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Abstract. Different nonmonotonic logics are often viewed as being very

different.  This is true even though there are a number of interesting results

comparing one nonmonotonic logic to another.  Herein, we describe the

commonality and differences among several different nonmonotonic logics by

implementing their propositional logic versions with finite stream based

algorithms involving maps and filters written in Scheme which maximize

commonality and minimize differences.  The result of organizing nonmonotonic

computations in this fashion is to make apparent in an elementary way, that

different nonmonotonic systems embody many of the same basic ideas and in

fact differ by often only a few bits or pointers.  The nonmonotonic systems

investigated are the Closed World Assumption, the kernel of Autoepistemic

Logic, Frame Logic, Default Logic, Justified Default Logic, Constrained

Default Logic, and Parallel Circumscription.  The Scheme code which produces

all the fixedpoints for all these systems for all propositional problems is given.

1 Introduction

Growing out of the need for logics and automatic deduction systems for common

sense reasoning phenomena such as default reasoning, reasoning about an agent's

knowledge or lack thereof, and reasoning about the consequences of robotic actions,

researchers have developed a number of logical systems generally called

nonmonotonic logics.   These various systems at first appeared to be very different

partly because of the different formalisms involved and partly because the

interrelationships were not at first understood or were misunderstood.  However, there

is now a number of known important relationships between the different

nonmonotonic logics.  These results are often fairly esoteric metatheorems which

state that certain structures in one nonmonotonic logic have fixedpoint solutions that

are related to the fixedpoint solutions produced by certain other structures in some

other nonmonotonic system.  Herein we take a different approach to comparing

nonmonotonic systems.  Our approach is to begin by studying the propositional

structure of nonmonotonic systems while ignoring the quantificational structure.

Later, we hope to extend this research by restoring widening ranges of

quantificational structure to the propositional nonmonotonic logics studied herein.

Because we here limit ourselves to propositional nonmonotonic logics everything is
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finite and we will be able to present the different nonmonotonic systems as

algorithmic code.  This code, will define the propositional versions of these

nonmonotonic systems by computing all the fixed points for any possible problem.

By writing the code in the elegant fashion of (finite) stream programs involving

generators, maps, filters, sieves, and accumulators, we are then able to extract out the

differences among different nonmonotonic systems, thereby providing an interesting

elementary way to compare them. The Scheme code for all these systems is given so

that the reader may use it to experiment on their favorite nonmonotonic examples.

Section 2 presents a tableaux deduction algorithm for the Propositional Logic

based on the Gentzen's LK Sequent Logic roughly equivalent to Wang's algorithm.

This tableaux deduction system is used as a basic subroutine in all the different

nonmonotonic systems studied herein.  This is presented herein, so that all the code of

our automatic deduction system for nonmonotonic logics will be available.

Section 3 presents the generic code for testing whether defaults hold.  This code

implements the basic ideas of testing defaults and generating possible fixedpoints

which are common to all the nonmonotonic systems discussed herein.   Since we are

limiting this study to propositional logic the above tableaux algorithm in section 2 is

decidable returning true or false. For this reason we don’t need to represent the

nonmonotonic default structure itself in a formal logic such as in the modal logic style

of [Brown 1986] and [Brown 1989], nor in the tableaux style of [Bonatti, & Olivetti

2002] and [Olivetti 1992].  This results in a significant simplification of the deduction

systems involved, allowing each to be described in a few lines of Scheme code

thereby making these systems available to the many AI scientists who know LISP like

languages but are not familiar with modal logics or sequent logic notations.   For the

Closed World Assumption, the kernel of Autoepistemic Logic, Default Logic, and

Parallel Circumscription, the correctness of the algorithms embedded in the code

follow from the modal  representations of these systems given in [Brown 1989].

[Bonati & Olivetti 2002] suggest that “complete axiomatizations should explicitly

model the very process of defeasible assumption making”.  We agree with this

suggestion because a more sophisticated automatic theorem prover could potentially

reuse intermediate deduced structures in other deductions thereby shortening proofs.

Shorter proofs even at the cost of additional overheads for the explicit representations

could still result in improved automatic deduction ability.  In addition, from this

viewpoint, their remark would have even more force when applied to non-decidable

cases of nonmonotonic logics since the possibility for reuse would be greater due to

the greater sophistication of the theorems involved.  This is one reason we used the

modal representations of [Brown 1986] and [Brown 1989] in proving theorems in the

nondecidable cases of various nonmonotonic logics such Circumscription and in our

quantified extensions to the Closed World Assumption, the kernel of Autoepistemic

Logic and Default Logic. [Brown 1989, Brown & Araya 1991, Leasure 1993].

The remaining sections define the Propositional Logic versions of the Closed

World Assumption (section 4), the kernel of Autoepistemic Logic (section 5), Frame

Logic (section 6), Default Logic (section 7), Justified Default Logic (section 8),

Constrained Default Logic (section 9) and Parallel Circumscription (section 10).

Finally, some conclusions are drawn in section 11.
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2  A Tableaux Sequent Calculus for Propositional Logic

The sentences of the Propositional Logic used herein are elementary sentences and

any list structure obtained by replacing the variables p, q, p1,...,pn in one of the forms:

#t, #f, (and p1,...,pn), (or p1,...,pn), (not p), (if p q), (iff p q) by other sentences.  The

elementary sentences are distinct symbols such as P or list structures not beginning

with a logical symbol such as (Loves John Mary).

Conjectures are proven using Wang's Algorithm [McCarthy 1962] which is based

on reversing the rules of Gentzen's LK Sequent logic.  A sequent is essentially a list

of hypotheses and a list of goals:

                      h1,...,hm => g1,...,gn

Commas are used to separate sentences within a sequent. The basic idea of this

Tableaux Sequent Calculus is to try to prove a conjecture C from a set of axioms

A1,...,An represented as the sequent: A1,...,An=>C by applying rules to the hypotheses

and goals of each sequent.  Each of these rules produce new sequents by replacing a

sentence in a sequent by its immediate subparts thereby reducing the complexity.

Each rule specifies that the sequent above the line is to be replaced by zero or more

sequents below the line.  The & sign is used to separate sequents.  The sequent rules

are given in Figure 1 and are organized into rules which manipulate hypotheses and

rules which manipulate goals.  In general, there is one hypothesis rule and one goal

rule for each logical symbol.  The atom rule given in the last line of the table says that

a sequent holds if the same proposition occurs in opposite sides of the sequent.   For

example, to prove that q follows from the axioms p and (if p q) we apply the

following steps to the sequent: p,(if p q)=>q. First, if=> is used to replace the initial

sequent by  two sequents p=>p,q   and   p,q=>q which are both eliminated using the

atom rule twice.  Since all sequents are eliminated the axioms imply the conjecture.

Table 1. The Tableaux Rules for Propositional Logic are as follows

name hypothesis rule name goal rule

#t=> #t =>

=>

=>#t => #t

#f=> #f=> =>#f =>#f

=>

and=> (and p1,...,pn) =>

p1,...,pn =>

=>and =>(and p1,...,pn)

=>p1  &...&   =>pn

or=> (or p1,...,pn)=>

p1=>  &...&   pn=>

=>or =>(or p1,...,pn)

=> p1,...,pn

not=> (not p)=>

=>p

=>not =>(not p)

p=>

if=> _(if p q )=>_

=>p  &   q=>

=>if =>(if p q)

p=>q

iff=> (iff p q)=>

=>p,q   &     p,q=>

=>iff   =>(iff p q)

p=>q    &    q=>p

atom p  => p
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A Scheme program implementing this Tableaux Sequent Calculus is given in

Figure 1.  The function => takes 4 arguments:

h --  a list of  hypotheses                  g --   a list of goals

h* -- a list of elementary hypotheses g* -- a list of elementary goals

The rules work by removing one by one the logical connectives from the sentences in

h and g and eventually placing all the simple sentences onto the lists h* and g*. The

main function is prove whose arguments are a list of axioms h and a conjecture c. If

no rule is applicable then the conjecture is not provable from the axioms.

(define(prove h c) (=> h '()'()(list c)))
(define(=> h h* g* g)
 (cond((not(null?(intersection h* g*))) #t)
  ((pair? h) (let((x(car h)))
     (cond((eqv? x #t) (=>(cdr h)h* g* g))
          ((eqv? x #f) #t)
          ((pair? x) (case(car x)
             ((and) (=>(append(cdr x)(cdr h))h* g* g))
             ((or) (forall(lambda(y)
                   (=>(cons y(cdr h))h* g* g))(cdr x)))
             ((not) (=>(cdr h)h* g*(cons(cadr x)g)))
             ((if)(and(=>(cons(caddr x)(cdr h))h* g* g)
                      (=>(cdr h)h* g*(cons(cadr x)g))))
             ((iff) (and(=>(list*(cadr x)(caddr x)
                                  (cdr h))h* g* g)
                        (=>(cdr h)h* g*
                           (list*(cadr x)(caddr x)g))))
             (else (=>(cdr h)(cons x h*)g* g))))
         (else (=>(cdr h)(cons x h*)g* g)))))
  ((pair? g) (let((x(car g)))
    (cond((eqv? x #t) #t)
          ((eqv? x #f) (=> h h* g*(cdr g)))
          ((pair? x) (case(car x)
            ((or) (=> h h* g*(append(cdr x)(cdr g))))
            ((and)(forall(lambda(y)
                  (=> h h* g*(cons y(cdr g))))(cdr x)))
            ((not) (=>(cons(cadr x)h)h* g*(cdr g)))
            ((if) (=>(cons(cadr x)h)h* g*
                              (cons(caddr x)(cdr g))))
            ((iff) (and(=>(cons(cadr x)h)h* g*
                             (cons(caddr x)(cdr g)))
                       (=>(cons(caddr x)h)h* g*
                             (cons(cadr x)(cdr g)))))
             (else (=> h h*(cons x g*)(cdr g)))))
          (else (=> h h*(cons x g*)(cdr g))))))
      (else #f)))
(define(forall p L)
       (if(pair? L)(and(p(car L))(forall p(cdr L)))#t))
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(define(intersection a b)
       (filter(lambda(x)(member x b))a))
(define(filter p L)
     (accumulate(lambda(x M)(if(p x)(cons x M)M))'()L))
(define(accumulate c i L)

       (if(pair? L)(c(car L)(accumulate c i(cdr L)))i))

Fig. 1. Automatic Theorem Prover for Propositional Logic based on the Tableaux Sequent

calculus.  Calling the function prove with a list of axioms and a conjecture returns #t or #f

depending on whether the conjecture follows from the list of axioms or not.

3  Nonmonotonic Default Inference Rules

Nonmonotonic inferences in Propositional Logic may be specified by non-logical

inference rules called "defaults" of the form:        

α1,...,αm: β1,...,βn

χ

where α1,...,αm , β1,...,βn, and χ  are sentences.  Such a nonlogical inference rule is

interpreted to mean that if each αi holds in a given theory and if each βi is consistent

with respect to a given theory then χ may be inferred.  If we suppose that the given

theory is the same for each αi  sentence, then the inference rule may be rewritten as:

α : β1,...,βn

χ

where α is (and α1...αm) since α holds in a given theory if and only if each αi holds in

that theory.  The case where there are no αi sentences may then be represented by

letting α be #t.  However, if we suppose that the given theory is the same for each βi

sentence, the β1,...,βn sentences cannot likewise be replaced by one large β since each

βi sentence may be consistent with a given theory without (and β1,...,βn) itself being

consistent with the theory as, for example, in the theory (not(and p q)) where β1 is p

and β2 is q.  A nonlogical inference rule or default will be represented as a three

element list of the form: (α(β1…βn)χ)

Assuming that the given theory is the same for all  β1,…,βn,, a Scheme program to

determine whether a nonlogical inference rule is applicable is given in Figure 2.  The

scheme function test takes as arguments: h1 – the given theory for α, h2 – the given

theory for β1…βn, and – a default.

 (define(test h1 h2 d)
        (define(pv x) (prove h1 x))
        (define(pos x) (not(prove h2(list 'not x))))
        (and(pv(car d))(forall pos(cadr d))))

Fig. 2. Procedure to determine whether a default is applicable.
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This Scheme program assumes that the theories h1 and h2 are known before one

tests any default.  However, if either of the theories on which the α and β1,…,βn

sentences of each default are tested itself includes the χ sentences of those defaults

which fired, then we need to already know which χ sentences fired in order to test the

α and β1,…,βn sentences.  This circularity may be avoided by picking a subset of the

set of defaults to be the fired subset and then testing that each default in the chosen set

is applicable and that each default not in the chosen subset is not applicable.  By

successively choosing as the set of fired defaults each possible subset of the initial set

of defaults we get all possible solutions.

A Scheme program called testall? which determines whether a subset s of the set of

defaults Ds is a fired subset of defaults is given in Figure 3.  This program calls test+

which checks to see that every default which should fire (i.e. those in s) does and a

program: test- which checks to see that every default which is not supposed to fire

(i.e. those not in s), do not.   It also calls the program setdifference which computes

the defaults which are not fired.

Also given in Figure 3 are the fp and subsets programs.  The fp program produces

a list of all the χ sentences of the fired defaults appended to the set of axioms As.

The subsets program generates the list of all possible subsets of the set of defaults.

(define(testall? h1 h2 s Ds)
(and(test+ h1 h2 s)(test- h1 h2(set-difference Ds s))))
(define(test+ h1 h2 s)
       (forall(lambda(d)(test h1 h2 d))s))
(define(test- h1 h2 s)
       (forall(lambda(d)(not(test h1 h2 d)))s))
(define(set-difference Ds s)
       (filter(lambda(x)(not(memq x s)))Ds))
(define(fp As s)(append(map caddr s)As))
(define(subsets L)
    (accumulate
      (lambda(x m)(append(map(lambda(s)(cons x s))m)m))
     '(())L))

Fig. 3. Procedures to test whether a subset of defaults is a firing set of defaults.

4 The Closed World Assumption

The Closed World Assumption [Reiter 1978] (which is related to Completion systems

[Clark 1978]) is a rule which allows the inference of a sentence of the form ¬(π

δ1...δm) where π in an m-ary predicate and  δ1...δm are variable free terms, whenever

that sentence is possible with a given theory:

: ¬(π δ1...δm)

¬(π δ1...δm)

Since no variables occur in (π δ1...δm) we may think of it as being a propositional

constant χ.
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: χ
χ

We generalize the closed world assumption so that there may be an α sentence, any

number of βi sentences which may be different from χ:

α: β1,...,βn

χ

and interpret this structure to mean that there is a set of axioms As such that if α

follows from As and each βi is possible with As then χ.  A Scheme program to

compute the result of applying such defaults to an initial set of axioms is given in

Figure 4.   This program works by generating all the subsets of the defaults, filtering

them by testing which defaults fire, and then by constructing the resulting fixedpoints.

(define(cwa-fixedpoints As Ds)
       (map(lambda(s)(fp As s))
           (filter(lambda(s)(testall? As As s Ds))
                  (subsets Ds))))

Fig. 4. Fixedpoint Deducer  for The Closed World Assumption

Since the χ sentences of the defaults are not part of the set As which is being used

to test the defaults, there is only one set of firing defaults.  The resulting theory is

simply the result of appending the χ sentences of the firing defaults to that set. For

this reason there is a single cwa fixedpoint which may be computed by the more

efficient program given in Figure 5 which simply tests each default to see if it fires

and then constructs the fixedpoint from the axioms and the firing defaults.

 (define(cwa-fixedpoint As Ds)

        (fp As(filter(lambda(d)(test As As d))Ds)))

Fig. 5. Efficient Fixedpoint Deducer  for the Closed World Assumption

Example 1: This example has one axiom: A and one default:

                       :B

                        B

The set of axioms is represented as a list of axioms ‘(A) and the set of defaults is

represented as a list of defaults  ‘((#t(B)B))).  Since there is no α part of this

default, it is represented as #t.  To compute the fixedpoint we simply apply cwa-

fixedpoint to the set of axioms and the set of defaults:
   (cwa-fixed-point ‘(A) ‘((#t(B)B)))  => (A B)

Example 2: Here is an example illustrating the problem cwa has in dealing with

two contradictory defaults:

  :A      : ¬ A

   A        ¬A

   (cwa-fixedpoint ‘()‘((#t(A)A)(#t((not A))(not A)))
   => (A(not A))

which is a fixedpoint from which #f may be  derived by the prove function.
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5  T h e  K e r n e l  o f  A u t o e p i s t e m i c  L o g i c 

Autoepistemic Logic [Moore 1985] for a Propositional Logic includes the syntax of

Propositional Logic supplemented with a unary operation L which has the properties

of an S4.5 modal logic.  These modal properties allow each sentence of this

Propositional Autoepistemic Logic to be rewritten [Konolige 1987] as a finite set of

sentences of the form:

((Lα) ∧ (¬L¬β1)∧...∧(¬L¬βn) )→ χ

where the (Lα) expression is optional in any sentence and n may be 0.  Such a

sentence can then be thought of as being the inference rule:

α: β1,...,βn

χ

where α follows from the given theory k and each βi is possible with that theory k.

The given theory k will always be a fixedpoint.  The fixedpoints can be obtained by

enumerating all possible subsets of defaults, filtering out those which are not firing

subsets and conjoining all the χ sentences of the firing defaults to the initial axioms.

A Scheme program to do this, called aek-fixedpoints, is given in Figure 6.  [Bouix

1998] gives an analogous program written in Logistica.

(define(aek-fixedpoints As Ds)
 (map(lambda(s)(fp As s))
     (filter(lambda(s)(testall?(fp As s)(fp As s)s Ds))
            (subsets Ds))))

Fig. 6. Fixedpoint Deducer  for the Kernel of Autoepistemic Logic

Since the χ sentences of the defaults are part of the set being used to test the

defaults there is not necessarily a single fixedpoint as in the case of cwa.  For

example, the empty set of axioms and the default A:/¬A has no fixedpoints.

Likewise the empty set of axioms and the two defaults:  :A/A and :¬A/¬A has two

fixedpoints, namely one consisting of A and the other consisting of ¬A

Aek is a powerful logic capable of representing, as defaults rules, action logics

involving both precondition/result pairs of actions and the necessary frame laws:

     preconditions-action(t):                                 α(t): χ(t+1)

        results-action (t+1) χ(t+1)

In these laws t is a specific number representing the time (represented as an additional

argument to each predicate in the sentence) at which the action is applied.  The first

default states that the results of an action applied at time t holds at time t+1 if the

preconditions held at the previous moment of time t.  The second law is the frame law

which states that a property α which holds at time t causes a property  χ  to holds at

time t+1 if it is consistent for χ to do so.  In the simpler cases (usually discussed in the

literature) α is identical to χ.
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6 Frame Logic

Frame Logic [Brown 1987] represents in a direct manner action logics involving both

the precondition/result pairs of actions and the necessary frame laws.  A Propositional

Frame Logic involves a set of axioms and default laws representing

precondition/action pairs and the necessary frame laws of the following forms:

     preconditions-action: α: χ

         results-action   χ

Unlike Autoepistemic Logic (aek) no numeric subscripts representing time are needed

because the sentences before the : in any default rule follow from a given theory

representing what holds at the preceding moment in time.  Let OLD be the theory

which specifies what holds in the previous moment of time.  An  action law then says

that if the preconditions held in OLD then the results hold in the fixedpoint  (which

represents what now holds).  Likewise, the frame laws say that a property α which

holds in OLD causes a property χ to hold in the fixedpoint if χ is possible.  Again in

the simpler cases (usually discussed in the literature) α is identical to χ .  [Brown

1989] discusses more sophisticated cases dealing with Newtonian Mechanics.

We generalize Frame Logic defaults to:

α: β1,...,βn

   χ

where α holds in the old theory and each βi is consistent with a resulting fixedpoint

which includes the χ sentences of the firing defaults.  The fixedpoints can be obtained

by enumerating all possible subsets of the defaults, filtering out those which are not

firing subsets and conjoining all the χ sentences of the firing defaults to the initial

axioms.  A Scheme program to do this, called frame-fixedpoints, is given in Figure 7.

(define(frame-fixedpoints old As Ds)
       (map(lambda(s)(fp As s))
          (filter(lambda(s)(testall? old(fp As s)s Ds))

                 (subsets Ds))))

Fig. 7. Fixedpoint Deducer  for Frame Logic

7 Default Logic

Default Logic [Reiter 1980] for a Propositional Logic is essentially a set of axioms As

and a finite set of default rules of the form:

α: β1,...,βn

    χ

where α follows from a theory k and each β i is possible with that theory k.  The

theory fixedpoint k must be constructable by adding to the axioms the χ sentences of

those defaults whose a sentences are already deducible from the axioms and

previously deduced χ sentences.  The requirement does not allow the α sentence of a

default to be proven by using its own χ sentence.  The supported nature of Default

Logic, perhaps, more closely represents defaults such as those used in taxonomies and
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other cases than do logics such as Autoepistemic logic.  Other authors prefer other

Default Logics such as Justified Default Logic or Constrained Default Logic.

[Antionu 1997] discusses the merits of different alternatives.

The fixedpoints of a system of defaults of Default logic can be obtained by

enumerating all possible subsets of defaults, filtering out those which are not firing

subsets and those which are no properly constructed and then conjoining all the χ

sentences of the firing defaults to the initial axioms.  Since Default logic as defined

here differs from Autoepistemic kernels by a single filter (i.e. the supported filter) it is

obvious that the fixedpoints of Default Logic are a subset of the fixedpoints of

Autoepistemic Kernels as Konolige suggested and eventually proved for the original

descriptions of these logics.  (see  [Konolige 1987]).  A Scheme program to derive all

the fixedpoints, called dl-fixedpoints, is given in Figure 8.

(define(dl-fixedpoints As Ds)
  (map(lambda(s)(fp As s))
    (filter(lambda(s)(supported? As s))
     (filter(lambda(s)(testall?(fp As s)(fp As s)s Ds))
            (subsets Ds)))))
(define(supported? As s)
   (define(iter rn s)
      (define fdl(filter(lambda(d)(prove rn(car d)))s))
      (if(null? fdl)s(iter(append(map caddr fdl)rn)
                           (set-difference s fdl))))
   (null?(iter As s)))

Fig. 8. Fixedpoint Deducer  for Default Logic

There are many possible improvements to this program.  For example, since the

order of applying filters does not essentially change the result of stream code, we may

swap the order sometimes producing a profound effect on efficiency.   For example, a

new program for computing the fixedpoints of Default Logic could be obtained by

swapping the order of the two filters in Figure 8.

[Risch & Schwind 1990] describes an automatic procedure for computing

fixedpoints for Default Logic as originally defined whereby each default contains at

least one possibility.  Thus their algorithm does not allow defaults such as:

preconditions-action(t):     α:

     results-action (t+1)  (not α)

 though the default :

 preconditions-action(t): #t

     results-action (t+1)

might serve as a reasonable facsimile in the former case.   This work is formulated to

apply to First Order Logic with a finite domain which as is well known is essentially

equivalent to propositional logic.  Their algorithm has three main steps: (1)The first

step is to enumerate the maximally consistent subsets or essentially enumerating the

subsets of the defaults and then filtering them by a test determining which are

maximally consistent with the axioms.  (2) The second step tests the possibility

statements and appears to be a leaner version of our testall filter which ignores testing

the α sentences, and the third step is analogous to our supported? filter.  In addition to
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these three steps, they state that “it still has to be verified that extensions are minimal

and do not contain each other”.  This suggests that there is also a sieve like process

such as the one we use in defining Justified Default logic in section 8 below.  We

could not determine whether their algorithm is more efficient than the one given

herein.  Their generation step (step 1) involving a filter appears to be more expensive,

their step 2  appears to be less expensive than testall, their step 3 is the same as our

supported filter, and finally they have the additional cost of the above mentioned

sieve.

   [Turner 1996] suggests ways of reducing the complexity of default logic by dividing

defaults into a sequence of layers so that only the defaults of a given layer need be

considered at any given time.  This work applies only to those default structures and

axioms which fit certain syntactic criteria. Thus, this work is not an algorithm in itself

for Default logic, but may serve as a valuable adjunct to such algorithms.

8 Justified Default Logic

Justified Default Logic [Lukaszewics 1990] for a Propositional Logic is essentially a
set of axioms As and a finite set of default rules of the form:

α: β1,  ,βn

χ

where α follows from a theory k and each βi is possible with that theory k and with

every other B sentence in every other default which fired. The fixedpoints of a system

of defaults can be obtained by enumerating all possible subsets of defaults, filtering

out those firing defaults which do not fire (using TEST+) filtering out those which are

not supported, eliminating any fixedpoints with subsumed sets of firing defaults and

conjoining all the χ sentences of the firing defaults to the initial axioms.  A Scheme

program to do this, called jdl-fixedpoints, is given in Figure 10.

(define(jdl-fixedpoints As Ds)
  (map(lambda(s)(fp As s))
    (sieve not-contains?
       (filter(lambda(s)(supported? As s))
           (filter(lambda(s)(test+(fp As s)(fp As s)s))
                  (subsets Ds))))))
(define(sieve p s)
       (accumulate(lambda(x L)(cons x(sieve p
                  (filter(lambda(y)(p x y))L))))'()s))
(define(not-contains? x y)
       (not(null?(set-difference y x))))

Fig. 10. Fixedpoint Deducer for Justified Default Logic

sieve is an abstraction of the Sieve of Eratosthenes.  When applied to (lambda(x

y)(not(=(remainder y x)0))) and a stream of consecutive ascending

integers starting from 2, it produces the prime numbers.
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9 Constrained Default Logic

Constrained Default Logic [Schaub 1992] for a Propositional Logic is essentially a set

of axioms As and a finite set of default rules of the form:

α: β1,...,βn

χ

where α follows from a theory k and each βi is possible with that theory k and with

every other B sentence in every other default which fired.  The fixedpoints of a

system of defaults can be obtained by enumerating all possible subsets of defaults,

filtering out those firing defaults which do not fire (using TEST+) whose β theory

includes the β sentences of all the firing defaults conjoined to the fixedpoint, filtering

out those which are not supported, eliminating any fixedpoints with subsumed sets of

firing defaults and conjoining all the χ sentences of the firing defaults to the initial

axioms.    A Scheme program to do this, called cdl-fixedpoints, is given in Figure 11.

(define(cdl-fixedpoints As Ds)
  (map(lambda(s)(fp As s))
      (sieve not-contains?
         (filter(lambda(s)(supported? As s))
             (filter(lambda(s)(test+(fp As s)
                   (append(flatmap cadr s)(fp As s))s))
                 (subsets Ds))))))
(define(flatmap f L) (flatten(map f L)))
(define(flatten L)(accumulate append '()L))

Fig. 11. Fixedpoint Deducer  for Constrained Default Logic

10 Circumscription

A nonmonotonic system such as the Closed World Assumption produces precisely

one fixedpoint.  In such a case one may determine that a conjecture follows from that

fixed point by simply applying the prove function to the fixedpoint and the

conjecture.  However, most nonmonotonic systems do not always produce precisely

one fixedpoint.  In such a case the question arises as to what fixedpoint should be

used to derive further consequences. We could choose arbitrarily but a more

conservative approach is to require that the theorem hold in all fixedpoints.  Since

(fpi=>t) & ... & (fpn=>t) is equivalent to (fp1 or ... or fpn) => t  we need to prove t from

the disjunction of all the fixedpoints.  From this perspective the problem is to compute

this disjunction. It turns out that there is a nonmonotonic system, namely Parallel

Circumscription [McCarthy 1980, McCarthy 1986, Lifschitz 1985] that produces just

this disjunction [Konolige 1989, Brown 1989] when all the defaults are of the form:

:χ
χ
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Specifically, Circumscription for a Propositional Logic may be thought of as being

a rule which allows the inference of sentences of the form ¬(π δ1...δm) where π in an

m-ary predicate and  δ1...δm are variable free terms, whenever  that sentence is

possible with a given theory:

: ¬(π δ1...δm)

¬(π δ1...δm)

such a predicate is said to be Circumscribed.  Since no variables occur in (π δ1...δm)

we may think of it as being a propositional constant.  In addition to Circumscribed

Predicates, there may also be Variable Predicates and Fixed Predicates.  Variable

Predicates involve no additional rules, but Fixed Predicates involve two contradictory

rules of the form:

: ¬(π δ1...δm)         : (π δ1...δm)

  ¬(π δ1...δm)           (π δ1...δm)

These default structures may be interpreted as an Autoepistemic Kernel structure, a

Frame Logic structure, or as a Default Logic structure since all three interpretations

are the same for the defaults used in Circumscription.

We generalize the defaults of circumscription so that there may be an α sentence,

any number of βi sentences, and so that last occurrences of χ may be any sentence:

α: β1,...,βn

χ

A Scheme program for Circumscription by interpreting its defaults as Autoepistemic

Kernel defaults is given in Figure 9.  This program accumulates the fixedpoints

together by simply returning the disjunction of the conjunction of all the sentences in

each Autoepistemic Kernel fixedpoint (see [Brown 1989, Konolige 1989]).

 (define(circumscription As Ds)
         (cons 'or(map(lambda(k)(cons 'and k))

                      (aek-fixedpoints As Ds))))

Fig. 12. Automatic Theory Constructor for  Parallel Circumscription with circumscribed, fixed,

and variable predicates.

11 Conclusion

The nonmonotonic systems discussed herein are summarized in Table 2 in terms of

the filters, sieves, and accumulators that are used.  The main choice is whether testall

or test+ is used and in either case what theories are used to test the α sentences and β

sentences of the defaults.  There is also the question of whether the supported? filter is

used, whether the non-contained? sieve is used, and whether the disjunction

accumulator is used.  Thus in summary, the difference in all these nonmonotonic

systems amounts to two pointers (for the α and β theories), and four bits (for  testall

vs test+, supported?, the not-contains? sieve, and disjunction accumulator.  Table 2

suggests the existence other possible nonmonotonic systems with different

combinations of pointers and bits.
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Table 2. The differences among the different NonMonotonic Systems.  As is the

initial set of axioms,  k is the fixedpoint, and kβ is the conjunction of the axioms in k

and each of the  β sentences of all firing defaults.

nonmonotonic
system filters sieve

accum-
ulator:

Closed World
Assumption

λs(testall As As s)

Autoepistemic
Kernel

λs(testall k k s)

Frame Logic λs(testall old k s)

Default Logic λs(testall k k s), λs(supported? As s)

Justified
Default Logic

λs(test+ k k s), λs(supported? As s) not-contains?

Constrained
Default logic

λs(test+ k kβ s), λs(supported? As s) not-contains?

Circumscription λs(testall  k k s) disjunc-
tion

    Sometimes one only wants a single fixedpoint solution rather than all fixedpoint

solutions.  This is elegantly achieved by delaying the second argument to each cons

used on a stream.  In this case, each cons, cdr, and car (including the cons in Scheme's

built-in functions such as the map function) used to implement a stream is replaced by

cons-stream, cdr-stream, and car-stream  defined as follows:

(cons-stream x s) =df (cons x(lambda() s))

(cdr-stream x s) =df (cdr(s))

(car-stream s) =df (car s)

Calling one of these nonmonotonic systems (except Circumscription which does an

accumulation of all fixedpoints) then produces a delayed stream of fixedpoints whose

car is the first fixedpoint found.  The work to search for any additional fixedpoints

would then be completely avoided.
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