must be fully linked. Hence the inherited occurrence is fully
linked. O

Lemma 9. Let {p} be a fully linked unit clause in a semi-full connection graph.
If a complete unit step is performed using {p}, then the resulting connection
graph is semi-full.



Proof. Since p is fully linked, it cg-subsumes every clause that contains p. Delet-
ing such clauses eliminates only links to literals in the deleted clauses, so the
property of all non activated links being present is preserved. Thus we must show
that if, say, the clauses A and B have been resolved upon — i.e., if their heads
were linked but the link is not present — then the resolvent C' is present. If it is
not present, then it must have been subsumed by {p}. Then p must occur in A or
in B, say in A. But then A is subsumed by {p} and so would have been removed.
Thus the connection graph produced by subsuming all clauses containing p is
semi-full.

The proof that a semi-full c-graph results from resolving the unit {p} with
every clause containing p and then subsuming the parents is similar. O

The next two theorems prove that unit preference ordered cg-resolution is
strongly complete.

Theorem 3. Let G be a connection graph with the full set of links and suppose
that the literals of G have the atom ordering Then any sequence of unit preference
ordered resolution steps in which tautologies are not used as parent clauses will
eventually terminate with a semi-full connection graph.

Proof. An ordered cg-resolution step deletes the activated link. Any new link
created by the step will precede the activated link, and thus the link multiset
is smaller after the cg-resolution step. The same is true after any complete unit
step since such a step eliminates links without adding any. Since the multiset
ordering on link sets is well founded, termination is assured. To complete the
proof, we must show that the resulting connection graph is semi-full.

The initial connection graph has the full set of links; in particular, it is
semi-full. Lemmas 7 and 9 ensure that ordered cg-resolution steps and complete
unit steps preserve semi-fullness. The only other operations, and thus the only
operations that might produce a connection graph that is not semi-full, are
applications of the pure rule. An ordered cg-resolution step can make pure only
a head literal, and the pure rule is not applied to such clauses. Unit resolution
steps also cannot produce pure clauses because the resolvents have the links from
the parents, which are then removed.

The cg-subsumption steps can produce pure clauses. Deleting them will not
change the property that any missing link has been resolved upon, so all that
needs to be proved is that the resolvent of every activated link is present. So
suppose that A and B are clauses whose heads were linked, and that that link is
not present. We must show that the resolvent C' is present. If not, i.e., if C' has
been deleted by application of the pure rule, then some literal, say ¢, other than
the head of C is pure. Note that g occurs in one of the parents, say A. Since the
head was resolved upon, ¢ is not the head of A. Thus, before the subsumption
deletions were made, ¢ was fully linked in both A and C. Thus, the deletions
would have made both occurrences of ¢ pure. Hence, A would also be deleted by
the pure rule. O

The proof method for the next theorem is due to Bachmair and Ganzinger [2];
the proof presented below is a refinement of an elegant exposition by Paliath



Narendran. An interpretation is described as a set of atoms, indicating that
atoms in the set are assigned true and atoms not in the set are assigned false.

Theorem 4. Let G = (S, £) be an unsatisfiable semi-full connection graph that
is saturated with respect to unit preference ordered resolution. Suppose that the
literals of G have the atom ordering. Then S contains the empty clause.

Proof. Suppose to the contrary that S does not contain the empty clause. Let
§ = {C1,Cs,...,Ci}, where C; < Cj if i < j8. For each Cj, iteratively define
an interpretation I;, where Iy = ), and the interpretation I; is constructed from
I;_; as follows: I; = I;_; if the maximal literal in C; is negative or if I;_; satisfies
C;. Otherwise, I; = I;_1 U {q} where ¢ is the maximal literal in C;. In that case,
C; is said to produce q. Let I = Ij,.

Now, since S is unsatisfiable, there is a first clause C; (necessarily non-empty)
that is falsified by I. Then the head of C; cannot be positive, since if it were,
the fact that I falsifies the other literals in C; would mean that I would have
assigned true to the head. Let P be the head of C;. Then p € I, so there must be
some earlier clause C; that produced p. All other literals in C; are false since
otherwise C; would not have produced p. This implies that neither C; nor Cj is
a tautology; in particular, every non-head literal in both clauses precedes p and
is different from p and is falsified by I. Thus, {pc;, B¢, } is an ordered link that is
not to a tautology. Hence, it must have been activated, and since G is semi-full,
its resolvent C' must be present. Moreover, C is falsified by I, and C' precedes
both C; and Cj, contradicting the fact that C; is the first clause falsified by
1. O

Since the connection graph is semi-full at every stage in the proof, there is no
difference between deleting ordered links upon activation and simply marking the
links as used. As a result, unit preference ordered resolution and unit preference
ordered cg-resolution are identical as inference rules at the ground level. The
next theorem is an immediate corollary of the last two.

Theorem 5. Unit preference ordered resolution and unit preference ordered cg-
resolution are strongly complete at the ground level. O

3.5 Remarks

Theorem 4 is based on the assumption of saturation. In combination with Theo-
rem 3, it can be seen that, as with ordered cg-resolution alone, saturation criteria
need never be tested: The supply of ordered links is simply guaranteed to run
out, regardless of the order in which they are selected. Note also that the clauses
retained for bookkeeping play only that role to enable the proof of Theorem 4.
Once the head literal becomes pure, the clause can never be used in a subse-
quent inference. As a result, deleting the clause would not have any impact on
the remaining steps in the deduction.

8 Technically, S is a set of clause occurrences, but the proof is identical with or without
clause repetitions as long as the clauses are listed in increasing order.



The strong completeness of ordered resolution depends on two properties:
termination and the presence of the empty clause upon termination. Termination
follows easily from the fact that activating an ordered link reduces the set of
(not yet activated) ordered links in the multiset ordering, which is well-founded.
However, if a non-ordered link to a unit clause is activated, the set of ordered
links could increase in the multiset ordering. This problem is solved by deleting
the subsumed parent. But that deletion creates a new problem: The deleted
parent might be the resolvent of an ordered link, which in turn invalidates the
argument in Theorem 4. That is, the clause C, which is the resolvent of clauses
C; and Cj, might not be present. Thus, the complete unit step is crucial for the
proof if not for the result itself.

The reader may find a semantic tree viewpoint useful intuition. Consider the
semantic tree 7 for a clause set S corresponding to a given atom ordering. A
complete unit step involving clause {p} corresponds to cutting out the level of T
that contains p’s and p’s; pairs of branches that differ only in that one contains
p and the other p are combined in the resulting tree 7.

The tree 7" is still closed for the resulting clause set S’. Consider two branches
By in T that are identical except that B contains p, and B, contains p. If
there is a failure node above p, then that failure node is in the same spot in
T'. Otherwise, the unit clause is falsified at p. If B, fails below p, so does the
combined branch in 7. If B, fails at p, it fails on some clause C containing p.
Then the parent of p and p is an inference node in 7 and a failure node on the
combined branch in 7”; it falsifies the unit resolvent of {p} and Cj.

The order in the tree is not changed, so the operation is compatible with
ordered resolution steps. Moreover, the tree gets smaller, ensuring termination.

Theorem 5 provides an interesting strong completeness result. For connec-
tion graphs, the invariance of the semi-full link condition is crucial. A semi-full
graph is one in which the only missing links are represented by the resolvents
due to their activation. In other words, no links are not present due to the ab-
sence of inheritance, which is the important search pruning tool of unrestricted
cg-resolution. Somehow, link deletion is limited to recording what has been ex-
plicitly done and thus essentially prohibits duplication of steps. Thus the progress
for cg-resolution is limited but is potentially more significant for ordered resolu-
tion.

We conclude with a few remarks on the first-order case. In standard first-
order resolution, a clause is unaffected when it becomes the parent of a resolvent,
whereas in cg-resolution one of its links is deleted. This lifts only from ground
proofs in which every instance of the activated link is deleted. Nevertheless,
Theorem 4 seems to lift for ordered clause set resolution with little modifica-
tion. Of course, unit resolutions cannot be pursued indefinitely as in the ground
case, but must be alternated with rounds of ordered resolution in some fair way
(see [16]). However, subsumptions by units and of parents by unit resolvents can
be employed, since all instances of these operations would have been done in the
ground proof.
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