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Abstract. We present an efficient tableau calculus for Dummett Logic.
The object language and the rules are tailored to improve the treat-
ment of the negation with respect to the known calculi. Both the object
language and the rules have been inspired by the Kripke semantics of
Dummett Logic. To prove that the calculus characterizes the logic at
hand, we give soundness and completeness theorems by using machinery
derived from the Fitting’s techniques.
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1 Introduction

In this paper we present a tableau calculus, we call it T, for propositional Dum-
mett Logic. The object language of [13] is extended with a new sign that takes
into account the semantics of the negation in the Kripke frames characterizing
Dummett Logic.

Dummett Logic, introduced in [10], is also known as G6del Logic, since Godel
studied finite approximations of Dummett Logic ([15]), and Lc, because semanti-
cally characterized by linearly ordered Kripke frames. Dummett Logic is perhaps
one of the most studied intermediate logics in both predicate and propositional
versions. It has been considered by people interested in intermediate logics [11,
16,9,1,2,12], many-valued and fuzzy logics [5,7,6] and computer science [3, 4].

Many calculi for this logic have been given in recent years. In particular,
in [12] a deterministic calculus for the implicative language is provided and in
[7], by a semantical approach, a calculus of hypersequents in which the axioms
express the linearity of the models for the logic is given. In contrast to [7], in
[1], [13] and here it is not used the fact that, if a wif H is not in the logic then
it is falsified on a model with a number of elements that is at most the number
of propositional variables in H plus one. We emphasize that the calculi of [12,1,
7] do not take into account computational complexity and the proofs with such
calculi may have exponential depth.

The calculus T we present in this paper and the tools we use, are derived from
those of [1] and [13]; to prove that our calculus characterizes Dummett Logic, we
give a semantical proof of Soundness and Completeness theorems. Finally, we
point out that the rules and the object language of T can be explained taking



into account that the Kripke semantics of Dummett Logic is based on linearly
ordered Kripke frames.

2 Basic Definitions

In this section we give notions and notation we will use in the paper. A detailed
presentation of all notions regarding intermediate logics and Kripke models can
be found in [14] and [8].

Given an enumerable set of propositional variables and the connectives =, A, V
—, a well formed formula (wff for short) is defined as usual. Given a wif A, we
say that —A is a negated wff. We use the term atom as synonym of propositional
variable.

In the sequel Int denotes both an Hilbert-style calculus for Intuitionistic
Propositional Logic and the set of intuitionistically valid wifs.

In this paper we are interested in propositional Dummett Logic (Dum), also
known as LC (Linear Chain), which can be axiomatized by adding to any axiom
system for Int the axiom scheme (p — q) V (¢ — p)-

A well known semantical characterization of Dum is by linearly ordered
Kripke models. We call model any Kripke model K = {P,<,I}), where (P, <) is a
linearly ordered set and IF is the forcing relation, defined between elements of P
and propositional variables with the property that, for every I'; A € P such that
I' < A, and every propositional variable p, if I' IF p then A I+ p. The forcing
relation is extended to the wifs as follows:

—I'FAABiffI'lr Aand I' I+ B;

I'rAvBiffI'lF Aor I''lF B;

— I'lt A — B iff, for every A € P such that I' < A, A¥ Aor Al B;
— I'lF = A iff for every A € P such that I' < A, A ¥ A.

From the above definition it is easy to prove that if I' IF 4 and I' < A then
Al A

Let I' be a world of P and let A be a wff, if I" IF A we say that A is forced
in I' (or in a world of K). A wif A is valid in a model K = (P,<,Jh) if ' IF A
for all I' € P. Dum is the set of wffs that are valid in every model.

Let K = (P,<,IlF) be a model and let I, A be members of P. By I' < A we
mean that I' < Aand I' # A, and by A > I" we mean I' < A. Moreover, A is
the immediate successor of I' in K = (P,<|[b) iff ' < A and, for all @ € P such
that ' <O < A, I' = O or A = O. Finally, we call root of K = (P,<|JF) an
element 7" (if it exists) such that, for every I' € P, T < I.

In Section 4 we present the tableau calculus T for Dum whose object lan-
guage is built on the set of signs {T,F,F., Tc1} and on the set of wifs. Every
member of the object language is a signed wff (swff for short) whose syntax is
SA, with § € {T,F,F., Ta1} and A wil.

The length of a wif A (respectively swif SA), denoted by |A| (respectively
|SA|), is the number of symbols in A (respectively the number of symbols in A
plus one). The length of a set S of wffs or swifs, denoted by |S|, is the sum of
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the lengths of its elements. Given two wifs or two swifs A, B with A = B we

mean that A and B are syntactically identical. Finally, given a set S of wifs or

swils, by Pv(S) we mean the set of the atoms appearing in the members of S.
We recall the following theorem (see [14]) that we will use in Section 4:

Theorem 1. Let V a set of propositional variables and let K = (P,<,|IF) and
K' = (P, <,IH) be two Kripke models such that for every p € V and for every
e P, 'k piff 'V p. Then, for every wff A such that Pv(A) CV, I' Ik A iff
i+ A.

3 Related Works

The main difference between T and the calculus Dum-T given in [13] concerns
the rules to treat the negated formulas. In T we have introduced the sign T
that appears in the conclusion of the rules that treat the swifs of the kind F(—A),
F.(A — B) and F.(—A). Depth and width of the deductions of T are less than
those of the deductions obtained with the calculus Dum-T. We emphasize that
one of the calculi for Dummett Logic presented in [1] treats the case F(—~A) with
the rule

S,F(=A)
SF.(oA) NEW-F-

where the sign F is changed in F. but the wif is left unchanged, and the rules
for the swifs F.(A — B) and F.(—A) are

SELSPINEW-F, — SLCUNEW-Fe.

The calculus in [1] is not efficient, but these rules could be put in the calculus
given in [13]. The resulting calculus, we call it Dum-T", would not be as efficient
as T when the negated formulas are treated in the deductions. By introducing
the sign T the depth of the deductions obtained with T is less than the depth
of the deductions obtained with Dum-T. A further advantage of using T¢; in T
is that in the conclusions of the rules treating the swifs F¢(—A) and Fc(A — B)
appear the sign T} whereas in the rules above appear the sign T; the rules
for T¢1 are simpler than the corresponding rules for the sign T, where simpler
formally means that, given a degree measure on swifs, the former lower the
degree of the premise more than the latter (e.g. compare the rule Ty — with
the rules in Table 3 and in particular with T ——).

The rule F — in Table 4 is derived from the rule F — — of Table 1 introduced
in [1] for calculi using the signs T, F and F., and also used in the calculus given
in [13]. The rule F — — treats both the swils of the kind F(4 — B) and the
swifs of the kind F(—C). The number of sets of swifs in the conclusion of F — —
depends on the cardinality of Sgp_,—. Our calculus T has one more sign and five
more rules than the calculi given in [1] and [13]. The new sign T is introduced
to treat the swils of the kind F(—=C) with the new rule F—, which conclusion
is a configuration with one set of swifs. The other four new rules handle the
Ta-swifs. In this way we avoid to treat the swifs of the kind F(=C) together



S,F(A1 — B1),...,F(A, = B,),F(=C1),...,F(=Cn)
Se,Sp_,, TALFBy|...|Se, Sz, TA,,FB,|S, Sptl , TC|...|Se, S, TCm,

F——» F——

F—

Sc. = {TA|TA € S} U{F:A|F.A € S} is the certain part of S;
Sr—- = {F(A1 = Bi1),...,F(A, = B,),F(=Ci),...,F(~Cp)} is not empty

St =Sp-\{F(4; = B;)} for i =1,...,n and Sp*’_ = Sp,-\{F(~C;)} for i = 1,...,m

Table 1. The rule F—- of the calculi of [1] and [13]

with the swifs of the kind F(A — B). As a result we get that when the F—-swifs
occur in the deduction, the tableaux of T are smaller than the tableaux of the
calculus given in [13]. The rule F- uses the fact that the “possible worlds” of
every Kripke model K for Dum are linearly ordered. If a world I" does not force
the wif —C, then there exists a world A > I" such that A IF C'. Now, the possible
worlds of K are linearly ordered, thus no world © of K can force =C, because
(i) if © > A then O IF =C and O Ik C, absurd; (ii) if @ < A, then A IF C
and A IF =~C, absurd. Thus, when the possible worlds of a Kripke model K are
linearly ordered, if a world A forces a wff A, then no world of K forces - A
and we can conclude that —=—A is forced everywhere in K. In the Completeness
Theorem we show that with a careful construction of the counter model, the
information given by the conclusion of F— is sufficient to get the completeness
of T.

4 The Calculus

The rules of the calculus T are given in Tables 2-4. The meaning of the signs T, F
F. and T used in the tableau calculus T is explained in terms of realizability
as follows: given a model K = (P,<,IF) and a swif H, we say that I" € P realizes
H, and we write I' > H, if the following conditions hold:

if H = TA then I' I A;

if H=FA then I' ¥ A;

if H=TF.A then I' I =A4;

. if H=TaA then I' IF =—A.

Ll

We call main set of swffs of a rule the set of swifs that are in evidence in the
premise (e.g., the main set of swffs of the rule T — Atom is {TA, T(A — B)}
and the main set of swffs of the rule F — is Sp_, = {F(4; — By),...,F(4, —



B,)}, n > 1). When a main set of swffs of a rule is of the kind {H}, then we
call H main swff of the rule.
Now we introduce some notions that will be used throughout this paper.

Definition 1. 1. A world I" of a model K realizes a set S of swffs (and we
write I' > S) iff I realizes every swff in S. A set S of swffs is realizable iff
there exists a world I' of a model K such that I'1> S.

2. A configuration s any finite sequence Sq|...|S;|...|Sp M >1and1 <j<
n), where every S; is a set of swffs; a configuration is realizable iff at least
a S; is realizable; we refer to S; as an element of Si|...|Sy.
3. A set S is contradictory if one of the following conditions holds:
—TAe€S and FA € S
—TA€eS and FcA€ S;
—F,AeS and TqAeS.

4. A proof table of T is a finite sequence of configurations Cy,...,C, (n >1),
where the configuration Ciy1 is obtained from C; = Si|...|S;|...|Sk (K >1
and 1 < j < k) by applying to each non-contradictory S; of C; a rule of
the calculus T and taking in Ciy1 every S; of C; which is contradictory or
containing signed atoms only. Moreover, a proof table of T is closed iff all
the sets S; in its final configuration C,, are contradictory. Finally, the depth
of a proof table of T is the number of its configurations.

5. A proof of a wff A in T is a closed proof table of T starting from the con-
figuration {FA}.

6. A finite set of swffs S in the object language of T is consistent iff no proof
table of T starting from S is closed.

7. Let U be a main set of swils. We call extension(s) of U the set(s) of swffs
Rs--- RE (n > 1) such that Ry|...|RY is the configuration obtained by
applying the rule of T related to U to the set of swffs U, where S in the
premise of the rule is taken as the empty set.

We emphasize that for our purposes the initial configuration of every proof
table of T has one element. Moreover, all the rules are applied in a duplication-
free style: a rule R with main set of swffs {Hi,...,H,} applies to a set U
of swifs if it is possible to choose S and Hiy,...,H, in such a way that U =
SU{Hy,...,H,}, with S = U\ {Hy,...,Hy,}. This implies that the main set
of swffs does not reappear in the conclusion of the rule. In the Completeness
Theorem our construction of the counter model uses non closed proof tables of T
which are built by applying the rules in the duplication-free style. To emphasize
the choice of {Hi,...,Hy,} we say that R is applied to {Hi,...,H,} and that
{H1,...,H,} is treated by R.

In Table 5 we give an example of deduction with T (where ambiguity can arise
the swifs treated by the rules are underlined). We emphasize that this deduction
is smaller than the one obtained with the calculus Dum-T given in [13].

Now let us define the complexity measure deg on wifs and swffs we will use
in this paper to study the computational complexity properties of T.



S, T(AAB) . S, F(ANB) SF(ANB) o STa(AAB) .
S, TA,TB S,FA[S,FB ' S F.A[S,F.B " S TaA TaB °
S, T(AV B) T S,F(AVB)FV S,Fc(AV B) S,Ta(AV B) Ty
S, TA|S,TB S,FA,FB S F.AF.B °' S TaAlS,TaB °
S,F.(A — B) S, Tai(A — B)
see Table 3 see Table 4 STLAF.B © — S, FLAS, TclBTd —
S, T(~A) S, F(-4) S, Fe(-4) S, Ta(=A)
S, F. A T S TqA F- S TaA Feo S, F.A Tem

Table 2. The T calculus

WT — Atom with A an atom

S, TA, TB
S, T((AA B) - C) S, T(=A - B)
STASBo0) Y NS Tad)s,TB T

S, T((AV B) - C)
S, T(A—p), T(B—p), T(p— C)

T — V with p a new atom

S, T((A— B) = C)
S,F(A—p), T(p— C), T(B —p)|S, TC

T —— with p a new atom

Table 3. The rules T —

Definition 2. 1. The degree of A, denoted by deg(A), where A is a wff,
defined as follows: if A = p, where p is an atom, then deg(p) = 0; if A
a — B, then deg(a — B)=deg(a)+deg(8)+1; if A = aAB, then deg(anf) =
deg(a) + deg(B) + 2; if A= aV B, then deg(aV B) = deg(a) + deg(B) + 3;
if A= —a, then deg(—a) = deg(a) + 1;

2. The degree of SA (where S € {T,F,F.,Ta}), denoted by deg(SA), coin-
cides with the degree of A.

3. The degree of a set S of swffs is the sum of the degrees of its elements.

I s

By the following two propositions we get that the depth of the deductions of
the calculus T is linearly bounded by the length of the formula to be proven.

Proposition 1. Let S be a set of swffs, deg(S) < 3|S]|.

Proof. We prove that the complexity of every wif A is bounded by the length of
A. The proof is by induction on the number of connectives in A.
Basis: if the number of connectives is zero then A = p, with p an atom, and we



S,F(Al — Bl), e ,F(An — Bn)
S.,SL_, TA:,FBi|...|Sc, Sg_,, TAn, FB,

Sc ={TA|TA € S}U{FA|F.A € S} U{TaA|TaA € S} is the certain part of S

F—

Sr— = {F(41 = Bi1),...,F(A, = By)} is not empty;
Sk, =Sr_\{F(4; = B;)} fori=1,...,n.

Table 4. The rule F—

F((((==D = ~C) = B) V =C) V =D)
F( (—|ﬁD — —|C) — B) \% _'C),F(ﬁD)
(
(

(
(-=D — =C) — B),F(=C),F(-D)
(

F
F

F-

F((-—D — -C) = B),TaC, TaD
T(ﬂﬂD — —10), FB, TaC,TaD
F(=—D),FB,TC, TaD | T(~C),FB, T C, Te D
Tai(-D), FB, TaC, TaD | FC,FB, TaC,TaD -
FoD,FB, ToC, T D | Closed ol

Closed | Closed
Table 5. an example of proof table of T

F—

F-| T~

=

have deg(p) = 0 < 3|p| = 3;

Step: suppose the proposition holds for the swifs A’ with n — 1 connectives at
most. Let us consider the case where A = BV C, then deg(B V C) = deg(B) +
deg(C) + 3. By induction hypothesis deg(B) < 3|B| and deg(C) < 3|C]|, thus
deg(BV C) < 3|B|+3|C|+3 =3(|B|+|C|+ 1) = 3|BV C|; the other cases are
similar. O

Proposition 1 establishes that function deg linearly grows in the length of
the argument.

It easy to check that for every rule of the calculus T different from T ——
with main set of swffs U, for every extension Ri; of U, deg(Ré;) < deg(U)
holds. On the other hand, the degree of the extension R}, = {F(A = p), T(p —
C), T(B — p)} of the main set of swffs U = {T((A - B) - C)} of T »— is
equal to deg(U) + 1. Hence, by applying T —— to a set of swifs S, the degree
of one of the sets in the obtained configuration is greater than the degree of S.
In the following proposition we show that in every branch of every proof table of
T the number of times that the rule T —— can be applied is linearly bounded
by the degree of the first configuration and thus the number of times that the
degree of a set of swifs is increased by one is linearly bounded by the length of



the first configuration and this implies that in every proof table of T the degree
of every set of swifs is always linearly bounded by the length of the wif to be
proved.

Proposition 2. Let S be a set of swffs. In every branch of every proof table of
T starting from the configuration S, the rule T —— is applicable deg(S) times,
at most.

Proof. The proof is by induction on deg(S).

Basis: If deg(S) =0, then S = {SA}, with SA a signed atom, and the proposi-
tion trivially holds.

Step: Let us suppose the proposition holds for every set U of swifs such that
deg(U) < n, and let deg(S) = n. The only non trivial case occurs when the rule
T —— is applied to S = 5" U{T((4 — B) = C)}. In this case we get a config-
uration with two sets of swffs, namely S’ U {F(A — p), T(B — p), T(p = C)}
and S’ U {TC}. From the latter set the assertion immediately follows by the
induction hypothesis. From the former set we have

deg(S) = deg(S") + deg(A) + deg(B) +deg(C) +2=n

and the number of times the rule T —— is applied to S’ U{F(A — p), T(B —
p), T(p — C)} coincides with the number of times it is applied to S'U{TA, Fp, T(B —
p), TC} and by induction hypothesis this number is bounded by

) +
+ deg(C)

deg(S' U {TA,Fp, T(B — p), TC}) = deg(S’
+ deg
= deg(S'
+ deg
< n.

N>

+ deg
B—p
+ deg(A) +

B) + deg(C) +1

(4
)

—~

Thus the number of times that the rule T —— is applied to every proof table
of T starting from the configuration S is deg(S) = n, at most. O

Now, using the last two propositions, the fact deg(S.) < deg(S) and the fact that
for every main set of swffs U different from {T((A — B) — C)}, deg(R{;) <
deg(U), for every extension R}; of U, we get:

Theorem 2. The depth of the deductions in T is linearly bounded by the length
of the wff to be proved.

We start to discuss the soundness of T. To this aim we give the following
proposition:
Proposition 3. If a set of swffs S is contradictory, then S is not realizable.
Proof. Let us suppose that given world I" of a model K, I'>S holds. If T;;A € S
and F. A € S, then by definition of realizability and by the meaning of the signs

Tq and F. it follows I' IF =—=A and ' IF = A, and we get a contradiction. The
other cases are similar. O



The following proposition is the main step towards the soundness of T and
and it states that for every rule, if the premise is realized, then the configuration
in the conclusion of the rule is realized.

Proposition 4. Let S be a set of swffs and let I' be a world of the model
K = (P,<|h). If I'> S, then the configuration obtained by applying to S one of
the rules of T is realized in a world of a, possibly different, model K*.

Proof. The proof requires an analysis of the rules of T. We will consider a few
significant rules.

— The rule F—: Let us suppose that S contains at least a swff of the kind
F(A — B). Now, let U = {F(A —» B) | F(A —» B) € S}. Moreover, let
Sk = {F(41 = B1),...,F(A, = Bp)} (with n > 1) be any subset of
U. Since the worlds of K are linearly ordered, by definition of realizability,
there exists a permutation p of {1,...,n} and a sequence (with possible
repetitions) Ay, ..., A, of worlds of K such that, fori=1,...,n—1, A; <
Aiprandfori=1,...,n, A; Ik A,y and A; ¥ B,;). Thus Ay, the minimum
world of the sequence Ay, ..., A,, realizes Sp_,, and hence every its subset
Sl‘;(iz. Moreover A; realizes TA,1), FB,n) and the certain part S. of S.

F—>
the rule F —, we get the assertion.

— The rule T ——: let us suppose that T((A — B) — C) € S; by definition
of >, I' IF (A - B) - C. Now, let us consider the model K* = (P, <,IF)
with the forcing relation I done as follows:

1. for every propositional variable ¢ € Pv(S) and for every world A € P,
AlF qiff Alk g
2. Let p be a propositional variable such that p ¢ Pv(S); for every A € P,
AlF piff AlF B;
3. for every variable 7, such that r # p and r ¢ Pv(S), and for every world
Ae P, A¥ r.
Let > be the realizability relation defined with respect to IH like we did for
> with respect to IF .
By Theorem 1 it follows that I' IF C or I' |}’ A — B.If I' ¥ A — B then
1. I'' F(A - p), because there exists A € P such that A > T", A+ A,
AW B and, by definition of IF', A ¥ p;
2. ' T(p = C), because if A € P is such that A > I' and A IF p then,
by definition of IF', A I+" B and, since Alt' (A - B) - C, AIF C .
3. I'' T(B — p), by definition of I+

— The rule F-: let us suppose that F(—A) € S; by definition of >, I' ¥ - A.
This implies that there exists a world A € P such that A > I" and A I+ A.
Now, by the linearity of the models we get that for every A € P such that
A>T, AW —A and this implies that I' IF =—A; hence ' > T A.

— The rule F.(A — B): let us suppose F.(A — B) € S; by definition of >,
I' I =(A — B). This implies that for every world A € P such that A > I',
AW A — B. Hence for every world A € P such that A > I', there exists
a world A € P such that A > A, AIF A and A ¥ B. By the linearity of

Since S, flASN TA,1), FB,) is one of the elements in the conclusion of



the models we get that for every world A € P such that A > I') A ¥ -A
and A W B; by definition of negation we have I' IF =——A and I' I =B that
implies I'> T A and I' > F.B.

— The rule Tai(A — B): let us suppose Ta(A — B) € S; by definition of >,
I' F =—=(A — B). This implies that that for every world A € P such that
A>T, AK¥F -(A — B). Hence for every world A € P such that A > I,
there exists a world A € P such that A > A, Al A — B and this implies
that for every world @ € P such that © > A, ©® ¥ A or O It B. Now, if
O Ik B holds in some world @, then by the linearity of the models we get
that for every world A € P such that A > I') A ¥ =B and by definition
of negation we get I' IF == B and I' > Ty B. On the other hand, if © I+ B
never holds, then © ¥ A holds for every world © and by the linearity we get
I'lF-A and I'> FA.

— The rule Tg(—A): let us suppose Te(—A) € S; by definition of >, I' IF
———A. This implies that for every world A € P such that A > I') A ¥ —-—A.
Hence for every world A € I' such that A > I', there exists a world A € P
such that A > A, AIF - A. Now, by using the linearity of the models and by
definition of negation, we get A Ik = A and I' IF = A. This implies I' > F A.

O

Now we can give the Soundness Theorem for the calculus T with respect to
the Kripke semantics for the logic Dum:

Theorem 3 (Soundness of T). If there exists proof of a wff A in T, then A
is valid in every model.

Proof. Let us assume that the assertion does not hold, then there exist a model
K = (P,<,J}) and a world I" € P such that I' ¥ A. Then I' > FA and there
exists a closed proof table of T starting from the configuration {F A}; hence, by
the previous proposition, its final configuration is realizable. But this means that
a contradictory set is realizable, contradicting Proposition 3. O

Now we start to discuss the completeness of T. The proof of the Completeness
Theorem consists of showing that there exists a procedure allowing to build a
model that realizes S for every consistent set of swffs S, that is, having no closed
proof table of T. Thus the proof emphasizes that the set of all non closed proof
tables of T starting from S has enough information to build a model that realizes
S.

Given a consistent set S, we are going to present a method to build a model
using a single proof table of T. In the last configuration of such a proof table of
T the sets either are contradictory or contain signed atoms only. Qur technique
to build the Kripke model K(S) is similar to the one used in [1], which is an
adaptation of Fitting’s one described in [14]. The construction has two stages.
In the first stage we construct the sequence {S;}ic, of sets of swils and the
set of swifs S, called the node set of S. S will be the root of the model K(S)
and the signed atoms belonging to it will determine the forcing relation in S. In



the second stage we construct the successor set of S. The model K (S) will be
constructed by iterating the two steps on the new element, and so on.

In the following we call regular rule any rule of T different from F —. If U
is a set of swifs and a regular rule applies to U by taking S = () in the premise
of the rule, then we call U regular main set of swffs; if U = {H} with H swif,
and U is a regular main set of swffs, then we call H regular swif. Now we start
the construction.

First stage: Let Ay,..., A, be any listing of swifs of S (without repetitions
of swifs). Starting from this enumeration we construct the following sequence
{Si}icw of sets of swifs.

- S() = S;
— Let Sz = {Hl, .. .7Hu}; then Si+1 = UHJ-ESi U(Hj,i), where,
setting S; = U(Hy,i) - --UU(H;-1,i) U{Hj,. .., H,}, we have:

1. if Hj is a regular swif, then U(H}, 1) is any extension Ry, of H; such that
(S;- —{H;}) URH, is consistent;

2. if Hj is of the kind T(A — B), with A an atom, and TA € S; then U(H;,i) =
{TB};

3. if Hj is a signed atom or of the kind F(A — B) then U (Hj,i) = {H;}.

Now, by induction on i > 0, it is easy to prove that if S is consistent then
any S; is consistent. Moreover, since S is finite there exists an index j such that
S; = S; for any ¢ > j. Let u be the first index such that S, = Sy41. We call S,
the node set of S and we denote it with S. Moreover we call {Sp,...,S,} the
sequence generating S.

Second stage: If S contains a swif of the kind F(4 — B), we get the successor
set U of S by applying the rule F— to S, choosing as U any consistent set in
the resulting configuration and taking Sg_, = {H|H € S and H is of the kind
F(A — B)}.

Given a consistent set of swifs S, we define a structure K(S) = (P,<,I}) as
follows:

1. The root of K(S) is a node set S of S;

2. For any I' € P, if I has the successor set U then U, the node set of U, is a
member of P and U is the only immediate successor of I in K(S); if I has
no successor set then let & = {SA|SA € I', with S € {T,F.,Ta}};® =%
is the node set related to &, it is member of P and the immediate successor
of I';

3. < is the transitive and reflexive closure of the immediate successor relation;

4. For every world I" € P and for any propositional variable p, I IF piff Tp € T
or T is the final world of K(S) and Tap € I.

From the above definition it follows that K(S) = (P,<,IF) is a finite model
if S is finite. Moreover, we point out that & contains signed atoms only, none
signed with F, and & is the final world of K(S).

The following lemma is the main step towards the proof of the Completeness
Theorem:



Lemma 1. Let S be a consistent and finite set of swffs and let K(S) = (P,<,IF)
be defined as above. Then, for every I' € P and for every swff H € I3, with I;
any element of the sequence Iy, ..., I, generating I', I' > H in K(S).

Proof. The proof is by induction on the degree of the swifs, measured with
respect to the function deg.

Basis: If deg(H) = 0, then H = Sp, with p an atom and § € {T,F,F., Ta}
and, by construction of K(S), Sp € I'. If S = T then, by definition of forcing
in I, T IF p, therefore I > Tp. If S = F then I is not the final world of K(S)
and since I is consistent, Tp ¢ T'; by definition of forcing, I" ¥ p, which implies
I'>Fp. If S = F, then, by construction of K (S), F.p belongs to every world A of
K(S) such that I < A; since every A is consistent then Tp ¢ A and Tap ¢ A,
thus A ¥ p and this implies A > Fep. If S = T then, by construction of K(S),
Tap belongs to every world A of K(S) such that I' < A. Thus, by definition of
forcing in the final world, @ IF p; this implies that AW —p for every A > I' and
hence I IF ——p, that is I" > Tep.

Step: Let us suppose the assertion holds for every swif H' such that deg(H') <
deg(H). The proof goes on by cases according to the structure of H. We give
only some illustrative examples.

— Case H = F(A = B); if H € I, then, by construction of K(S), H € I'; we
point out that if H € @, with © € P, then H € ¥ or TA € ¥ and FB € ¥,
with @ successor set of ©. Thus, since H € I, there exists a world A € P
such that A > I', H € A, TA € A and FB € A, with A successor set of
A. Since A is the first element in the sequence generating A, by induction
hypothesis 4> TA and A > FB hold, thus we get I > F(4 — B).

— Case H = F.(A — B);if H € I; then, by construction of K(5), {Ta4,F.B} C
I'; 11 and, by induction hypothesis, T>TqgAand T>F.B ; this implies that
in the final world @, & IF ——A and & ¥ B. From & IF ——A we get & I- A
hence ® ¥ A — B and I' IF ~(A — B); this means I > F.(4 — B).

— Case H = T((A — B) = C); we must prove that, for every A € P such that
A>T, if A+ A — Bthen Al C.If H € T then by construction of K(S)
either (i) TC € I;14 or (i1) F(A — p), T(B — p), T(p = C) € ;41 In the
former case, by induction hypothesis, we immediately get I'>T((A — B) —
C). In the latter case, by induction hypothesis, we get I’ ¥ A — p; then there
exists A € P such that A>T, Al- Aand AW p.Since ' I+ B = p, A¥ B
follows and thus A ¥ A — B. If there exists A € P such that 4 > A and
A IF B then, since AIF B — pand AlF p = C, we get A IF C; this implies
I'>T(A— B)— 0).

— Case H = F(—A); if H € I3 then, by construction of K(S), TaA € [jy1.
By induction hypothesis I" IF == A, hence I' ¥ —A that means I' > F-A.

— Case H = Ty (A — B);if H € I; then, by construction of K(S), FcA € T4
or TqB € Iy,. If F.A € Iy, then, by induction hypothesis, I" IF A and
thus I’ IF A — B; this implies that for every A € P such that A > T,
AW —(A — B) that is ' IF ==(A — B) and I' > T (A — B). On the other
hand, if Te1 B € Iy then, by induction hypothesis, I'>T¢g B and I IF =—B;



this implies that the final world & of K(S) forces  IF ——B and hence
& |F B; this implies & I+ A — B. Thus, for every A € P such that A > T,
AW —(A = B) and, by definition of negation, we get I" IF =—~(A — B), that
is I'> Ta(A — B).

O

Theorem 4 (Completeness of T). If A is valid in every model, then there
exists a closed proof table of T starting from the configuration {FA}.

Proof. Suppose the assertion is not true, then {F A} is a consistent set of swifs.
By Lemma, 1 this implies that F A is realizable and we get a contradiction. O

We highlight that in the construction of the model K (S) we use the following
strategy: a successor set U is built by the rule F— from a node V considering all
the F—-swffs in V. This means that if there exists a closed table T for a set S
of swffs, then there exists a closed table T’ where the rule F— is always applied
considering all the F—-swffs in its premise. This implies that we can test the
consistency of a finite set S of swifs building only one proof table of T; namely
the one where the rule F— is applied to a set S’ of swifs only when no other
rule is applicable to S’ and considering all the F—-swffs in S’.

Hence the construction related to the Completeness Theorem suggests that,
to decide if a set of swils I" is consistent, a decision procedure can shrink the
search space of all proof tables of T starting from I to the search space containing
just one proof table of T, the one built using the following strategy:

(a) The procedure picks a regular main set of swffs U C I', if any, and applies
to I' the regular rule related to U. The regular rules are invertible, thus
the procedure does not need a backtracking mechanism. Hence, if it is not
possible to find a closed proof table of T starting from I' by applying the
regular rule related to U, then a closed proof table of T for I' does not exist;

(b) If Step (a) cannot be applied, then, if I" contains a swif of the kind F(A — B)
the procedure applies the rule F— to I" taking as Sg_, all the swifs of the
kind F(A — B) occurring in I'. If it is not possible to find a closed proof
table of T starting from I' by applying F— to S, then there is no closed
proof table of T for I'.

It is straightforward to implement the above strategy both on a Deterministic
Turing Machine running within a O(nlogn)-bound on space and on a Nonde-
terministic Turing Machine running in polynomial time.

The following are the main properties of T that allow to obtain procedures
with such a complexity:

(7) deductions in the calculus T have depth which is linearly bounded by the
length of the wif to be proved;
(i4) every element in the conclusion of every rule of T has a number of symbols
which is bounded by the number of symbols in the premise plus a constant.
(797) the number of elements in the conclusion of every rule of T is bounded by
the length of the premise of the rule.



Property (i) is proved in Theorem 2, while Properties (i) and (¢i7) can be
easily checked by inspecting the rules of T. We point out that the number of
elements in the configuration in the conclusion of F— is the number of swifs
of the kind F(A — B) in the premise at most, whereas for the other rules the
number of elements is constant. By Properties (i) and (i) it follows that, given
any set S in any configuration of any proof table of T, the number of swifs of
S is linearly bounded by the length of the wif to be proved. Hence, by using
Property (#i1), every application of F— gives rise to a number of branches which
is linearly bounded in the length of the wff to be proved. Finally, we remark
that in a set S new atoms may appear but their number is linearly bounded by
the length of the wif to be proved; thus every new propositional variable may
be coded using a logarithmic number of bits. The number of bits to codify the
other symbols of S does not depend on the length of the wif to be proved.

5 Conclusions

The calculus T presented in this paper has an object language with one more
sign and five more rules than the calculus Dum-T given in [13]. By the new
sign a more efficient treatment of the negated formulas is possible. Thus, when
negated formulas are involved, the proofs of T are smaller than those of Dum-7.
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